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WHEN ARE COMPACT, COUNTABLY COMPACT
AND LINDELOF CONVERGENCES
TOPOLOGICAL?

FREDERIC MYNARD

ABSTRACT. Conditions on compact convergences to be topo-
logical are (and have been) investigated. New variants are ob-
tained for both filter and cover compact-like properties such as
countable compactness and Lindel6fness. The recently devel-
oped coreflectively modified continuous duality plays a crucial
role in this quest. In particular, the results on compactness
evoked above can be obtained either as byproducts of theo-
rems on commutation of reflectors with product or as corol-
laries of internal characterizations of bireflective subcategories
of convergences determined by coreflectively modified biduals.
Both approaches lead to results of interest for their own.

1. INTRODUCTION

It is well known that compact topologies are minimal among
Hausdorff topologies. This fact extends to pseudotopologies. Con-
sequently, every compact topologically Hausdorff pseudotopology
is a topology. This paper studies properties which imply the topo-
logicity of compact, countably compact and Lindel6f convergences.
In contrast with the well studied case of compact convergences, the
results concerning countably compact and Lindel6f convergences
seem to be entirely new. Moreover, the techniques used allow a
unified treatment of these three cases.

One approach consists in applying the coreflectively modified du-
ality recently developed by the author [17], [18], thanks to a new
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result on the behaviour of the reflector on regular topologies under
product (obtained in section 3). Section 2 discusses existing results
for compact convergences and shows how to derive new statements
on compact, countably compact and Lindel6f convergences from
the new result of section 3. It is interesting to note that these
new statements involve bidual conditions whose internal charac-
terizations are not needed. However, section 4 is devoted to such
internal characterizations. In particular, the internal description
of c-embedded spaces (in the sense of Binz [3]) by Bourdaud [5] is
generalized. This leads to alternative proofs of the results of section
2.

2. COMPACT, COUNTABLY COMPACT AND LINDELOF
CONVERGENCES

A convergence £ is a relation
T e limg F,

between points and filters in which lim¢ 7 D lim¢ G whenever F >
G, every fixed ultrafilter converges to its defining point and lim¢ 7N
lime G = lim¢(F A G) for every F and G. The underlying set of a
convergence £ is denoted by [£]. If € and € have the same underlying
set, & > 0 means that D £. From now on, I will use ¢ to denote the
set [£| endowed with the convergence structure . In other words,
¢ denotes an object of the category Conv of convergence spaces( D).
Every topology can be considered as a convergence and there exist
important naturally defined convergences that are non-topological.
On the other hand, each convergence determines a topology. In-
deed, a subset A of || is &-closed provided that lim¢ F C A for
every JF such that A € F. The family of £-closed sets gives rise to a
topology T¢ called topological modification of € (2. The adherence
of a filter is the union of limits of finer filters. As for a topology,
a convergence is compact if and only if each filter has non-empty
adherence. A convergence is Hausdorff if a filter converges to at

1A map f : €—7 is continuous provided that f(im¢ F) C lim, f(F) for
every filter F. The category with convergence spaces as objects and continuous
maps as morphisms is denoted by Conv. This is a topological category [1],
i.e., initial and final structures always exist. Hence, subspace, product, sum are
defined in the usual categorical way.

2This is the finest topology among those which are coarser than &.
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most one point and T-Hausdorff if its topological modification is
Hausdorff.

A convergence is a pseudotopology if x € lim¢ F provided that
each ultrafilter of F converges to x in £. Pseudotopologies form a
bireflective subcategory of Conv. I refer to [1] for undefined cat-
egorical notions and to [12], [18] for undefined notions and further
details of convergence theory. It is well known that a Hausdorff
compact topology is minimal among the Hausdorff topologies on
the underlying set. This fact extends to pseudotopologies, e.g., 2,
Theorem 1.4.10].

Theorem 2.1. If £ and 0 are pseudotopologies such that & is com-
pact, 8 is Hausdorff and £ > 0, then £ = 0.

Proof: Consider an ultrafilter ¢ on a compact convergence £. By
compactness lim¢ U/ # &. But its superset limyf is a singleton,
because 0 is Hausdorff. Thus, lim¢ ¢/ = limy /. Hence, the pseudo-
topologies 6 and £ coincide on ultrafilters so that & = 6. O

Corollary 2.2. FEach compact T-Hausdorff pseudotopology is a
topology.

Hence, the problem of minimality of compact convergences among
general convergences is closely related to that of topologicity of
compact convergences. The example below confirms this relation
and shows that a compact convergence need not be topological in
general.

