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COMPACT-FINITE, H-CLOSED SPACES

JACK PORTER

Abstract. An infinite H–closed space is constructed in which
every compact set is finite. This result answers a question by
Arhangel’skii and Strecker posed to the author in 1994. This
example is used to construct a Hausdorff space with the prop-
erty that the remainder of each of its H–closed extensions have
the same cardinality.

1. Introduction and Preliminaries

First some basic definitions (see [5]) are provided. All spaces
considered in this paper are Hausdorff. A space X is H–closed if
whenever X is a subspace of Y , X is a closed subset of Y . For a
space X, this is equivalent to every open ultrafilter on X converges
and to the property that for every open cover C of X, there is a
finite subset D ⊆ C such that X = clX(∪D).

Let X be a space and τ(X)(s) be the topology generated by the
open base {intXclX(U) : U ∈ τ}. It is easy to check that τ(X)(s) ⊆
τ(X) and that (X, τ(X)(s)), sometimes denoted as X(s), is also a
Hausdorff space. A space X is semiregular if τ(X)(s) = τ(X).
The space X(s) is semiregular. Furthermore, a space X is H–closed
iff X(s) is H–closed.

Construction: Let D be a dense subset of a space X and σ be the
topology on X generated by τ(X) ∪ {D}, i.e., σ = {U ∪ (V ∩D) :
U, V ∈ τ(X)}. Let X(D) denote (X, σ) and X(D2) = (D×{0, 1})∪
(X\D). If A ⊆ X, let A2 = (A\D) ∪ ((A ∩D)× {0, 1}). A subset
U ⊆ X(D2) is defined to be open if U ∩ (D×{i}) is open in D×{i}
(with the product topology) for i = 0, 1, and for x ∈ U ∩ (X\D),
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there is an open set V in X such that x ∈ V 2 ⊆ U . Some of the
following properties are contained in [5, 7S]; the rest are easy to
verify.

Proposition 1. Let D be a dense subset of X.

(a) The subspace D is dense and open in X(D).
(b) If A ⊆ D, then clXA = clX(D)A.
(c) If A ⊆ X\D, then clXA ∩ (X\D) = clX(D)A ∩ (X\D).
(d) For i ∈ {0, 1}, the function ei : X(D) → X(D2) defined

by ei(x) = x for x ∈ X\D and ei(d) = (d, i) for d ∈ D is a closed
embedding. In particular, X(D2) is the union of two closed copies
of X(D).

(e) If X is compact and X\D is dense in X, then X(D) is
Urysohn, H–closed but not semiregular and X(D2) is H–closed and
semiregular.

2. Modifying the space ω∗

Recall that βω, the Stone-Čech compactification of a countable
discrete space, is extremally disconnected and every countable dis-
crete subset of βω is C∗−embedded. It follows that every infinite
compact subset of βω contains a copy of βω (in particular, has
cardinality 2c) and contains an infinite number of pairwise disjoint
infinite compact subsets.

Fact 2. Let S = {1, 2, 3, 4}.
(a) There is a partition {Ei : i ∈ S} of ω∗ such that for every

infinite, closed subset A of ω∗ and i ∈ S, Ei ∩A is an infinite set.
(b) For D = E3 ∪ E4, the space ω∗(D) is Urysohn, H-closed in

which compact subsets are finite.
(c) For D = E3 ∪E4, the space ω∗(D2) is H-closed and semireg-

ular in which compact subsets are finite.

Proof: To prove (a), let {Aα : α < 2c} be an indexing of all
the infinite closed subsets of ω∗. By induction, we select points
xi

