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ON THE COMPARISON OF HEREDITY OF
GENERALIZED METRIC PROPERTIES TO
MAPPING SPACES AND HYPERSPACES

TAKEMI MIZOKAMI, NORIHITO SHIMANE, AND FUMIO SUWADA

Abstract. We compare the heredity of some generalized
metric properties to mapping spaces with compact open topol-
ogy and hyperspaces of compact subsets with finite topol-
ogy. Especially, we treat here spaces with a Gδ-diagonal,
G∗δ -diagonal, regular Gδ-diagonal, paracompact M-space, M-
space, topologically complete spaces and Moore spaces.

1. Introduction

Throughout this paper, all spaces are assumed to be regular T1

unless the contrary is stated explicitly. For a space X, we denote
the topology of X by τ(X).

In this paper, we compare the heredity of generalized metric
properties of a space Z to the hyperspace K(Z) of non-empty com-
pact subsets of Z and to the mapping space C(X, Z) with the com-
pact domain. That is, we study two topological operations under
classes of topological spaces in terms of generalized metric proper-
ties as follows: Let P be a class of spaces with some generalized
metric property;

(I) if Z ∈ P, then does K(Z) ∈ P?
(II) if X is a compact space and Z ∈ P, then does C(X,Z) ∈ P?
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Here, K(Z) is the space of non-empty compact subsets of Z with
a finite topology in the sense of [4], called frequently the “Vietoris
topology” also, which has a base

{〈U1, · · · , Uk〉|U1, · · · , Uk ∈ τ(X) and k = 1, 2, · · · },
where 〈U1, · · · , Uk〉 =

{
K ∈ K(Z)

∣∣∣∣∣ K ⊂
⋃

i

Ui and K ∩ Ui 6= ∅ for each i

}
,

and C(X,Z) has the compact-open topology which has a base

{W (K1, · · · ,Kn;U1, · · · , Un)|K1, · · · ,Kn ∈ K(X),

U1, · · · , Un ∈ τ(Z), n = 1, 2, · · · },
where W (K1, · · · ,Kn;U1, · · · , Un) =

{f ∈ C(X,Z)|f(Ki) ⊂ Ui for each i}.
For brevity, we write 〈U〉 in place of 〈U1, · · · , Uk〉 when
U = {U1, · · · , Uk}.

Both K(Z) and C(X, Z) are regular T1 for a regular T1-space Z
([4, Theorem 4.9.10] and [2, Theorem 3.4.13], respectively).

As for undefined terms in generalized metric spaces treated here,
refer to [3].

2. The case of M-spaces

Čoban showed in [1, Proposition 2] that if f is a perfect mapping
of a completely regular space X onto a completely regular space Y ,
then the mapping f∗ : K(X) → K(Y ) defined by

f∗(K) = f(K), K ∈ K(X),

is also perfect. Using this, he showed that paracompact M-spaces
are closed under the operation I. But we can show the perfectness of
f∗ for more general spaces, the proof of which is more complicated
than his. We note that his proof indeed proceeds via the Stone-Čeck
compactifications βX and βY and we do not use them.

Proposition 2.1. Let X, Y be T2-spaces and let f be a perfect
mapping of X onto Y . Then f∗ : K(X) → K(Y ) is also perfect.
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Proof: f∗ is continuous [4, Theorem 5.10.1] and obviously onto.
Since for each K ∈ K(Y ), K(f−1(K)) is compact, (f∗)−1(K) is
compact. Thus it remains to show that f∗ is closed. To this end,
let Ô be any open subset of K(X) such that (f∗)−1(K) ⊂ Ô. Take
finite collections Ui, i = 1, · · · , k of open subsets of X such that

(1) (f∗)−1(K) ⊂
⋃

i

〈Ui〉 ⊂ Ô,

〈Ui〉 ∩ (f∗)−1(K) 6= ∅, i = 1, · · · , k.