Example 2.3. [2, Example 1.4.5] Define the finest convergence on
[0, 1] that has precisely the same convergent ultrafilter as the natural
topology of [0,1] (3). This is a compact Hausdorff convergence, but
the usual topology of [0,1] is strictly coarser.

Roughly speaking, I consider in this paper the problem of deter-
mining sufficient conditions for a compact convergence space to be
topological. Several authors investigated this question, e.g., Cook
[7], Kent and Richardson [15], Binz [4], Schroder [22], Cochran
and Trail [6], Beattie and Butzmann [2]. The aim of this paper is
to show how coreflectively modified continuous duality developed
n [12], [18] and generalized in [20] applies to related problems,

3The convergent filters are the ultrafilters that converge in the usual topology
of [0,1] and the finite infima of such ultrafilters converging to the same point.
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namely that of topologicity of compact, countably compact and
Lindelof convergences. Recall that a topology is countably com-
pact (respectively Lindeldf) if each countably based (respectively
countably deep (4)) filter has non-empty adherence. These defini-
tions are meaningful for arbitrary convergences. More generally,
given a class J of filters (e.g., of all, of countably based, of count-
ably deep filters) a convergence is called J-compact if each filter of
J has non-empty adherence.

Several theorems appeared in the late sixties and in the seven-
ties to ensure that compact pseudotopologies are topologies under
the provision of certain separation axioms. An example communi-
cated to me by Dolecki and Greco is Corollary 2.2 above. Another
example is the following Theorem 2.4, proved for pretopologies by
Cochran and Trail in [6], by Kent and Richardson in [15] and by
Cook in [7].

Recall that a convergence £ is a pretopology if the infimum of
a family of filters converging to the same point converges to that
point. Pretopologies form a reflective subcategory of Conv and the
associated reflector P is given by:

limpe F = () adhe A.
A#F

All (co)reflectors considered in the sequel are endo(co)reflectors
of Conv.

A convergence is regular provided lim F C lim adh! F for every
filter F, where adh® F is generated by {adh F' : F € F}. Regular
convergences form a reflective subcategory of Conv and the asso-
ciated reflector is denoted R. Regular topologies also form a reflec-
tive subcategory of Conv and the associated reflector is T' A R.
More generally, a convergence £ is 0-regular provided lim¢ F C
limg(adhg F). In particular, if Q¢ = \/ f R ©® is the com-

feC(ER)
pletely regular modification of £ (with R the usual topology of the
real line and C'(£,R) the set of real valued continuous functions on
€), a Q&-regular convergence ¢ is called Q-regular.

AA filter F is countably deep if (A € F for every countable family A C F.
5The inverse relation of a map f will be denoted f~ and the initial conver-
gence with respect to f : X — 7 is denoted f~ .
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Theorem 2.4. A Hausdorff reqular compact pseudotopology is a
topology.

See [2, Theorem 1.4.13] for an elementary proof of Theorem 2.4.

Both Corollary 2.2 and Theorem 2.4 can be seen as corollaries
of [22, Theorem 2] of Schroder which seems to be the most general
known result of this kind. He calls a convergence Sy if y € lim F and
x € lim(y) implies € lim F. Analogously, a convergence is Rj o if
the existence of a filter F such that y € lim F and z € limadh® F
implies = € lim(y).

Theorem 2.5. [22, Theorem 2| The pseudotopological modification
of a compact Sy and Ry.o convergence is a completely reqular (not
necessarily Hausdorff) topology.

On the other hand, some of such compactness theorems involve
duality conditions. Omne of the principal reasons for working in
the context of convergences rather than that of topologies is that
the category Conv behaves much better than the category Top of
topological spaces (with continuous maps as morphisms) with re-
spect to standard categorical constructions. In particular, contrary
to the situation in Top, there always exists the coarsest conver-
gence [, 7] on the set C'(§, 7) of continuous maps from £ to 7 that
makes the evaluation map jointly continuous (e.g., [3]). In other
words, Conv is cartesian-closed (©).

Binz calls a Hausdorff convergence £ c-embedded if

(2.1) ¢ =i ([[§, R, R]),
where i : £ —[[¢,R], R] is defined by i(x)(f) = f(x).

Theorem 2.6. [4] A compact c-embedded convergence is a topology.