α ∈ Aα, i ∈ S, such that {xi
α : α < 2c} ∩ {xj

α : α < 2c} = ∅ for
i 6= j. The sets Ei = {xi

α : α < 2c} for i ∈ S have the desired
properties. To prove (b) and (c), note that by Proposition 1(e), as
ω∗ is compact and both D and ω∗\D are dense in ω∗, it follows
that ω∗(D) is Urysohn and H–closed and ω∗(D2) is H–closed and
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semiregular. Since ω∗(D2) is the union of two closed copies of
ω∗(D), it suffices to show that compact subsets of ω∗(D) are finite.
If A is an infinite, compact subset of ω∗(D), then A is an infinite,
compact subset of ω∗ as the topology of ω∗ is contained in the
topology of ω∗(D). Thus, A ∩ (ω∗\D) is infinite and A ∩ (ω∗\D)
is compact in ω∗(D). But A ∩ (ω∗\D) is compact in ω∗. By (a),
A ∩ (ω∗\D) ∩D is an infinite set, a contradiction. ¤
Comment: Since an infinite, Urysohn, H–closed and semiregu-
lar space is compact, it is not possible to have an infinite space
satisfying both conclusions (b, c) of Fact 2.

3. Remainders of H–closed Extensions

Let X and Y be two spaces. A function f : X → Y is θ−continu-
ous if for each p ∈ X and open set U ∈ τ(Y ) such that f(p) ∈ U ,
there is an open set V ∈ τ(X) such that p ∈ V and f [clXV ] ⊆ clY U .
The function f is called irreducible if for each nonempty open set
U ∈ τ(X), there is some y ∈ Y such that f←(y) ⊆ U .

Let X be a space and let ΘX = {U : U is an open ultrafilter on
X}. For U ∈ τ(X), let O(U) = {U : U ∈ U}. For U, V ∈ τ(X), it
is easy to verify (see [5]) that O(∅) = ∅, O(X) = ΘX, O(U ∩V ) =
O(U)∩O(V ), O(U ∪V ) = O(U)∪O(V ),ΘX\O(U) = O(X\clXU),
and O(U) = O(intXclXU). ΘX with the topology generated by
{O(U) : U ∈ τ(X)} is an extremally disconnected compact space.
The subspace EX = {U ∈ ΘX : U is fixed} is called the abso-
lute of X. The function k : EX → X defined by k(U) is the
unique convergent point of U is called a covering function. The
subspace EX is dense in ΘX (in particular, EX is an extremally
disconnected Tychonoff space and ΘX = βEX), and the covering
function k : EX → X is irreducible, θ−continuous, perfect and
onto. The space X is H–closed iff EX = βEX is compact [5,
6.6(e)(1), 6.9(b)(1)], and EX = X iff X is extremally disconnected
and Tychonoff [5, 6.6(e)(1), 6.7(a)].

Let Y be an H-closed extension of X. Since an open ultrafilter
on X is the trace of a unique open ultrafilter on Y and the trace
of an open ultrafilter on Y to X is an open ultrafilter on X, there
is a dense embedding of EX in EY . Since EY is an extremally
disconnected compact space, it follows that EY is homeomorphic
to βEX where the covering function kY : EY → Y corresponds



314 J. PORTER

to kY : βEX → Y : U → kY (U) defined by kY (U) is the unique
adherent point of U in Y . Using this identification, k←Y (p) is a
compact subset of βEX\EX. Thus, P (Y ) = {k←Y (p) : p ∈ Y \X}
is a partition of compact subsets of βEX\EX. Surprisingly the
converse of this is true.

Fact 3. Let X be a space, P be a partition of βEX\EX into com-
pact sets, Y (P ) = X ∪ P , and σ denote the topology on Y (P ) gen-
erated by τ(X) ∪ {U ∪ {A} : A ∈ P and U ∈ ∩A}. Then (Y (P ), σ)
is an H-closed extension of X such that P (Y (P )) = P .

Proof: This fact is a variation of 7.4(a) in [5] and the proof is
similar. Here is a rough sketch of the proof. First show that ∩A
is a free open filter on X for each A ∈ P , and use this result to
show that Y (P ) is an H–closed extension of X. Second, show that
the function kY : βEX → Y (P ) defined by kY |EX = k and for
y ∈ A ∈ P , kY (y) = A is perfect, irreducible, θ−continuous, and
onto. Finally, note that since kY |EX = k and for A ∈ Y (P )\X,
k←Y (A) = A, it follows that P = P (Y (P )). ¤
Comments. (a) An immediate consequence of Fact 3 is the exis-
tence of many H–closed extensions of a space X. For example, if P
is any partition of βEX\EX into finite sets, there is an H–closed
extension hX of X such that P (hX) = P .

