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CONTROLLING EXTENSIONS OF FUNCTIONS
AND C-EMBEDDING

KAORI YAMAZAKI

Abstract. We prove that a subspace A of a space X is C-
embedded in X if and only if for every continuous function
f : A → [0, 1] and disjoint zero-sets Z0, Z1 of X with Zi ∩
A = f−1({i}) (i = 0, 1), there exists a continuous extension
g : X → [0, 1] of f such that Zi = g−1({i}) (i = 0, 1). This
extends a result of Frantz [5] where X is normal and A is
closed in X. Applying this result, we show that some results
on controlling extensions of special functions, which Frantz
[5] established on a closed subspace of a normal space, also
hold on a C-embedded subspace of a space. Moreover, we
apply the above result to give new characterization of P γ-
embedding by extending suitable collections of functions, and
answer a question of Frantz [5].

1. Introduction

Throughout this paper, a space means a topological space. In
[5], Frantz proved a theorem as follows:

Theorem 1.1. (Frantz [5]). Let X be a normal space and A a
closed subspace of X. Let f : A → [0, 1] be a continuous function
with f−1({i}) 6= ∅, i = 0, 1, and suppose Z0 and Z1 are disjoint
zero-sets of X satisfying Zi ∩ A = f−1({i}), i = 0, 1. Then, f
has a continuous extension g : X → [0, 1] such that Zi = g−1({i})
(i = 0, 1).
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Culture.
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According to [5], this result shows that the well-known Tietze-
Urysohn extension theorem admits controlling the extended func-
tion so as to take certain specified values. As for extension prop-
erties of functions on a subspace over a whole space, C- or C∗-
embedding is well-known; a subspace A of a space X is said to be
C (resp. C∗)-embedded in X if every real-valued (resp. bounded
real-valued) continuous function on A can be extended to a continu-
ous one over X. The Tietze-Urysohn extension theorem reads that
every closed subspace of a normal space is C (or C∗)-embedded.
Hence, these arguments suggest we consider whether the C (or
C∗)-embedding of A allows us to control extensions of functions
as in Theorem 1.1 without assuming the normality of X and the
closedness of A. In this paper, this will be positively answered, that
is, in section 2 we establish the following theorem, which improves
a previous result in [15].

Theorem 1.2. Let X be a space and A a subspace of X. Then, A
is C-embedded in X if and only if for every continuous function f :
A → [0, 1] and disjoint zero-sets Z0, Z1 of X with Zi∩A = f−1({i})
(i = 0, 1), there exists a continuous extension g : X → [0, 1] of f
such that Zi = g−1({i}) (i = 0, 1).

In section 2, as corollaries to Theorem 1.2, we show C-embedding
admits several descriptions in terms of controlling extensions of
functions. One of these will be applied to characterize extending
a suitable collection of functions by extending suitable cozero-set
covers (Lemma 3.1). By this result and another one, we describe
P γ-embedding by introducing a new notion of sum-complete col-
lections of functions; a collection {fα : α ∈ Ω} of continuous non-
negative real-valued functions on a space X is said to be sum-
complete if

∑
α∈Ω fα can be defined as a continuous function from

X into [0,∞). Here, for an infinite cardinal γ, a subspace A of a
space X is said to be P γ-embedded in X if for every normal open
cover U of A with |U| ≤ γ, there exists a normal open cover V of
X such that {V ∩ A : V ∈ V} refines U [1]. It is known that Pω-
embedding is equivalent to C-embedding (cf. [1]), where ω denotes
the first infinite cardinal.

Theorem 1.3. (Theorems 3.4 and 3.5). For a space X and a
subspace A of X, the following statements are equivalent:

(1) A is P γ-embedded in X;
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(2) for every uniformly locally finite cozero-set cover {Uα : α ∈
Ω} of A with |Ω| ≤ γ, there exists a uniformly locally finite cozero-
set cover {Vα : α ∈ Ω} of X such that Vα ∩ A = Uα for every
α ∈ Ω;

(3) for every uniformly locally finite collection {fα : α ∈ Ω} on
A with |Ω| ≤ γ, there exists a uniformly locally finite collection
{gα : α ∈ Ω} on X such that gα|A = fα for each α ∈ Ω;

(4) for every sum-complete collection {fα : α ∈ Ω} on A with
|Ω| ≤ γ, there exists a sum-complete collection {gα : α ∈ Ω} on X
such that gα|A = fα for every α ∈ Ω.

The equivalence (1) ⇔ (2) of Theorem 1.3 was proved by Alò and
Shapiro [1] assuming that X is normal and A is closed. Our char-
acterization of C-embedding works well to remove this assumption.
Comparing the conditions (3) and (4) in Theorem 1.3, notice that
the local finiteness is located between the uniformly local finiteness
and the sum-completeness. However, we show that if we replace
all “uniformly locally finite” in (3) in the above by “locally finite”,
then the condition is equivalent to P γ(locally-finite)-embedding on
A, which is strictly stronger than P γ-embedding (Theorem 3.3).