In view of the characterization [16, Theorem 2.4] of c-embedded
convergences as {2-Hausdorff Q)-regular pseudotopologies, this result
can be seen as one more involving separation axioms. Indeed, as al-
ready observed by Schroder [22], the condition of Hausdorffness can
be dropped and this refined version of Theorem 2.6 can be deduced
from Theorem 2.5. However, the approach in terms of continuous
duality allows one to obtain new variants that handle simultane-
ously compactness, countable compactness and Lindel6fness.

61t is moreover a quasitopoi.
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Given a convergence o, and a bicoreflector F, I defined the func-
tor Epi% [18], [20] by
(2:2) Epiz¢ =i~ ([E[S, o], o]).
Analogously, if L is a reflector,
Epipé = \/ Epi%e.
o=Lo

As E is a bicoreflector, Epi% (resp. Epik) is a (bi)reflector [18,
Proposition 4.2]. In view of (2.1), the c-modifier (reflector on (not
necessarily Hausdorff) c-embedded convergences) is a particular
case. More generally, I denote

(2'3) Cy = Epigasey

where the coreflector Basey is defined by

hmBase:@ F = U limg g
T>3G<F

A simplified version of [18, Theorem 3.1] gives (V)

Theorem 2.7. Let L be a bireflector and let E be a bicorefiector.
For convergences £ > 0, the following are equivalent:

(1) For every T = ET
(2.4) 0 x1>L(EXT);
(2

) E[¢,0] > [0,0] for every convergence o = Lo;
(3) 6 > Epike.

I say that two families A and B mesh, in symbol A#B, if ANB #
& for every A € A and every B € B. A family A of subsets of || is
&-J-compactoid (in B) [11] if adhe H # @ (adhe H#B) for every J-
filter H#A. A family is £&-J-compact if it is £-F-compactoid in itself.
A convergence 6 is locally &-J-compactoid if every #-convergent
filter contains a &£-J-compactoid set.

A class J of filters is said to be composable if it contains principal
filters and if HG, the filter generated by {HG : H € H,G € G} ®),
is a (possibly degenerate) J-filter on Y whenever H is a J-filter on
X xY and G a J-filter on X. For example, the classes of principal

"See [18], [17] and [20] for details on Epiy and related notions.
8HG = {y : Juec(a,y) € H}
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filters and of countably based filters are composable, while that of
filters generated by sequences is not.

Corollary 3.2 of section 3 states that, given a composable class
J of filters,

0 x Pt > Q(& x 1),

for every 7 = Basej7 provided 6 > )¢ is locally £-J-compactoid. If
¢ is a J-compact convergence, every filter on |£| contains the &-J-
compact set ||, so that Q¢ is locally &-J-compactoid. Consequently,

QEXT>Q X P> Q6 x71),

for every 7 = Basej7. In view of (2.3) and of Theorem 2.7, Q& >
c3¢. Hence, we obtain the following result which generalizes and
refines Theorem 2.6.

Theorem 2.8. Let J be a composable class of filters. A J-compact
cy-convergence is a (not necessarily Hausdorff) completely reqular

topology.

An internal description of cj-convergences is given in section 4.
The interest of this bidual proof is that Theorem 3.1 applies in the
same way with other reflectors L < T A R to the effect that

Theorem 2.9. Let J be a composable class of filters and let L be a
bireflector coarser than T N\ R. If a convergence is J-compact then
its Epiéas& -reflection is a L-convergence (hence a regular topology).

The following Figure 1 shows the relationships between reflective
properties and filter-compactness properties. Let ¢a, denote the
class of countably deep filters. Both Figure 1 and Figure 2 read as
follows:

Ly --» Ly means L1 > Ly and Lo H—> L1 means that L& = Lo&

p
if ¢ fulfills Hyp. '

A family S is a cover for a convergence ¢ if F NS # @ for
every &-convergent filter F. A convergence is cover-compact (resp.
cover-countably compact) if each cover (resp. countable cover) has
a finite subcover. Analogously, a convergence is cover-Lindeldf if
each cover has a countable subcover. See [9] for general notions of
cover-compactness. Each cover-(countably) compact convergence
is (countably) compact, so that Theorem 2.8 applies to both cover-
compactness and cover countable compactness. On the other hand,
if a convergence ¢ is cover-Lindel6f, its continuous dual [¢, R] is first
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FIGURE 1. filter-compactness properties

countable by [13, Theorem 2]|. Hence, c€ = ¢,&, by definition (2.3).
Thus, we have the following variant of Theorem 2.8 for compact-
like properties defined in terms of covers, which can be visualized
on Figure 2, to be compared with Figure 1.

Theorem 2.10. A cover-Lindeldf c-convergence is a c,,-convergence.