Let {U(δ)|δ ∈ ∆} be the totality of finite covers of f−1(K) by
members of

⋃
i Ui. Obviously ∆ is finite. Let δ ∈ ∆ and let

V(1), · · · ,V(s(δ)) be the totality of subcollections of U(δ) such that
(Y \ f(X \⋃V(i))) ∩K 6= ∅ for each i. Let

V̂ (δ) =
〈{

Y \ f
(
X \

⋃
V(i)

) ∣∣∣ i = 1, · · · , s(δ)
}〉

,

which is an open neighborhood of K in K(Y ). Thus, if we define

(2) V̂ =
⋂
{V̂ (δ)|δ ∈ ∆},

then V̂ is an open neighborhood of K in K(Y ). To show the closed-
ness of f∗, it suffices to show that (f∗)−1(V̂ ) ⊂ ⋃

i〈Ui〉. On the
contrary, assume that there exists

(3) L ∈ (f∗)−1(V̂ ) \
⋃

i

〈Ui〉.

By (1), there exists i(0) such that f−1(K) ∈ 〈Ui(0)〉. Let Ui(0) =
U(δ0), δ0 ∈ ∆. If we set

U ′i(0) = {U ∈ Ui(0)|U ∩ L = ∅},

then U ′i(0) 6= ∅ because f(L) ∈ V̂ (δ0) by (2) and L 6∈ 〈Ui(0)〉. We
show the validity of

(4) f
(
f−1(K) \

⋃
U ′i(0)

)
= K.

Otherwise, there exists

p ∈ K \ f
(
f−1(K) \

⋃
U ′i(0)

)
,
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which implies f−1(p) ⊂ ⋃U ′i(0). But this is a contradiction because
f(L) ∩ (Y \f(X \ ⋃U ′i(0))) 6= ∅ by (3) and by the construction of
V (δ). Again, by (1) there exists i(1) such that

f−1(K) \
⋃
U ′i(0) ∈ 〈Ui(1)〉.

Note that i(0) and i(1) are distinct. Choose δ1 ∈ ∆ such that
U ′i(0) ∪ Ui(1) = U(δ1). Set

U ′i(1) = {U ∈ Ui(1)|L ∩ U = ∅},
then U ′i(1) 6= ∅, for otherwise, L ∈ 〈Ui(1)〉 follows and this is a
contradiction to (1). By the same argument as (4), we have

f
(
f−1(K) \

⋃
(U ′i(0) ∪ U ′i(1))

)
= K.

Then there exists i(2) with i(2) 6= i(0), i(1) such that

f−1(K) \
⋃

(U ′i(0) ∪ U ′i(1)) ∈ 〈Ui(2)〉.
Repeating this process as many times as possible, we should come
to a contradiction because

⋃
i〈Ui〉 covers (f∗)−1(K). ¤

Quasi-perfect mappings do not have this property, even if both
X and Y are completely regular. To see it, it suffices to recall that
the existence of a countably compact completely regular space X
such that K(X) is not M [6, Example 2] and that M-spaces are
characterized as a quasi-perfect preimage of a metric space.

The next two examples show that paracompact M-spaces and
M-spaces are not closed under the operation II.

Example 2.2. There exists compact spaces X and Y such that
C(X, Y ) is not paracompact M.

Construction: Let X be the unit interval [0, 1] with the usual
topology. It is well known that C(X,X) is not countably compact.
Let Y be the long segment due to Michael, i.e., Y consists of ω1

together (α, t) with α < ω1 and 0 ≤ t < 1 and has the interval
topology [2, Problem 3.12.19]. We show that C(X, Y ) is not para-
compact M. Here, we identify C(X, Y ) with the subspace{{(x, f(x))|x ∈ X} ∣∣ f ∈ C(X, Y )

}

of K(X × Y ), [2, Problem 3.12.27(j)]. Assume that C(X,Y ) is
paracompact M. Let (Ûn) be an M-sequence for C(X, Y ). Since
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C(X, Y ) is paracompact, we can assume that each Ûn is locally
finite in C(X, Y ). Let F̂n be a locally finite closed cover of C(X,Y )
shrinking Ûn. For each n, there exists an open neighborhood Ô(n)
of

f = {(x, ω1)|x ∈ X}
such that

Ô(n) ∩
(⋃

{F̂ ∈ F̂n|f 6∈ F̂}
)

