Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT \bigodot by Topology Proceedings. All rights reserved.

COMPACT-FINITE, H-CLOSED SPACES

JACK PORTER

ABSTRACT. An infinite H–closed space is constructed in which every compact set is finite. This result answers a question by Arhangel'skii and Strecker posed to the author in 1994. This example is used to construct a Hausdorff space with the property that the remainder of each of its H–closed extensions have the same cardinality.

1. Introduction and Preliminaries

First some basic definitions (see [5]) are provided. All spaces considered in this paper are Hausdorff. A space X is \mathbf{H} -closed if whenever X is a subspace of Y, X is a closed subset of Y. For a space X, this is equivalent to every open ultrafilter on X converges and to the property that for every open cover \mathcal{C} of X, there is a finite subset $\mathcal{D} \subseteq \mathcal{C}$ such that $X = cl_X(\cup \mathcal{D})$.

Let X be a space and $\tau(X)(s)$ be the topology generated by the open base $\{int_X cl_X(U): U \in \tau\}$. It is easy to check that $\tau(X)(s) \subseteq \tau(X)$ and that $(X,\tau(X)(s))$, sometimes denoted as X(s), is also a Hausdorff space. A space X is **semiregular** if $\tau(X)(s) = \tau(X)$. The space X(s) is semiregular. Furthermore, a space X is H-closed iff X(s) is H-closed.

Construction: Let D be a dense subset of a space X and σ be the topology on X generated by $\tau(X) \cup \{D\}$, i.e., $\sigma = \{U \cup (V \cap D) : U, V \in \tau(X)\}$. Let X(D) denote (X, σ) and $X(D^2) = (D \times \{0, 1\}) \cup (X \setminus D)$. If $A \subseteq X$, let $A^2 = (A \setminus D) \cup ((A \cap D) \times \{0, 1\})$. A subset $U \subseteq X(D^2)$ is defined to be open if $U \cap (D \times \{i\})$ is open in $D \times \{i\}$ (with the product topology) for i = 0, 1, and for $x \in U \cap (X \setminus D)$,

there is an open set V in X such that $x \in V^2 \subseteq U$. Some of the following properties are contained in [5, 7S]; the rest are easy to verify.

Proposition 1. Let D be a dense subset of X.

- (a) The subspace D is dense and open in X(D).
- (b) If $A \subseteq D$, then $cl_X A = cl_{X(D)} A$.
- (c) If $A \subseteq X \setminus D$, then $cl_X A \cap (X \setminus D) = cl_{X(D)} A \cap (X \setminus D)$.
- (d) For $i \in \{0,1\}$, the function $e_i : X(D) \to X(D^2)$ defined by $e_i(x) = x$ for $x \in X \setminus D$ and $e_i(d) = (d,i)$ for $d \in D$ is a closed embedding. In particular, $X(D^2)$ is the union of two closed copies of X(D).
- (e) If X is compact and $X \setminus D$ is dense in X, then X(D) is Urysohn, H–closed but not semiregular and $X(D^2)$ is H–closed and semiregular.

2. Modifying the space ω^*

Recall that $\beta\omega$, the Stone-Čech compactification of a countable discrete space, is extremally disconnected and every countable discrete subset of $\beta\omega$ is C*-embedded. It follows that every infinite compact subset of $\beta\omega$ contains a copy of $\beta\omega$ (in particular, has cardinality $2^{\mathfrak{c}}$) and contains an infinite number of pairwise disjoint infinite compact subsets.

Fact 2. Let $S = \{1, 2, 3, 4\}.$

- (a) There is a partition $\{E_i : i \in S\}$ of ω^* such that for every infinite, closed subset A of ω^* and $i \in S$, $E_i \cap A$ is an infinite set.
- (b) For $D = E_3 \cup E_4$, the space $\omega^*(D)$ is Urysohn, H-closed in which compact subsets are finite.
- (c) For $D = E_3 \cup E_4$, the space $\omega^*(D^2)$ is H-closed and semiregular in which compact subsets are finite.

Proof: To prove (a), let $\{A_{\alpha}: \alpha < 2^{\mathfrak{c}}\}$ be an indexing of all the infinite closed subsets of ω^* . By induction, we select points $x_{\alpha}^i \in A_{\alpha}, i \in S$, such that $\{x_{\alpha}^i: \alpha < 2^{\mathfrak{c}}\} \cap \{x_{\alpha}^j: \alpha < 2^{\mathfrak{c}}\} = \emptyset$ for $i \neq j$. The sets $E_i = \{x_{\alpha}^i: \alpha < 2^{\mathfrak{c}}\}$ for $i \in S$ have the desired properties. To prove (b) and (c), note that by Proposition 1(e), as ω^* is compact and both D and $\omega^* \setminus D$ are dense in ω^* , it follows that $\omega^*(D)$ is Urysohn and H-closed and $\omega^*(D^2)$ is H-closed and

semiregular. Since $\omega^*(D^2)$ is the union of two closed copies of $\omega^*(D)$, it suffices to show that compact subsets of $\omega^*(D)$ are finite. If A is an infinite, compact subset of $\omega^*(D)$, then A is an infinite, compact subset of ω^* as the topology of ω^* is contained in the topology of $\omega^*(D)$. Thus, $A \cap (\omega^* \setminus D)$ is infinite and $A \cap (\omega^* \setminus D)$ is compact in $\omega^*(D)$. But $A \cap (\omega^* \setminus D)$ is compact in ω^* . By (a), $A \cap (\omega^* \setminus D) \cap D$ is an infinite set, a contradiction.