It is interesting to note that the general results contained in Fig-
ure 1 and Figure 2 are obtained without any information on the in-
ternal description of convergences fixed by the reflector cy. Indeed,
no such description was known till now apart for the c-embedded
convergences. In section 4, I generalize the characterization of c-
embedded convergence by Bourdaud [5] to coreflectively modified
cases and I obtain explicit internal characterizations of reflectors cj.
This result leads to an alternative proof of Theorem 2.8. Other ap-
plications of this new characterization Theorem 4.4 and of Theorem
3.1 to preservation of topological properties and quotient proper-
ties by product (in the spirit of [12], [18]) will be investigated in a
forthcoming paper [21].
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FICURE 2. cover-compactness properties

3. A VARIANT OF THE THEOREM OF COMMUTATION OF THE
TOPOLOGIZER WITH PRODUCT

The following observation holds for every reflector L.
(3.1) z € limpe F = ngﬂ (z,y) € impexny F X ().

The least closed set that contains A is the closure cl¢ A of A. The
topological modification can be described as follows [8]

(3.2) limpe 7 = () cl¢ A.
A#F

Theorem 3.1. Let J be a composable class of filters and let L be a
bireflector coarser than T A R. If 0 > L& is locally £-F-compactoid,
then

0 x Pr > L(§ xT),

for every J-based convergence T.

Proof: Since L({x ) is a topology, it suffices to prove that (x,y) €
H,if x € limg F, y € limp, G and if H is a L({ x 7)-closed set such
that H#(F x G). Since 0 is locally &-J-compactoid, there exists
a &-J-compactoid set K in F. For every element F' C K of F,
HFE#G, so that y € adh, HF. Thus, there exists a J-filter Lp
such that y € lim,; Lr and HF#Lpr. By composability, H™ Lp is
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a J-filter that meshes F'. Thus, there exists xr € adhy H™ Lp and
(zF,y) € H. On the other hand, § > L so that x € limze F.
In view of (3.1), (z,y) € limpgx)(F x (y)). Thus, there exists
Fy € F such that Fy x {y} C V for every L(£ x 7)-neighborhood
V of (z,y). Therefore, (zp,,y) € clex-(Fv x {y}) C V. The
filter U generated by {Up = {(zp,y) : F/ C F} : F € F} is
therefore L(£ x T)-convergent to (x,y). Since H is L(§ x 7)-closed,
(z,y) € H. O

Corollary 3.2. Let J be a composable class of filters. If > Q& is
locally &£-J-compactoid, then

0 x Pt > Q(& x 1),
for every J-based convergence T.

Other types of applications of results akin to Theorems 3.1 and
Corollary 3.2 can be found in [12], [18] and [21].

4. INTERNAL CHARACTERIZATIONS OF c¢3-CONVERGENCES

Bourdaud characterized c-embedded spaces [5, Theorem 4.6] as
pseudotopological {)-regular convergences for which lim¢ F is Q¢-
closed for every F (9. The aim of this section is to generalize
this result to obtain an explicit description of the cj-reflection of a
convergence for a large collection of classes J of filters.

The following J-relativization of [5, Lemma 4.4] will be useful.

Lemma 4.1. z € lim.¢ F if and only if x € limge F and
0 € limg ev(F x G),
for every J-filter G such that O g) € lime g G.

Proof: Assume that z € limge F and 0 € limg ev(F x G) for every
J-filter G such that O[EJR] c lim[&R] G. Consider a J-filter 'H such
that f € limye g H. It suffices to prove that f(z) € limg ev(F x H).
Since [£,R] inherits the convergence group structure from R, 0 €
limpe g)(H — f). Thus, 0 € limg ev(F x (H — f)). Moreover, f(z) €
lime f(F) because = € limge F. Notice that ev(F x (H — f)) =
ev(F x H) — f(F), so that limg ev(F x H) = limg(ev(F x (H —
)+ f(F)) =0+ f(z) = f(z). The converse is obvious. 0

9Bourdaud called ”Q-closed domained” the convergences that enjoy this last
property.
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Recall that the polar F° of F C || is the set of functions f in
C(&,R) such that f(F) C [-1,1].

Lemma 4.2. [5, Lemma 4.3] Let F be a filter on |§| and let G be
a filter on C(§,R).

0 €limgev(F xG) < Vr >0, 3F € F,rF° €g.

The following observation is essentially due to Feldman [13, Proof
of Theorem 2].

Lemma 4.3. If adhe H = @ then the filter G generated by {f €
C(&,R) : f(H®) = 0}gen converges to the zero-function in [£,R].
Moreover, ev(F x G) = Og for every &-convergent filter F.