= ∅,
Ô(n) =

〈{
Ui × ((αn, 0), ω1]

∣∣ i = 1, · · · , kn

}〉 ∩ C(X,Y ),
where αn < ω1 and Ui ∈ τ(X) for i = 1, · · · , kn. Let α = supn αn

and let

Ĝ(n) =
〈{

Ui × [(α, 0), ω1]
∣∣ i = 1, · · · , kn

}〉 ∩ C(X, Y ), n ∈ ω.

Then Ĝ(n) ⊂ S(f, F̂n) ⊂ S(f, Ûn). Since (Ûn) is an M-sequence for
C(X, Y ),

⋂
n Ĝ(n) is compact. But this is a contradiction. For,

we can easily notice that
⋂

n Ĝ(n) contains the closed subspace
homeomorphic to C(X, X) which is not countably compact.

Example 2.3. There exists a compact space X and a countably
compact space Y such that C(X, Y ) is not a w∆-space.

Construction: Let Z1, Z2 be countably compact spaces such
that Z1 × Z2 is not countably compact [2, Example 3.10.19]. We
separate the non-limit ordinals in ω1 to L1 and L2 as

L1 = {α + 2n + 1|n ∈ ω and α is a limit ordinal},
L2 = {α + 2n + 2|n ∈ ω and α is a limit ordinal}.

For each α ∈ ω1 + 1, let

α∗ = {α} × Zi if α ∈ Li (i = 1, 2)
α∗ = {α} otherwise

and let Y =
⋃{α∗|α ∈ ω1 + 1}. We topologize Y as follows: For

each α ∈ Li (i = 1, 2) we make α∗ a clopen subspace homeomorphic
to Zi. For each limit ordinal α in ω1 + 1, let {(β∗, α∗]|β < α} be a
neighborhood base of α in Y , where

(β∗, α∗] =
⋃
{γ∗|β < γ ≤ α}.

Then obviously Y is countably compact. Let X = ω1 + 1 with
order topology. Now, we show that C(X, Y ) is not a w∆-space.
Assume that there exists a w∆-sequence (Ûn) for C(X, Y ). As in
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the previous example, we identify C(X,Y ) with the subspace of
K(X × Y ). Let

f = {(α, ω1)|α ∈ ω1 + 1}.
For each n, there exists a closed neighborhood Ô(n) of f in C(X,Y )
such that

Ô(n) =
〈{

Ui × [α∗n, ω∗1]
∣∣ i = 1, · · · , kn

}〉 ∩ C(X,Y ) ⊂ S(f, Ûn),

where αn is a limit ordinal and {Ui|i = 1, · · · , kn} is an open cover of
ω1+1. ([α∗n, ω∗1] is defined similarly to the above.) Let α = supn αn.
Then

C =
⋂
n

〈{
Ui × [α∗, ω∗1]

∣∣ i = 1, · · · , kn

}〉 ∩ C(X,Y )

is a countably compact closed subset of C(X, Y ). Since as easily
seen, Z1 × Z2 is embedded in C as a closed subset, C cannot be
countably compact, a contradiction.

3. The case of topologically complete spaces

A space X is called topologically complete if there exists a unifor-
mity µ compatible with τ(X) such that (X, µ) is complete. Such
spaces coincide with inverse limits of metric spaces [8]. Using this,
Zenor proved that topologically complete spaces are closed under
the operation I [9]. Similarly, we show that they are closed under
the operation II when the domain X is a k-space. For it, we prepare
the following notation. For a space X, let K(X) = {Kα|α ∈ A} and
we introduce the order ≤ in A as follows: For α, β ∈ A, α ≤ β if and
only if Kα ⊂ Kβ. For a directed set B, we introduce the order ≤ in
A×B as follows: For λ1 = (α1, β1), λ2 = (α2, β2) ∈ A×B, λ1 ≤ λ2

if and only if α1 ≤ α2 and β1 ≤ β2. For α1, α2 ∈ A with α1 ≤ α2,
let iα1α2 be the inclusion mapping of Kα1 into Kα2 .