We also give an answer to a question of Frantz in [5] related to
controlling extensions of partitions of unity.

2. Proof of Theorem 1.2

Let X be a space and A a subspace of X. Then, A is said to be
well-embedded in X if A is completely separated from any zero-set
of X disjoint from A. A subspace A is z-embedded in X if every
zero-set of A is the intersection of A with some zero-set of X. A
subspace A is said to be C1-embedded in X if every zero-set Z of
A is completely separated from any zero-set of X disjoint from Z
[10]. It is known that A is C-embedded in X if and only if A is C∗
(or z)- and well-embedded in X (cf. [1] or [6]). It is proved in [10]
that C-embedding implies C1-embedding, and the latter implies
well-embedding.

Other terminology and basic facts are referred to [1], [4], [6] or
[9].

Proof of Theorem 1.2: To prove the “if” part, assume that
for every continuous function f : A → [0, 1] and disjoint zero-
sets Z0, Z1 of X with Zi ∩ A = f−1({i}) (i = 0, 1), there exists a
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continuous extension g : X → [0, 1] of f such that Zi = g−1({i})
(i = 0, 1). To prove C-embedding of A in X, it suffices to show
that any continuous function f : A → (0, 1) can be extended to a
continuous function g : X → (0, 1). Regard f as f : A → [0, 1] and
apply the condition to Z0 = Z1 = ∅. Then the extension g of f
satisfying the condition maps X into (0, 1). Hence, g is the desired
extension.

To prove the “only if” part, suppose A is C-embedded in X. Let
f : A → [0, 1] be a continuous function and Z0, Z1 disjoint zero-sets
of X with Zi ∩ A = f−1({i}) (i = 0, 1). Let ` : X → [0, 1] be a
continuous function satisfying `−1({i}) = Zi (i = 0, 1). We first
prove the following claim.

Claim. There exists a continuous extension h : X → [0, 1] of f
such that Zi ⊂ h−1({i}) (i = 0, 1).

Proof of Claim: The proof is based on that of [15, Lemma 3.2].
By induction, we shall construct continuous functions hn : X →
[−1/2n−1, 1/2n−1] (n ∈ N) which satisfy the following conditions:

(1) h−1
1 ({i}) ⊃ Zi (i = 0, 1) and h−1

n ({0}) ⊃ Z0∪Z1 (n ≥ 2); and

(2)
∣∣f −∑n

i=1

(
hi|A

)∣∣ < 1/2n (n ∈ N).

Let k1 = f − `|A. Put F1 = k−1
1

(
[−1,−1/2]∪ [1/2, 1]

)
. Then, F1

is a zero-set of A disjoint from Z0 ∪Z1. Since A is C1-embedded in
X, there exists a continuous function j1 : X → [0, 1] such that

j−1
1 ({1}) ⊃ F1 and j−1

1 ({0}) = Z0 ∪ Z1.

Since A is C∗-embedded in X, there exists a continuous function
f1 : X → [0, 1] such that f1|A = f . Define a continuous function
h1 : X → [0, 1] by

h1(x) = j1(x) · f1(x) + (1− j1(x)) · `(x)

for every x ∈ X. Then, h1 trivially satisfies the conditions (1) and
(2).

Next assume that the continuous functions h1, . . . , hn are defined
with the properties (1) and (2) for i = 1, . . . , n. Put kn+1 = f −∑n

i=1(hi|A). Then, by the assumption (2), kn+1 takes its value in
[−1/2n, 1/2n]. Put

Fn+1 = k−1
n+1

([− 1
2n

,− 1
2n+1

] ∪ [ 1
2n+1

,
1
2n

])
.
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Then, Fn+1 is a zero-set of A disjoint from Z0 ∪Z1. Since A is C1-
embedded in X, there exists a continuous function jn+1 : X → [0, 1]
such that

j−1
n+1({1}) ⊃ Fn+1 and j−1

n+1({0}) = Z0 ∪ Z1.

Since A is C∗-embedded in X, there exists a continuous function
fn+1 : X → [−1/2n, 1/2n] such that fn+1|A = kn+1. Define a
continuous function hn+1 by

hn+1(x) = fn+1(x) · jn+1(x)

for every x ∈ X. Then hn+1 : X → [−1/2n, 1/2n] is a continuous
function satisfying (1) and (2). This completes the induction.

Put
h =

((∑

i∈N
hi

) ∧ 1
)
∨ 0.

It is not hard to see that h is continuous, h|A = f and Zi ⊂ h−1({i})
(i = 0, 1). This completes the proof of Claim. ¤

Now, put

D = h−1({0}) ∪ h−1({1})− Z0 ∪ Z1.

