Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

THE HEREDITARILY METALINDELÖF PROPERTY OF k-SPACES WITH σ -HCP CLOSED k-NETWORKS

LIANG-XUE PENG

ABSTRACT. In this paper, we prove that a regular k-space with a σ -HCP k-network is a hereditarily metalindelöf space. Thus, the question that appeared in [5] and [6] is answered.

1. INTRODUCTION

If X is a space, a family \mathcal{P} of closed subsets of X is a k-network for X, if for every compact subset $K \subset X$ and an open neighborhood U of K, there is a finite $\mathcal{P}^* \subset \mathcal{P}$, such that $K \subset \cup \mathcal{P}^* \subset U$. A space X is called an \aleph -space if X has a σ -locally finite k-network (cf. [2] and [7]). A network for a space X is a collection \mathcal{F} of subsets of X such that whenever $x \in U$ with U open, there exists $F \in \mathcal{F}$ with $x \in F \subset U$. A space X is a σ -space if X has a σ -discrete network (cf. [1]). A space is called a sequential space if a subset $F \subset X$ is closed in X if and only if F contains all limit points of sequences from F (cf. [3]). We know that k-spaces and sequential spaces are equivalent for σ -spaces (cf. [1]). A space X is a metalindelöf space if every open cover \mathcal{U} of X has a point-countable open refinement (cf. [1]).

The properties of \aleph -spaces have been studied by many topologists. In [2], Foged proved that a sequential space or k-space with a σ -locally finite k-network (k-and- \aleph space) is a hereditarily metalindelöf space, and a normal k-and- \aleph space is a paracompact

Key words and phrases. sequential space, k-network, metalindelöf, k-space.

L. PENG

space. From [4], we know that a space with a σ -hereditarily closure preserving (σ -HCP) k-network need not be an \aleph -space. So it is necessary to study the properties of spaces with σ -HCP knetworks. By a space we mean a regular topological space.

In [5], Liu raised the following question: Are k-spaces with σ -HCP k-networks hereditarily metalindelöf? And the same question was also raised by Liu and Tanaka in [6]. Is every k-space with a σ -HCP k-network a metalindelöf space? In this paper, we prove that a k-space with a σ -HCP k-network is a hereditarily metalindelöf space. Thus, the question appearing in [5] and [6] is answered.

Lemma 1 [2]. A k-and- \aleph space is a hereditarily metalindelöf space.

Lemma 2 [3]. The following are equivalent for a regular space.

- (a) X is a σ -space.
- (b) X has a σ -locally finite network.
- (c) X has a σ -discrete network.
- (d) X has a σ -closure preserving network.

By Lemma 2, we know that a space with a σ -HCP k-network is a σ -space.

Theorem 1. A k-space with a σ -HCP k-network is a hereditarily metalindel of space.

Proof: A space X is hereditarily metalindelöf iff every collection \mathcal{U} of open sets has a point–countable open refinement. Since X is a σ -space, it is easy to see that any \mathcal{U} has a σ -closed discrete (in X) refinement. Thus, it is enough to show that every closed discrete family \mathcal{F} of subsets of X may be expanded to a point–countable open family.

X is a regular space, so we may assume that X has a σ -HCP closed k-network. Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \omega\}$ be a σ -HCP closed k-network of X and $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for each $n \in \omega$. Let $\mathcal{F} = \{F_\alpha : \alpha \in \Lambda\}$ be a discrete closed family of X. Let $\mathcal{P}(\emptyset) = \mathcal{F}$. For $n \in \omega$, let $P_{\alpha}^*(n) = \bigcup \{P : P \in \mathcal{P}_n, P \cap F_\alpha \neq \emptyset, P \cap F_\beta = \emptyset$ for all $\beta \in \Lambda \setminus \{\alpha\}\}$, and let $P_\alpha(n) = P_\alpha^*(n) \setminus \bigcup \{P_\beta^*(n) : \beta \in \Lambda \setminus \{\alpha\}\}$. Then $\mathcal{P}(n) = \{P_\alpha(n) : \alpha \in \Lambda\}$ is a pairwise disjoint family in X, and for any $\Lambda' \subset \Lambda, \cup \{P_\beta^*(n) : \beta \in \Lambda'\}$ is a closed subset of X.

308

For any finite sequence δ of ω , suppose $\mathcal{P}(\delta)$ has been defined. That is, $\mathcal{P}(\delta) = \{P_{\alpha}(\delta) : \alpha \in \Lambda\}$ is a pairwise disjoint family, where $P_{\alpha}(\delta) = P_{\alpha}^{*}(\delta) \setminus \bigcup \{P_{\beta}^{*}(\delta) : \beta \in \Lambda \setminus \{\alpha\}\}$, and $\bigcup \{P_{r}^{*}(\delta) : r \in \Lambda'\}$ is closed for any $\Lambda' \subset \Lambda$. Now, for $n \in \omega$, we construct $\mathcal{P}(\delta n)$. Let $P_{\alpha}^{*}(\delta n) = \bigcup \{P : P \in \mathcal{P}_{n}, P \cap \mathcal{P}_{\alpha}(\delta) \neq \emptyset, P \cap \bigcup \{P_{\beta}^{*}(\delta) : \beta \neq \alpha\} = \emptyset\}$. Then $\bigcup \{P_{r}^{*}(\delta n) : r \in \Lambda'\}$ is closed for any $\Lambda' \subset \Lambda$. Let $P_{\alpha}(\delta n) =$ $P_{\alpha}^{*}(\delta n) \setminus \{P_{\beta}^{*}(\delta n) : \beta \neq \alpha\}$. Then $\mathcal{P}(\delta n) = \{P_{\alpha}(\delta n) : \alpha \in \Lambda\}$ is a pairwise disjoint family of X.