Comment: Since an infinite, Urysohn, H-closed and semiregular space is compact, it is not possible to have an infinite space satisfying both conclusions (b, c) of Fact 2.

3. Remainders of H-closed Extensions

Let X and Y be two spaces. A function $f: X \to Y$ is θ -continuous if for each $p \in X$ and open set $U \in \tau(Y)$ such that $f(p) \in U$, there is an open set $V \in \tau(X)$ such that $p \in V$ and $f[cl_X V] \subseteq cl_Y U$. The function f is called **irreducible** if for each nonempty open set $U \in \tau(X)$, there is some $y \in Y$ such that $f^{\leftarrow}(y) \subseteq U$.

Let X be a space and let $\Theta X = \{\mathcal{U} : \mathcal{U} \text{ is an open ultrafilter on } X\}$. For $U \in \tau(X)$, let $O(U) = \{\mathcal{U} : U \in \mathcal{U}\}$. For $U, V \in \tau(X)$, it is easy to verify (see [5]) that $O(\varnothing) = \varnothing$, $O(X) = \Theta X$, $O(U \cap V) = O(U) \cap O(V)$, $O(U \cup V) = O(U) \cup O(V)$, $\Theta X \setminus O(U) = O(X \setminus cl_X U)$, and $O(U) = O(int_X cl_X U)$. ΘX with the topology generated by $\{O(U) : U \in \tau(X)\}$ is an extremally disconnected compact space. The subspace $EX = \{\mathcal{U} \in \Theta X : \mathcal{U} \text{ is fixed}\}$ is called the **absolute** of X. The function $k : EX \to X$ defined by $k(\mathcal{U})$ is the unique convergent point of \mathcal{U} is called a covering function. The subspace EX is dense in ΘX (in particular, EX is an extremally disconnected Tychonoff space and $\Theta X = \beta EX$), and the covering function $k : EX \to X$ is irreducible, θ -continuous, perfect and onto. The space X is H-closed iff $EX = \beta EX$ is compact [5, 6.6(e)(1), 6.9(b)(1)], and EX = X iff X is extremally disconnected and Tychonoff [5, 6.6(e)(1), 6.7(a)].

Let Y be an H-closed extension of X. Since an open ultrafilter on X is the trace of a unique open ultrafilter on Y and the trace of an open ultrafilter on Y to X is an open ultrafilter on X, there is a dense embedding of EX in EY. Since EY is an extremally disconnected compact space, it follows that EY is homeomorphic to βEX where the covering function $k_Y : EY \to Y$ corresponds

- to $k_Y: \beta EX \to Y: \mathcal{U} \to k_Y(\mathcal{U})$ defined by $k_Y(\mathcal{U})$ is the unique adherent point of \mathcal{U} in Y. Using this identification, $k_Y^{\leftarrow}(p)$ is a compact subset of $\beta EX \setminus EX$. Thus, $P(Y) = \{k_Y^{\leftarrow}(p): p \in Y \setminus X\}$ is a partition of compact subsets of $\beta EX \setminus EX$. Surprisingly the converse of this is true.
- **Fact 3.** Let X be a space, P be a partition of $\beta EX \setminus EX$ into compact sets, $Y(P) = X \cup P$, and σ denote the topology on Y(P) generated by $\tau(X) \cup \{U \cup \{A\} : A \in P \text{ and } U \in \cap A\}$. Then $(Y(P), \sigma)$ is an H-closed extension of X such that P(Y(P)) = P.
- **Proof:** This fact is a variation of 7.4(a) in [5] and the proof is similar. Here is a rough sketch of the proof. First show that $\cap A$ is a free open filter on X for each $A \in P$, and use this result to show that Y(P) is an H-closed extension of X. Second, show that the function $k_Y : \beta EX \to Y(P)$ defined by $k_Y|_{EX} = k$ and for $y \in A \in P$, $k_Y(y) = A$ is perfect, irreducible, θ -continuous, and onto. Finally, note that since $k_Y|_{EX} = k$ and for $A \in Y(P) \setminus X$, $k_Y^{\leftarrow}(A) = A$, it follows that P = P(Y(P)).
- **Comments.** (a) An immediate consequence of Fact 3 is the existence of many H-closed extensions of a space X. For example, if P is any partition of $\beta EX \setminus EX$ into finite sets, there is an H-closed extension hX of X such that P(hX) = P.
- (b) By 7.7(d) in [5], if Y and Z are H–closed extensions of X, then P(Y) = P(Z) iff there is a θ –homeomorphism $f: Y \to Z$ such that f(x) = x for $x \in X$.
- (c) Tikoo [6] has shown that if X is locally H-closed (every point has an H-closed neighborhood) and has an H-closed extension with an infinite remainder, then X has H-closed extensions $h_{\mu}(X)$ such that $|h_{\mu}(X)\backslash X| = \mu$ where $\mu = \omega, \mathfrak{c}$, and $2^{\mathfrak{c}}$.
- (d) If $B \subset \beta \omega \setminus \omega$ is a discrete subspace and $X = \beta \omega \setminus B$, then EX = X, $\beta EX = \beta \omega = \beta X$, and $\beta EX \setminus EX = \beta \omega \setminus X = B$, a discrete subspace. Each H-closed extension Y of X has the property that P(Y) is a partition of finite sets.