Notice that D can be represented as D =
⋃

i∈NDi, where each
Di is a zero-set of X. Since A ∩ h−1({i}) = f−1({i}) = A ∩ Zi

(i = 0, 1), we have A ∩D = ∅ and hence A ∩Di = ∅ (i ∈ N). Since
A is well-embedded in X, there exists zero-set Fi of X such that
Fi∩Di = ∅ and A ⊂ Fi. Since

⋂
i∈N Fi is a zero-set of X, there exists

a continuous function ϕ : X → [0, 1] such that
⋂

i∈N Fi = ϕ−1({1}).
Then it follows that

A ⊂ ϕ−1({1}) and ϕ−1({1})∩(
h−1({0})∪h−1({1})−Z0∪Z1

)
= ∅.

Define a continuous function g : X → [0, 1] by

g(x) = ϕ(x) · h(x) + (1− ϕ(x)) · `(x)

for every x ∈ X. Then, g is an extension of f . Finally we shall
show that Zi = g−1({i}) (i = 0, 1).

Since Zi = `−1({i}) ⊂ h−1({i}) (i = 0, 1), we have Zi ⊂ g−1({i})
(i = 0, 1).

Suppose x /∈ Z0 ∪ Z1. Then 0 < `(x) < 1. If ϕ(x) = 1, then
0 < h(x) < 1 because of the definition of ϕ; it follows that 0 <
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g(x) < 1. If ϕ(x) < 1, then

g(x) ≥ (1−ϕ(x)) ·`(x) > 0 and g(x) < ϕ(x) ·1+(1−ϕ(x)) ·1 = 1;

it follows that 0 < g(x) < 1. These show that

X − Z0 ∪ Z1 ⊂ g−1
(
(0, 1)

)
.

Thus we have Zi = g−1({i}) (i = 0, 1). This completes the proof.
¤

Next, we give some variations of Theorem 1.2. The following
improves [15, Lemma 3.2].

Corollary 2.1. Let X be a space and A a subspace of X. Then,
A is C-embedded in X if and only if for every continuous function
f : A → [0, 1] and any zero-set Z of X with Z ∩ A = f−1({0}),
there exists a continuous extension g : X → [0, 1] of f such that
Z = g−1({0}).
Proof: The “only if” part immediately follows from Theorem 1.2.
To prove the “if” part, assume that for every continuous function
f : A → [0, 1] and any zero-set Z of X with Z ∩ A = f−1({0}),
there exists a continuous extension g : X → [0, 1] of f such that
Z = g−1({0}). First, to prove that A is C∗-embedded in X, it
suffices to show that any continuous function f : A → [1/2, 1] can
be continuously extended over X. If we put Z = ∅, then f can be
extended to a continuous function g : X → [0, 1] by the assumption.
Then

(
g ∨ (1/2)

)
is the desired extension of f . Next, to prove that

A is well-embedded in X, let Z be a zero-set of X disjoint from
A. Let f : A → {1} be a constant function. Then there exists a
continuous extension g : X → [0, 1] of f such that Z = g−1({0})
by the assumption. Then g−1({1}) is a zero-set of X containing
A and disjoint from Z. Hence, Z is completely separated from
A. It follows that A is C∗- and well-embedded in X, i.e., A is
C-embedded in X. This completes the proof. ¤

Corollary 2.2. Let X be a space and A a subspace of X. Then,
A is C-embedded in X if and only if for every continuous function
f : A → [0,∞) and any zero-set Z of X with Z ∩ A = f−1({0}),
there exists a continuous extension g : X → [0,∞) of f such that
Z = g−1({0}).
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Proof: The “if” part is similarly proved as in Corollary 2.1. To
prove the “only if” part, assume A is C-embedded in X. It suffices
to show that for any continuous function f : A → [0, 1) and zero-
set Z of X with Z ∩ A = f−1({0}), f has a continuous extension
g : X → [0, 1) with Z = g−1({0}). Putting Z0 = Z and Z1 = ∅,
this follows easily from Theorem 1.2. This completes the proof. ¤

Next, more generally, we study extensions of (not necessarily
bounded) real-valued continuous functions. For a function f : X →
R, Coz(f) means f−1

(
(−∞, 0)

)∪f−1
(
(0,∞)

)
. Our condition in (2)

of the next result is a little different from the one in [5, Theorem
2]. (See (1) of Remark 2.4 below.)

Corollary 2.3. Let X be a space and A a subspace of X. Then,
the following statements are equivalent:

(1) A is C-embedded in X;
(2) for every continuous function f : A → R, any real num-

bers r1 < r2 < · · · < rn and any zero-set collection {Zi, Z
∗
i :

i = 1, 2, . . . , n} of X satisfying Zi ∩ Z∗i+1 = ∅ (i = 1, . . . , n − 1),
Zi ∪ Z∗i = X, f−1

(
(−∞, ri]

)
= Zi ∩ A and f−1

(
[ri,∞)

)
= Z∗i ∩ A

(i = 1, 2, . . . , n), there exists a continuous extension g : X → R
of f such that g−1

(
(−∞, ri]

)
= Zi and g−1

(
[ri,∞)

)
= Z∗i for

i = 1, 2, . . . , n;
(3) for every continuous function f : A → R and any zero-set

cover {Z−, Z+} of X with f−1
(
(−∞, 0]

)
= Z−∩A and f−1

(
[0,∞)

)
= Z+∩A, there exists a continuous extension g : X → R of f such
that g−1

(
(−∞, 0]

)
= Z− and g−1

(
[0,∞)

)
= Z+;

(4) for every continuous function f : A → R and any cozero-set
U of X with Coz(f) = U ∩ A, there exists a continuous extension
g : X → R of f such that Coz(g) ⊂ U .