Proposition 3.1. Let X be a k-space and Y = lim←−{Yβ, πβ1β2 |β1, β2

∈ B, β1 > β2}. Then C(X,Y ) is the inverse limit of {C(Kα, Yβ)|
(α, β) ∈ A×B}.
Proof: As the bonding mappings, we define

Πλ1λ2 : C(Kα1 , Yβ1) → C(Kα2 , Yβ2),

for λ1(α1, β1), λ2(α2, β2) ∈ A×B and λ2 < λ1 as follows:

Πλ1λ2(f) = πβ1β2 ◦ f ◦ iα2α1 , f ∈ C(Kα1 , Yβ1).
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Since it is easy to check for λi = (αi, βi) ∈ A× B (i = 1, 2, 3) with
λ3 < λ2 < λ1

Πλ2λ3 ◦Πλ1λ2(f) = Πλ2λ3 ◦ (πβ1β2 ◦ f ◦ iα2α1)
= πβ2β3 ◦ (πβ1β2 ◦ f ◦ iα2α1) ◦ iα3α2

= πβ1β3 ◦ f ◦ iα3α1

= Πλ1λ3(f),

{C(Kα, Yβ), Πλ1λ2 |λ1, λ2 ∈ A×B, λ2 < λ1} forms an inverse limit
system. Let

P = lim←−C(Kα, Yβ)

be its inverse limit. Then we show that C(X, Y ) ∼= P . To this
end, we define a homeomorphism Φ of C(X,Y ) onto P as follows:
Let πβ : Y → Yβ be the projection for each β ∈ B. Let f be an
arbitrary element of C(X, Y ). Then we let

Φ(f) = (fλ)λ∈A×B,

where for each λ = (α, β) ∈ A×B,

fλ = (πβ ◦ f)|Kα.

Then clealy (fλ) ∈ P . To show that Φ is one-to-one, let f 6=
g, f, g ∈ C(X, Y ). There exist x ∈ X and β ∈ B such that (πβ ◦
f)(x) 6= (πβ◦g)(x). Pick α ∈ A with Kα = {x}. For this λ = (α, β),
clearly fλ 6= gλ, which means Φ(f) 6= Φ(g). To see that Φ is onto,
let (fλ) ∈ P . Let x be an arbitrary point of X and pick α(x) ∈ A
with Kα(x) = {x}. For each β ∈ B, f(α(x),β)(x) ∈ Yβ. Then we
define a correspondence f : X → Y such that

f(x) =
(
f(α(x),β)(x)

)
β∈B

.

Note that f |Kα = (f(α,β))β∈B for each α ∈ A. Since X is a k-space,
f ∈ C(X, Y ) and obviously Φ(f) = (fλ). To see the continuity, let
λ = (α, β) ∈ A×B. Let Cα be a compact subset of Kα and Uβ an
open subset of Yβ. Then we have the equality

Φ−1
(
Π−1

λ (W (Cα;Uβ))
)

= W
(
Cα;π−1

β (Uβ)
)

,

where Πλ : P → C(Kα, Yβ) is the projection, which proves the
continuity. Conversely, to see the continuity of Φ−1, let α ∈ A and
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let Uβ be an open subset of Yβ. Then it is easy to see

Φ
(
W

(
Kα; π−1

β (Uβ)
))

= Π−1
(α,β)(W (Kα;Uβ)),

which proves the continuity. Hence Φ is a homeomorphism. ¤

Theorem 3.2. Let X be a k-space. If Y is a topologically complete
space, then so is C(X, Y ).

Proof: Let Y = lim←−Yα, where Yα’s are metric spaces. By the
above proposition, C(X, Y ) = lim←−C(Kα, Yβ). Since C(Kα, Yβ) is
metrizable [2, Exercise 4.2.H], C(X, Y ) is topologically complete.