An interesting folklore question has been the existence of a space X with the properties that $\beta EX \setminus EX$ is not a discrete space and for each H-closed extension Y of X, P(Y) is a partition of finite sets. The space in section 2 provides a way to construct such a space.

Construction. Let $X = \beta \omega \backslash D$, where D is the space defined in Fact 2. Note that $\omega \subset X \subset \beta \omega$, EX = X, $\beta X = \beta \omega$, $\beta EX \backslash EX = \beta \omega \backslash X = D$, and compact subsets of $\beta EX \backslash EX$ are finite. So, for each H-closed extension Y of X, P(Y) is a partition of finite subsets and $|Y \backslash X| = 2^{\mathfrak{c}}$. That is, there are no H-closed extensions of X with small remainders.

4. Relatively Compact Subspaces

In [1] Arhangel'skii has posed some problems about relative topological properties. Gartside and Glyn [4] have answered a few of these questions. A modification of the space constructed in section 2 provides different solutions to two of the problems answered in [4].

For a subspace Y of a space X, Y is said to be **compact in** X **from the inside** if for each subspace $Z \subseteq Y$, if Z is closed in X, then Z is compact. Arhangel'skii [1, Problems 1, 5] asked if Y is compact in space X from the inside and X is Urysohn, is Y regular or Tychonoff?

Theorem 4. The subspace $Y = E_1 \cup E_3$ is compact in $X = \omega^*(E_3 \cup E_4)$ from the inside.

Proof: Let A be a noncompact closed subset of Y, $A_1 = A \cap E_1$ and $A_3 = A \cap E_3$. Then A_1 or A_3 is infinite. For $i \in \{1, 3\}$, if A_i is infinite, $cl_{\omega^*}A_i = C_{\alpha}$ for some $\alpha < 2^{\mathfrak{c}}$. If $C_{\alpha} = cl_{\omega^*}A_3$, then by Proposition 1, $C_{\alpha} = cl_{\omega^*}A_3 = cl_{\omega^*}(D)A_3$. As $C_{\alpha} \cap E_4 \neq \emptyset$, A is not closed in $\omega^*(D)$. Suppose $C_{\alpha} = cl_{\omega^*}A_1$. By Proposition 1, $\emptyset \neq C_{\alpha} \cap E_2 \subseteq C_{\alpha} \cap X \setminus D = cl_{\omega^*}A_1 \cap X \setminus D = cl_{\omega^*(D)}A_1 \cap X \setminus D$. Thus, A is not closed in $\omega^*(D)$.

Comment. The space Y defined in Theorem 4 is not semiregular and hence not regular; yet, the H-closed space X is more than Urysohn (in particular, X is completely Hausdorff and its semiregularization is compact). The doubling process used in Fact 2(c) gives rise to a minimal Hausdorff space Z such that $Y \subseteq X \subseteq Z$. It follows that Y is also compact in Z from the inside.

References

[1] A. V. Arhangel'skii, Some Questions and References on Relative Topological Properties, Part 1, Topology Atlas Document iaai-04, (2000).

316 J. PORTER

- [2] A. V. Arhangel'skii, Relative topological properties and relative topological spaces, Top. Appl., **70** (1996), 1-13.
- [3] A. V. Arhangel'skii and J. Tartir, A characterization of compactness by a relative separation property, Questions and Answers in General Topology, 14 (1966), 49-52.
- [4] P. M. Gartside and A. Glyn, Relative separation properties, Topology Atlas Preprint # 438, August 17, 2000.
- [5] J. R. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, Berlin, 1988.
- [6] M. L. Tikoo, Remainders of H-closed extensions, Top. Appl., 23 (1986), 117-128.

University of Kansas, Lawrence, Kansas 66045 USA *E-mail address*: porter@math.ukans.edu