Proof: (1) ⇒ (2): Assume (1). Let f : A → R be a contin-
uous function, r1 < r2 < · · · < rn real numbers and {Zi, Z

∗
i :

i = 1, 2, . . . , n} a zero-set collection of X satisfying Zi ∩ Z∗i+1 = ∅
(i = 1, . . . , n − 1), Zi ∪ Z∗i = X, f−1

(
(−∞, ri]

)
= Zi ∩ A and

f−1
(
[ri,∞)

)
= Z∗i ∩A (i = 1, 2, . . . , n). Let

fi = (f ∨ri)∧ri+1 (i = 1, . . . , n−1), f0 = f ∧r1 and fn = f ∨rn.

From Theorem 1.2 and Corollary 2.2, there exist continuous func-
tions g0 : X → (−∞, r1], gi : X → [ri, ri+1] (i = 1, · · · , n − 1) and
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gn : X → [rn,∞) such that gi|A = fi (i = 0, . . . , n), g−1
i ({ri}) = Zi

(i = 1, . . . , n) and g−1
i ({ri+1}) = Z∗i+1 (i = 0, . . . , n − 1). Define a

function g : X → R by

g(x) =





g0(x) if x ∈ Z1,

gi(x) if x ∈ Z∗i ∩ Zi+1 (i = 1, . . . , n− 1),

gn(x) if x ∈ Z∗n.

Then, by the pasting lemma, g is continuous, and this is the desired
extension of f .

(2) ⇒ (3): Obvious.
(3) ⇒ (4): Assume (3). Let f : A → R be a continuous function

and U be a cozero-set of X with Coz(f) = U ∩A. Define a function
f∗ : A → (0, 2) by

f∗(x) =
(
f(x)/(1 + |f(x)|)) + 1 (x ∈ A),

Z∗− = ∅ and Z∗+ = X and apply the condition of (3) to f∗ and
{Z∗−, Z∗+}. There exists a continuous extension g∗ : X → R of
f∗. Put

Z− = g∗−1((−∞, 1]
)∪(X−U) and Z+ = g∗−1([1,∞)

)∪(X−U).

Since {Z−, Z+} is a zero-set cover satisfying the condition (3),
there exists a continuous extension g : X → R of f such that
g−1

(
(−∞, 0]

)
= Z− and g−1

(
[0,∞)

)
= Z+. Since g−1({0}) =

Z− ∩ Z+ ⊃ X − U , it follows that Coz(g) ⊂ U .
(4) ⇒ (1): Assume (4). First, to prove A is C∗-embedded in X,

let f : A → [1, 2] be a continuous function. Let U = X. From the
assumption, there exists a continuous extension g : X → R of f .
Then, (g∨ 1)∧ 2 is an extension of f . To prove A is well-embedded
in X, let Z be a zero-set of X disjoint from A. Let f : A → {1}
be a constant function and put U = X − Z. Let g : X → R be an
extension of f with Coz(g) ⊂ U . Then g−1({1}) is a zero-set of X
containing A and disjoint from Z, which shows A is well-embedded
in X. Hence (1) holds. This completes the proof. ¤
Remark 2.4. (1) In [5, Theorem 2], a result concerning control-
ling extensions of a continuous function so as to take finitely many
specified values was given. This result is required to have more
assumptions. Indeed, let X = [0, 2] with a subspace topology of R,
A = {0, 1, 2} a subspace of X. Let f : A → R be a function defined
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by f(0) = 1, f(1) = 0 and f(2) = 2, and ai = i − 1 (i = 1, 2, 3).
Let Â1 = {1}, Â2 = {0} and Â3 = {2}. By the intermediate value
theorem, any continuous extension g of f over X must satisfy that
g−1({a2}) % Â2. Hence, f has no continuous extension over X such
as in the theorem.

(2) As a more general observation of Corollary 2.3, we similarly
have a countable case as follows: A subspace A of a space X is C-
embedded in X if and only if for every continuous function f : A →
R, any sequence r1 < r2 < . . . of real numbers and any zero-set
collection {Zi, Z

∗
i : i ∈ N}∪{Ẑ} of X satisfying Zi∩Z∗i+1 = ∅, Zi∪

Z∗i = X, f−1
(
(−∞, ri]

)
= Zi ∩A, f−1

(
[ri,∞)

)
= Z∗i ∩A and Zi ⊂

Ẑ for every i ∈ N and f−1
(
(−∞, lim ri]

)
= Ẑ ∩A (and in addition⋂

i∈N Z∗i = ∅ if lim ri = ∞), there exists a continuous extension g :
X → R of f such that g−1

(
(−∞, ri]

)
= Zi and g−1

(
[ri,∞)

)
= Z∗i

for every i ∈ N, and g−1
(
(−∞, lim ri]

)
= Ẑ. Here, if (ri)i∈N does

not converge, lim ri means ∞.