¤

4. The case of Gδ-diagonals.

From the definitions [3, Definitions 2.1, 2.10], the following im-
plication holds true:
Regular Gδ-diagonal → G∗

δ-diagonal → Gδ-diagonal.
It is shown in [6, Example 3] that spaces with a Gδ-diagonal are not
closed under the operation I, but this example is not a T2-space.
So, we give here another example.

Example 4.1. There exists a T2-space Z with a Gδ-diagonal such
that K(Z) has no Gδ-diagonal.

Construction: Let X = X(1) ∪X(2), where

X(1) =
{

(x, y) ∈ R2

∣∣∣∣ y = 0, 1,
1
2
,
1
3
, · · ·

}
,

X(2) = R× {−1}.
Topologize X as follows: Each R×{ 1

n} is an open Michael line. For
each p = (x, 0) or (x,−1) has a neighborhood base {N(p; ε)|ε > 0},
where N(p; ε)’s are defined by;

(1) if p = (x, 0) and x ∈ Q (the rationals), then N(p; ε) =

{p}∪
{

(x′, y′) ∈ X(1)
∣∣∣∣ 0 ≤ y′ ≤ 1√

2
|x′ − x| and 0 6= |x′ − x| < ε

}
;

(2) if p = (x,−1) and x ∈ Q, then N(p; ε) =

{p} ∪
{

(x′, y′) ∈ X(1)
∣∣∣∣

1√
2
|x′ − x| < y′ < ε

}
;
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(3) if p = (x, 0) and x ∈ R \Q, then N(p; ε) =

{p} ∪ {
(x′, y′) ∈ X(1)

∣∣ 0 ≤ y′ ≤ |x′ − x| and 0 6= |x′ − x| < ε
}

;

(4) if p = (x,−1) and x ∈ R \Q, then N(p; ε) =

{p} ∪ {
(x′, y′)

∣∣ |x′ − x| < y′ < ε
}

.

Then X has a Gδ-diagonal. In fact, since X(1) is submetrizable,
there exists a Gδ-diagonal sequence {U(n)|n = 1, 2, · · · } for X(1).
For each n, let

V(n) = U(n) ∪
{

N

(
p;

1
n

) ∣∣∣∣ p ∈ X(2)
}

.

Then it is easy to see that (V(n)) is a Gδ-diagonal sequence for X.
Let Y be the Michael line and let Z = X ∪f Y be the adjunction
space of X and Y with respect to f : X(2) → Y such that

f((x,−1)) = x, x ∈ R.

By [5, Lemma] Z has a Gδ-diagonal. We show that K(Z) has no Gδ-
diagonal. For a contradiction, assume that K(Z) has a Gδ-diagonal
sequence (Û(n)). For each s ∈ R, let

K(s) =
{

(s, y)
∣∣∣∣ y = −1, 1,

1
2
,
1
3
, · · ·

}
,

L(s) = K(s) ∪ {(s, 0)}.
Then K(s), L(s) ∈ K(Z) and K(s) 6= L(s). Since (Û(n)) is a Gδ-
diagonal sequence, there exists n(s) such that
L(s) 6∈ S(K(s), Û(n(s))). By the second category theorem, there
exists n such that

A = IntR(ClR({s ∈ R|n(s) = n})) 6= ∅,
where IntR, ClR means the operator in the usual sense. Take
r ∈ A ∩ Q. Since Û(n) covers K(Z), there exists Û ∈ Û(n) such
that L(r) ∈ Û . Then it is easily observed that there exists s ∈ R
with n(s) = n such that both K(s) and L(s) belong to Û , a con-
tradiction.

Note that this example is not regular. As for G∗
δ-diagonals, we

do not know the following:

Question 4.2. If a space X has a G∗
δ-diagonal, then does K(X)

have a G∗
δ-diagonal?
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As a partial answer, we can easily show the following: (1) If
a space X has a sequence (U(n)) of open covers of X such that
K =

⋂
n S(K,U(n)) for each K ∈ K(X), then K(X) has a G∗

δ-
diagonal. (2) If a space X has a sequence (U(n)) of open covers of
X such that K =

⋂
n S(K,U(n)) for each K ∈ K(X), then K(X)

has a Gδ-diagonal.
We give the positive results to I and II.