Proof: As adh¢ H = @, every convergent filter 7 contains H¢ for
some H € H, and the result follows. O

Given A € [£], O¢(A) denotes the family of -open sets that
contain A. Analgously, if H is a filter then O¢(H) denotes the
filter generated by the families O¢(H) for H € ‘H. The subclass of
J-filters H for which H = O¢(H) is denoted O¢(J).

If G is a filter on C(&,R) and if 7 > 0, then |, G denotes the
filter generated by the sets

b G={zelg:3g € G g(x) €[-rr]},
where G ranges over G. Notice that |, G is 2¢-open. Hence |, G =
Oqe(lr G). A class J of filters is said to be R-compatible if it fulfills
the two following properties:
(1) if H is a J-filter on ||, then the filter generated by {f €
C(&,R) : f(H®) =0} gen is a J-ilter on C(&, R);
(2) if G is a J-filter on C(&,R) and if r > 0 then |, G is a J-filter
on [¢].
It is easy to check that the classes of all, of countably based, of
countably deep and of principal filters are R-compatible.

Theorem 4.4. Let J be an R-compatible class of filters. Then x €
lim ¢ F if and only if v € limge F and F is §-Oqe(J)-compactoid.

Proof: If z € lim. ¢ F then x € limg¢ F. On the other hand, con-
sider a Oqe¢(J)-filter H such that adhe H = @. By R-compatibility,
the filter G generated by {f € C({,R) : f(H®) = 0}gen is a J-
filter on C'(§,R). Moreover, 0 € limj¢ g G, by Lemma 4.3. In view
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of Lemma 4.1, 0 € limg ev(F x G). By Lemma 4.2, there exists
F € F such that F'° € G. Thus, there exists H = intoc H € 'H
such that {f : f(H¢) = 0} C F°. Consequently, F' C H¢. Oth-
erwise, there exists z € F'\ H¢. Since H® = clg¢ H¢, there exists
f e C(&R) such that f(H¢) = 0 and f(z) = 2, in contradiction
with {f : f(H®) =0} C F°. As F C H, the filters F and H do
not mesh.

Conversely, assume that = € limg¢ F and that F is £&-Oq¢(J)-
compactoid. By Lemma 4.1, it suffices to show that 0 € limp ev(F x
G) provided that G is a J-filter such that 0 € lim[&R} G. Assume
the contrary. There exists such a G and r» > 0 such that ev(F x
G)#[—r,r]° for every F' € F and every G € G. In other words,
the filter |, G meshes F. By R-compatibility, |, G is a Oq¢(J)-
filter. By &-Oq¢(J)-compactoidness of F, there exists an ultrafilter
U of |, Gand z € |{| such that z € lim¢Y{. Consequently, 0 €
limg ev(U x G) because 0 € limye g) G. There exist G € G and U € U
such that ev(U x G) C [—r,r]. Thus, ev((U() |» G) x G) C [-r,7],

a contradiction. O

Notice that Theorem 2.8 follows immediately from this descrip-
tion of cy-convergences. Indeed, if £ is J-compact, every filter is
£-Oq¢(J)-compactoid so that cz& = Q€.

Theorem 4.4 describes the cz-reflection of an arbitrary conver-
gence and not only convergences fixed by cj. Hence, it is a stronger
result than the characterization [5, Theorem 4.6] of c-embedded
spaces by Bourdaud, even if J is the class of all filters. Indeed, an
internal characterization of convergences £ for which { = ¢3§ can
easily be derived from Theorem 4.4.

Corollary 4.5. Let J be a R-compatible class of filters. A con-
vergence £ is a cy-convergence if and only if £ is Q-regular and
lim¢g F = limge F for every J-compactoid filter F.

This is an immediate consequence of Theorem 4.4 and of the
observation that adhg H = adhe Oq¢(H) for every filter H provided
that £ is Q-regular.

Notice that the condition “lim¢ F = limg¢ F for every J-compactoid
filter 77 implies that lim¢ F is Q¢-closed for every F and that &
is a pseudotopology. If J is the class of all filters, the converse is
easily obtained, so that Bourdaud’s characterization [5, Theorem



COMPACTNESS 295

4.6] is recovered. Moreover, the condition above is clearly sufficient
for a J-compact convergence to be a completely regular topology.

Corollary 4.6. A J-compact convergence & for which lim¢ F =
limoe F for every J-compactoid filter F (in particular if § = c3£)
18 a completely reqular topology.
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