Next we give a characterization of C-embedding in terms of ex-
tending pairwise disjoint continuous functions along the lines of
Frantz [5]. In [5], continuous real-valued functions fα (α ∈ Ω) are
said to be pairwise disjoint if |fα| ∧ |fβ| = 0 for every α, β ∈ Ω
with α 6= β. Obviously, |fα| ∧ |fβ| = 0 if and only if Coz(fα)∩
Coz(fβ) = ∅. By using Corollary 2.3, we can remove the assumption
of the normality of X and the closedness of A from [5, Proposition
5] as follows:

Proposition 2.5. Let X be a space and A a subspace of X. Then,
A is C-embedded in X if and only if for every collection {fi : i ∈ N}
of pairwise disjoint real-valued continuous functions on A, there ex-
ists a collection {gi : i ∈ N} of pairwise disjoint real-valued contin-
uous functions on X such that gi|A = fi for each i ∈ N.

Proof: The “if” part is obvious. To prove the “only if” part,
suppose A is C-embedded in X and let {fi : i ∈ N} be a collection
of pairwise disjoint real-valued continuous functions on A. By [2,
Theorem 1], there exists a pairwise disjoint cozero-set collection
{Ui : i ∈ N} of X such that Ui ∩ A =Coz(fi) for every i ∈ N.
Hence, by (4) of Corollary 2.3, there exists a continuous extension
gi : X → R of fi such that Coz(gi) ⊂ Ui for every i ∈ N. Then,



332 K. YAMAZAKI

{gi : i ∈ N} is the desired collection of continuous functions. This
completes the proof. ¤

A subspace A of a space X is said to be Tz-embedded in X if every
disjoint cozero-set collection of A can be extended to a disjoint
cozero-set collection of X [2]. Similarly to the proof of Proposition
2.5, we give the general cardinal case of Proposition 2.5.

Proposition 2.6. Let X be a space and A a subspace of X. Then,
A is C- and Tz-embedded in X if and only if for every collection
{fα : α ∈ Ω} of pairwise disjoint real-valued continuous functions
on A, there exists a collection {gα : α ∈ Ω} of pairwise disjoint
real-valued continuous functions on X such that gα|A = fα for
each α ∈ Ω.

In the proof of [2, Theorem 5], it is essentially proved that every
closed subspace of a hereditarily collectionwise normal space X is
Tz-embedded in X. Hence, by the above proposition, we have the
following which extends [5, Proposition 6] where X is metrizable
and A is closed in X.

Corollary 2.7. If X is a hereditarily collectionwise normal space,
then for every closed subset A of X and every collection {fα : α ∈
Ω} of pairwise disjoint real-valued continuous functions on A, there
exists a collection {gα : α ∈ Ω} of pairwise disjoint real-valued
continuous functions on X such that gα|A = fα for each α ∈ Ω.

Note that the converse of Corollary 2.7 is false (cf. [2, Example
3]).

3. Extending functions and cozero-set covers

Throughout this section, let γ be an infinite cardinal. First we
give some definitions.

A collection A of subsets of a space X is said to be uniformly
locally finite if there exists a normal open cover U of X such that
each member of U intersects at most finitely many members of A
[11], [12]. A collection {Uα : α ∈ Ω} of subsets of a space X is
uniformly locally finite in X if and only if there exist locally finite
collections {Fα : α ∈ Ω} and {Gα : α ∈ Ω} of subsets of X such
that Fα (α ∈ Ω) are zero-sets of X, Gα (α ∈ Ω) are cozero-sets of
X and Uα ⊂ Fα ⊂ Gα for each α ∈ Ω.
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Let {fα : α ∈ Ω} be a collection of continuous [0, 1]-valued func-
tions on X. Then, {fα : α ∈ Ω} is said to be a partition of unity
on X if

∑
α∈Ω fα(x) = 1 for every x ∈ X. Let P be the one of

the following: point-finite, locally finite, point-countable, uniformly
locally finite. A collection {fα : α ∈ Ω} of non-negative real-valued
continuous functions on X is said to be P if {f−1

α ((0,∞)) : α ∈ Ω}
is a collection with the property P in X.

In the terminology of [3], a subspace A of a space X is said to be
P γ(P)-embedded in X if for every P partition of unity {fα : α ∈ Ω}
on A with |Ω| ≤ γ, there exists a P partition of unity {gα : α ∈ Ω}
on X such that gα|A = fα for every α ∈ Ω. A subspace A of a space
X is said to be P (P)-embedded in X if A is P γ(P)-embedded in X
for every γ. Recall that each of P γ(locally-finite)-embedding and
P γ(point-finite)-embedding implies P γ-embedding, and the inverse
implications need not hold [3].