Let $U_{\alpha} = \bigcup \{P_{\alpha}(\delta) : \delta \text{ is a finite sequence in } \omega\}$. We will show that $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ is a point–countable open family of X and $F_{\alpha} \subset U_{\alpha}$ for $\alpha \in \Lambda$.

For any $x \in F_{\alpha}$, there is an open neighborhood V_x of X, such that $V_x \cap F_{\beta} = \emptyset$ for $\beta \in \Lambda \setminus \{\alpha\}$. Then there is $n \in \omega$, and $P \in \mathcal{P}_n$, such that $x \in P \subset V_x$. Since $\cup \{P_{\beta}(n) : \beta \in \Lambda \setminus \{\alpha\}\} \cap F_{\alpha} = \emptyset$, we have $x \in P_{\alpha}(n)$. Thus, $F_{\alpha} \subset U_{\alpha}$.

To prove U_{α} is open, we need only to prove that it is sequential open in X. Suppose a sequence Z converges to x, and $x \in U_{\alpha}$. Then there is a finite sequence δ in ω , such that $x \in P_{\alpha}(\delta) = P_{\alpha}^{*}(\delta) \setminus \bigcup \{P_{\beta}^{*}(\delta) : \beta \in \Lambda \setminus \{\alpha\}\}$. And we know that $\bigcup \{P_{\beta}^{*}(\delta) : \beta \in \Lambda \setminus \{\alpha\}\} = M$ is a closed subset of X. So there is an open neighborhood V_{x} of x, such that $V_{x} \cap M = \emptyset$. Then there are some $n \in \omega$ and $\mathcal{P}^{*} \subset \mathcal{P}_{n} |\mathcal{P}^{*}| < \omega$, such that Z is eventually in $\bigcup \mathcal{P}^{*} \subset V_{x}$, and every $P \in \mathcal{P}^{*}$ contains x. So $\bigcup \mathcal{P}^{*} \subset P_{\alpha}^{*}(\delta n)$. For any $\beta \in \Lambda \setminus \{\alpha\}$, $P_{\beta}^{*}(\delta n) \cap P_{\alpha}^{*}(\delta) = \emptyset$, so $x \in X \setminus \bigcup \{P_{\beta}^{*}(\delta n) : \beta \in \Lambda \setminus \{\alpha\}\}$. Thus, Z is eventually in $P_{\alpha}(\delta n) = P_{\alpha}^{*}(\delta n) \setminus \bigcup \{P_{\beta}^{*}(\delta n) : \beta \in \Lambda \setminus \{\alpha\}\}$. So U_{α} is an open set of X.

Suppose $\{U_{\alpha} : \alpha \in \Lambda\}$ is not point–countable. Then there is $x \in X$ such that $|\{\alpha : x \in U_{\alpha}\}| > \omega$. Thus, there is a finite sequence δ in ω , satisfying $x \in P_{\alpha}(\delta)$, where $\alpha \in \{\beta : x \in U_{\beta}\}$. Thus, $\{P_{\alpha}(\delta) : \alpha \in \Lambda\}$ is not a pairwise disjoint family. Contradiction.

Now we have proved that $\{U_{\alpha} : \alpha \in \Lambda\}$ is a point–countable open family of X and $F_{\alpha} \subset U_{\alpha}$ for $\alpha \in \Lambda$. Thus, X is a hereditarily metalindelöf space.

From the proof of Theorem 1 or Theorem 6 of [8], we have the following corollary.

Corollary 1. If X is a k-space and has a σ -HCP weak base, then X is a metalindelöf space.

L. PENG

References

- D. K. Burke, *Covering properties*, in: Handbook of Set–Theoretic Topology, (K. Kunen and J. E. Vaughan, editors), North–Holland, Amsterdam, 1984, 349–422.
- [2] L. Foged, Normality in k- and -ℵ spaces, Topology Appl., 22 (1986), 223– 240.
- [3] G. Gruenhage, Generalized metric spaces, in: Handbook of Set-Theoretic Topology, (K. Kunen and J. E. Vaughn, editors), North-Holland, Amsterdam, 1984, 425–501.
- [4] S. Lin, Generalized Metric Spaces and Mappings, Chinese Science Publishers, Beijing, 1995.
- [5] C. Liu, Spaces with a σ-hereditarily closure-preserving k-network, Topology Proc., 18 (1993), 179–188.
- [6] C. Liu and Y. Tanaka, Spaces having σ-compact-finite k-network and related matters, Topology Proc., 21 (1996), 173–200.
- [7] P. O' Meara, On paracompactness in function spaces with the compact-open topology, Proc. Amer. Math. Soc., 29 (1971), 183–189.
- [8] Y. Tanaka, σ-Hereditarily closure-preserving k-networks and gmetrizability, Proc. Amer. Math. Soc., 112 (1) (May 1991), 283–290.

DEPARTMENT OF APPLIED MATHEMATICS, BEIJING POLYTECHNIC UNIVER-SITY, BEIJING 100022 CHINA

E-mail address: lxuepeng@263.net.cn

310