(b) By 7.7(d) in [5], if Y and Z are H–closed extensions of X, then
P (Y ) = P (Z) iff there is a θ−homeomorphism f : Y → Z such
that f(x) = x for x ∈ X.

(c) Tikoo [6] has shown that if X is locally H–closed (every point
has an H–closed neighborhood) and has an H–closed extension with
an infinite remainder, then X has H–closed extensions hµ(X) such
that |hµ(X)\X| = µ where µ = ω, c, and 2c.

(d) If B ⊂ βω\ω is a discrete subspace and X = βω\B, then EX =
X, βEX = βω = βX, and βEX\EX = βω\X = B, a discrete
subspace. Each H–closed extension Y of X has the property that
P (Y ) is a partition of finite sets.

An interesting folklore question has been the existence of a space X
with the properties that βEX\EX is not a discrete space and for
each H–closed extension Y of X, P (Y ) is a partition of finite sets.
The space in section 2 provides a way to construct such a space.
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Construction. Let X = βω\D, where D is the space defined in
Fact 2. Note that ω ⊂ X ⊂ βω, EX = X, βX = βω, βEX\EX =
βω\X = D, and compact subsets of βEX\EX are finite. So, for
each H–closed extension Y of X, P (Y ) is a partition of finite subsets
and |Y \X| = 2c. That is, there are no H–closed extensions of X
with small remainders.

4. Relatively Compact Subspaces

In [1] Arhangel’skii has posed some problems about relative topo-
logical properties. Gartside and Glyn [4] have answered a few of
these questions. A modification of the space constructed in section
2 provides different solutions to two of the problems answered in
[4].

For a subspace Y of a space X, Y is said to be compact in X
from the inside if for each subspace Z ⊆ Y , if Z is closed in X,
then Z is compact. Arhangel’skii [1, Problems 1, 5] asked if Y is
compact in space X from the inside and X is Urysohn, is Y regular
or Tychonoff?

Theorem 4. The subspace Y = E1∪E3 is compact in X = ω∗(E3∪
E4) from the inside.

Proof: Let A be a noncompact closed subset of Y , A1 = A ∩ E1

and A3 = A ∩ E3. Then A1 or A3 is infinite. For i ∈ {1, 3}, if
Ai is infinite, clω∗Ai = Cα for some α < 2c. If Cα = clω∗A3, then
by Proposition 1, Cα = clω∗A3 = clω∗(D)A3. As Cα ∩ E4 6= ∅, A
is not closed in ω∗(D). Suppose Cα = clω∗A1. By Proposition 1,
∅ 6= Cα ∩ E2 ⊆ Cα ∩X\D = clω∗A1 ∩X\D = clω∗(D)A1 ∩ X\D.
Thus, A is not closed in ω∗(D). ¤
Comment. The space Y defined in Theorem 4 is not semiregu-
lar and hence not regular; yet, the H–closed space X is more than
Urysohn (in particular, X is completely Hausdorff and its semireg-
ularization is compact). The doubling process used in Fact 2(c)
gives rise to a minimal Hausdorff space Z such that Y ⊆ X ⊆ Z.
It follows that Y is also compact in Z from the inside.

References

[1] A. V. Arhangel’skii, Some Questions and References on Relative Topolog-
ical Properties, Part 1, Topology Atlas Document iaai-04, (2000).



316 J. PORTER

[2] A. V. Arhangel’skii, Relative topological properties and relative topological
spaces, Top. Appl., 70 (1996), 1-13.

[3] A. V. Arhangel’skii and J. Tartir, A characterization of compactness by a
relative separation property, Questions and Answers in General Topology,
14 (1966), 49-52.

[4] P. M. Gartside and A. Glyn, Relative separation properties, Topology Atlas
Preprint # 438, August 17, 2000.

[5] J. R. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff
Spaces, Springer–Verlag, Berlin, 1988.

[6] M. L. Tikoo, Remainders of H–closed extensions, Top. Appl., 23 (1986),
117-128.

University of Kansas, Lawrence, Kansas 66045 USA
E-mail address: porter@math.ukans.edu