Besides the above definitions, we give another one. A collection
{fα : α ∈ Ω} of continuous non-negative real-valued functions on
X is said to be a covering collection on X if {f−1

α ((0,∞)) : α ∈ Ω}
is a cover of X.

It should be noted that the sum-completeness of a collection of
functions, which is introduced in Section 1, is related to the study
of Guthrie-Henry in [7]. Recall from [7] that F = {fα : α ∈ Ω}
is said to be relatively complete if for every A ⊂ Ω, infα∈A fα(x)
and supα∈A fα(x), x ∈ X, can be defined as real-valued continuous
functions. They showed that every point-finite partition of unity
is relatively complete [7]. The property of sum-completeness is
located in the middle, that is, we have (i) any partition of unity
is sum-complete; and (ii) any sum-complete collection is relatively
complete. Indeed, statement (i) is obvious, statement (ii) can be
shown by the similar proof to [7, Theorem 2], and easy examples
show that (ii) need not reverse.

First, let us show the following fundamental lemmas.

Lemma 3.1. Let X be a space and A a subspace of X. Then, the
following statements are equivalent:

(1) for every P cozero-set cover {Uα : α ∈ Ω} of A with |Ω| ≤ γ,
there exists a P cozero-set cover {Vα : α ∈ Ω} of X such that
Vα ∩A = Uα for each α ∈ Ω;
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(2) for every P covering collection {fα : α ∈ Ω} on A with |Ω| ≤
γ, there exists a P covering collection {gα : α ∈ Ω} on X such that
gα|A = fα for each α ∈ Ω.

Proof: (1) ⇒ (2): Assume (1). Let {fα : α ∈ Ω} be a P covering
collection on A with |Ω| ≤ γ. By (1) there exists a P cozero-set
cover {Vα : α ∈ Ω} of X such that Vα ∩ A = f−1

α ((0,∞)) for
every α ∈ Ω. Notice that (1) implies that A is C-embedded in
X. Hence, by Corollary 2.2, there exists a continuous extension
gα : X → [0,∞) of f such that Vα = g−1

α ((0,∞)) for every α ∈ Ω.
Hence (2) holds.

(2) ⇒ (1): Obvious. This completes the proof. ¤

Lemma 3.2. Let X be a space and A a subspace of X. Then, the
following statements are equivalent:

(1) A is P γ(P)-embedded in X;
(2) for every sum-complete P covering collection {fα : α ∈ Ω} on

A with |Ω| ≤ γ, there exists a sum-complete P covering collection
{gα : α ∈ Ω} on X such that gα|A = fα for each α ∈ Ω;

(3) for every sum-complete P collection {fα : α ∈ Ω} on A with
|Ω| ≤ γ, there exists a sum-complete P collection {gα : α ∈ Ω} on
X such that gα|A = fα for each α ∈ Ω.

Proof: (1) ⇒ (2): Assume (1). Let {fα : α ∈ Ω} be a sum-
complete P covering collection on A with |Ω| ≤ γ. Put f ′α =
fα/

∑
β∈Ω fβ for every α ∈ Ω. By (1), there exists a P partition of

unity {g′α : α ∈ Ω} on X such that g′α|A = f ′α for every α ∈ Ω.
Notice (1) implies that A is C-embedded in X. Hence there exists
an extension g∗ : X → (0,∞) of

∑
β∈Ω fβ over X. Define a function

gα : X → R by gα(x) = g′α(x) · g∗(x) for every x ∈ X and every
α ∈ Ω. Then, {gα : α ∈ Ω} is the required sum-complete P covering
collection.

(2) ⇒ (3): Let {fα : α ∈ Ω} be a sum-complete P collection on
A with |Ω| ≤ γ. Use (2) to {fα : α ∈ Ω} ∪ {1}, where 1 is the
constant function 1 : A → {1}.

(3) ⇒ (1): Assume (3). Then, A is C-embedded in X. Indeed,
for a continuous function f : A → R, applying (3) to {f ∨ 0,−(f ∧
0)}, one can show that f can be continuously extended over X.
To prove (1), let {fα : α ∈ Ω} be a P partition of unity on A
with |Ω| ≤ γ. By (3), there exists a sum-complete P collection
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{g′α : α ∈ Ω} on X such that g′α|A = fα for each α ∈ Ω. Since A is
C-embedded in X, there exists a continuous function h : X → [0, 1]
such that h((

∑
α∈Ω gα)−1({0})) = 1 and h(A) = 0. Fix an α0 ∈ Ω.

Let

gα0 = (g′α0
+ h)/(

∑

β∈Ω

g′β + h) and gα = g′α/(
∑

β∈Ω

g′β + h)

for every α ∈ Ω − {α0}. Then, {gα : α ∈ Ω} is the required P
partition of unity on X extending {fα : α ∈ Ω}. This completes
the proof. ¤

Next, let us proceed to describe the above lemmas individually.
In the case when P is “locally finite”, we have:

Theorem 3.3. ((1) ⇔ (2) is in [15]). For a space X and a subspace
A of X, the following statements are equivalent:

(1) for every locally finite cozero-set cover {Uα : α ∈ Ω} of A with
|Ω| ≤ γ, there exists a locally finite cozero-set cover {Vα : α ∈ Ω}
of X such that Vα ∩A = Uα for each α ∈ Ω;

(2) A is P γ(locally-finite)-embedded in X;
(3) for every locally finite collection {fα : α ∈ Ω} on A with

|Ω| ≤ γ, there exists a locally finite collection {gα : α ∈ Ω} on X
such that gα|A = fα for each α ∈ Ω.