Theorem 4.3. If a space X has a regular Gδ-diagonal, then so
does K(X).

Proof: Recall the characterization of a space X having a regular
Gδ-diagonal [10, Theorem 1] that there exists a sequence (U(n))
of open covers of X such that if x, y ∈ X with x 6= y, then there
exist n ∈ ω and neighborhoods U, V of x, y, respectively, such that
U ∩ S(V,U(n)) = ∅. Suppose that X has such a sequence (U(n))
with U(n + 1) < U(n), n ∈ ω. For each n, let

Û(n) = {〈U0〉|U0 ⊂ U(n) is finite}.
Then Û(n) is an open cover of K(X). We show that (Û(n)) has
the required property. Let K,L ∈ K(X) and K 6= L. Suppose that
there exists a point p ∈ K\L. Then there exist neighborhoods U, V
of p, L in X, respectively, and n ∈ ω such that U ∩ S(V,U(n)) = ∅.
Then it is easy to see that

〈X,U〉 ∩ S(〈V 〉, Û(n)) = ∅.
Since 〈X,U〉, 〈V 〉 are neighborhoods of K, L in K(X), respectively,
we can say that (Û(n)) has the required property. ¤
Theorem 4.4. Let X be such a space that has a σ-compact dense
subset. If Y has a Gδ-diagonal, G∗

δ-diagonal, regular Gδ-diagonal,
then so does C(X, Y ), respectively.

Proof: We show only the case of a regular Gδ-diagonal, and the
others are similar. By the assumption on X, there is no loss if we
assume that X =

⋃
n Xn, where Xn ∈ K(X), n ∈ ω. By the charac-

terization stated above, there exists a sequence (U(n)) of open cov-
ers satisfying the same condition as there. For m,n ∈ ω, let ∆(m,n)
be the totality of pairs δ = (K(δ),U(δ)) of subsets K(δ), U(δ) of
K(X), U(n), respectively, such that K(δ) = {K1, · · · ,Kt} is a fi-
nite cover of Xm and U(δ) = {U1, · · · , Ut}. For each δ ∈ ∆(m,n),
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let
W (δ) = W (K1, · · · ,Kt;U1, · · · , Ut)

and W(m,n) = {W (δ)|δ ∈ ∆(m,n)}. Since each Xm is compact, it
is easy to see that W(m,n) covers C(X, Y ). To see that (W(m,n))
has the required property, let f 6= g, f, g ∈ C(X, Y ). Then there
exist m ∈ ω and x0 such that x0 ∈ Xm and f(x0) 6= g(x0). There
exist neighborhoods O and O′ of f(x0) and g(x0) in Y , respectively,
and n, such that S(O,U(n)) ∩O′ = ∅. It is easily checked that

S(W ({x0}; O),W(m,n)) ∩W ({x0};O′) = ∅.
Hence, C(X,Y ) has a regular Gδ-diagonal. ¤

5. The case of Moore spaces and the conclusion

It is known that Moore spaces are closed under the operation I,
[5]. Moreover, it is shown in [7] that Moore spaces with a regular
Gδ-diagonal are closed under the operation I and II. But we do not
know whether Moore spaces are closed under the operation II.

Question 5.1. Let X be a compact space and let Y be a Moore
space. Then is C(X,Y ) Moore?

As the conclusion, the results in this are shown by the following
figure, where +, − means the operation I and II holds true or not,
respectively.

spaces operation I operation II
M-space − −
paracompact

M-space + −
topologically

complete space + +

Gδ-diagonal − (T2-space) +
G∗

δ-diagonal ? +
regular

Gδ-diagonal + +

Moore space + ?
Moore space

with a regular
Gδ-diagonal

+ +
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