Proof: Since every locally finite collection of functions is sum-
complete, the statements (2) in Lemmas 3.1 and 3.2 are equivalent.
Hence, Theorem 3.3 follows from Lemmas 3.1 and 3.2. This com-
pletes the proof. ¤

In the case when P is “uniformly locally finite”, we have the
following. The equivalence (1) ⇔ (4) in the following extends [1,
Theorem 12.4] where X is normal and A is closed in X.

Theorem 3.4. For a space X and a subspace A of X, the following
statements are equivalent:

(1) for every uniformly locally finite cozero-set cover {Uα : α ∈
Ω} of A with |Ω| ≤ γ, there exists a uniformly locally finite cozero-
set cover {Vα : α ∈ Ω} of X such that Vα ∩ A = Uα for every
α ∈ Ω;

(2) A is P γ(uniformly locally finite)-embedded in X;
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(3) for every uniformly locally finite collection {fα : α ∈ Ω} on
A with |Ω| ≤ γ, there exists a uniformly locally finite collection
{gα : α ∈ Ω} on X such that gα|A = fα for each α ∈ Ω;

(4) A is P γ-embedded in X.

Proof: (1) ⇔ (2) ⇔ (3): Since any uniformly locally finite covering
collection is sum-complete, the statements (2) in Lemmas 3.1 and
3.2 are equivalent.

(1) ⇒ (4): This is not difficult to see.
(4) ⇒ (1): Assume (4). Let {Uα : α ∈ Ω} be a uniformly locally

finite cozero-set cover of A with |Ω| ≤ γ. Since A is P γ-embedded
in X, by [8], we can take locally finite collections {Fα : α ∈ Ω} and
{Gα : α ∈ Ω} of subsets of X such that Fα (α ∈ Ω) are zero-sets
of X, Gα (α ∈ Ω) are cozero-sets of X and Uα ⊂ Fα ⊂ Gα for each
α ∈ Ω. For every α ∈ Ω, take a cozero-set Hα and a zero-set Zα

of X such that Fα ⊂ Hα ⊂ Zα ⊂ Gα. Since A is z-embedded in
X, there exists a cozero-set U∗

α of X such that U∗
α ∩ A = Uα for

every α ∈ Ω. Put H∗
α = U∗

α ∩ Hα for every α ∈ Ω. Since A is
well-embedded in X, there exists a cozero-set H∗ of X such that

A ∩H∗ = ∅ and H∗ ∪
⋃

α∈Ω

H∗
α = X.

Replace H∗
0 , Z0 and G0 by

H∗
0 = H∗

0 ∪H∗, Z0 = X and G0 = X,

respectively. Since H∗
α ⊂ Zα ⊂ Gα for each α ∈ Ω, it follows that

{H∗
α : α ∈ Ω} is uniformly locally finite in X. So, (1) holds. This

completes the proof. ¤

Let P be “point-finite”. In the case γ > ω, the conditions in
Lemma 3.1 do not imply (and are not implied by) the ones in
Lemma 3.2 ([16]). In the case γ = ω, the conditions in Lemmas 3.1
and 3.2 are equivalent ([16]).

In the case when P is “point-countable”, we have:

Theorem 3.5. For a space X and a subspace A of X, the following
statements are equivalent:

(1) A is P γ-embedded in X;
(2) A is P γ(point-countable)-embedded in X;
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(3) for every sum-complete collection {fα : α ∈ Ω} on A with
|Ω| ≤ γ, there exists a sum-complete collection {gα : α ∈ Ω} on X
such that gα|A = fα for every α ∈ Ω.

Proof: Since any sum-complete collection of functions (hence any
partition of unity) is point-countable, (1) ⇔ (2) follows from [3],
and (2) ⇔ (3) follows from Lemma 3.2. This completes the proof.

¤

Let P be point-countable. In the case γ > ω, the conditions in
Lemma 3.1 are different from those in Lemma 3.2. For instance,
see the examples in [16]. In the case γ = ω, all of the conditions in
Lemmas 3.1 and 3.2 are equivalent to A being C-embedded in X.

Remark 3.6. Clearly, uniformly local finiteness implies local finite-
ness, the latter implies point-finiteness, which in turn implies point-
countableness. Theorems 3.4 and 3.5 show that the two extremes
only coincide with each other for the notion of P γ(P)-embedding.
On the other hand, we have the following: every uniformly lo-
cally finite partition (locally finite partition, point-finite partition,
or point-countable partition (i.e., partition)) of unity, with cardi-
nality at most γ, on a subspace A of a space X can be extended to
a partition of unity on X if and only if A is P γ-embedded in X.

Next, we give a result that three extension properties (hence, all
of the conditions in Theorems 3.3, 3.4 and 3.5) are equivalent. It
should be noted that the additional P -space assumption is required
only on the subspace A, not on the whole space X. A space is said
to be a P -space if every cozero-set is closed.

Theorem 3.7. Let X be a space and A a subspace of X. Assume
that A is a P -space. Then, the following statements are equivalent:

(1) A is P γ-embedded in X;
(2) A is P γ(locally-finite)-embedded in X;
(3) A is P γ(point-finite)-embedded in X.

To prove Theorem 3.7, we first present a lemma.

Lemma 3.8. For a space X, the following statements are equiva-
lent:

(1) X is a P -space;
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(2) if U = {Uα : α ∈ Ω} is a point-finite collection of subsets of
X and

⋃
α∈δ Uα is a cozero-set of X for every δ ⊂ Ω, then U is

locally finite in X;
(3) every countable point-finite cozero-set collection of X is lo-

cally finite in X.

Proof: (1) ⇒ (2): Let U = {Uα : α ∈ Ω} be a point-finite collec-
tion of subsets of X and let

⋃
α∈δ Uα be a cozero-set of X for every

δ ⊂ Ω. For every x ∈ X, the set
⋃{Uα : x /∈ Uα} is a cozero-set of

X, hence it is a closed set. So, U is locally finite at x. Hence (2)
holds.

(2) ⇒ (3): Obvious.
(3) ⇒ (1): Assume (3) and let U be a cozero-set of X. Let

f : X → [0, 1] be a continuous function such that U = f−1((0, 1]).
Since {f−1((1/(n+2), 1/(n−1)) : n ∈ N} is a point-finite cozero-set
collection of X, this is locally finite. Hence, {f−1([1/(n+1), 1/n]) :
n ∈ N} is also locally finite collection of X. It follows that

U = f−1((0, 1]) =
⋃

n∈N
f−1([1/(n + 1), 1/n])

is a closed subset of X. So, (1) holds. This completes the proof. ¤
Proof of Theorem 3.7: (1) ⇒ (2): Since every locally finite
cozero-set cover of a P -space is uniformly locally finite, this follows
from Corollaries 3.3 and 3.4.

(2) ⇒ (3): Let {fα : α ∈ Ω} be a point-finite partition of unity
on A with |Ω| ≤ γ. Then, it is clear that {f−1

α ((0, 1]) : α ∈ Ω}
is a point-finite cozero-set collection of A. Fix δ ⊂ γ arbitrarily.
Since {fα : α ∈ Ω} is a partition of unity of A, it follows that
{f−1

α ((1/(n+1), 1]) : α ∈ δ} is locally finite for every n ∈ N. Hence
⋃

α∈δ

f−1
α ((0, 1]) =

⋃

n∈N

⋃

α∈δ

f−1
α ((1/(n + 1), 1])

is a cozero-set of A. By the equivalence of (1) and (2) of Lemma
3.8, {f−1

α ((0, 1]) : α ∈ Ω} is locally finite in A. Hence, by (2),
{fα : α ∈ Ω} can be extended to a locally finite (hence, point-
finite) partition of unity on X. So, (3) holds.

(3) ⇒ (1): This was proved in [3]. This completes the proof. ¤
Dydak asked in [3] whether P (point-finite)-embedded subspace

A of a space X is P (locally-finite)-embedded in X. If the answer to
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this question is negative for a closed subspace A, the whole space
X must be a Dowker space, i.e., a normal space but not countably
paracompact (cf. [13], [15]). Recall that Rudin’s Dowker space is a
P -space.

From these points of view, we give the following result which
follows from Theorem 3.7 directly. The following can also be proved
indirectly by combining some results in [3], [9], [13], [14] and [15].

Corollary 3.9. Every closed subspace of Rudin’s Dowker space is
P (point-finite)-embedded and P (locally-finite)-embedded.

We conclude this paper answering a question of Frantz in [5]
related to controlling extensions of partitions of unity. It is proved
in [5] that:

Theorem 3.10. (Frantz [5, Theorem 7]). Let A be a closed sub-
space of a normal space X, and let {f1, . . . , fn} be a partition of
unity on A subordinated to an open cover {U1, . . . , Un} of A. If
{V1, . . . , Vn} is an open cover of X such that Vi∩A = Ui for each i,
then there exists a partition of unity {g1, . . . , gn} on X subordinated
to {V1, . . . , Vn} such that gi|A = fi for each i.

And a question is asked in [5, Remark p. 68]:

Question (Frantz [5]). Does Theorem 7 hold for an infinite parti-
tion of unity?

But the answer is negative in a sense. Indeed, let X be a Dowker
space. Then, there exists an increasing cover {Vi : i ∈ N} of non-
empty open sets of X that does not have a locally finite open re-
finement. Let a be a point in V1 and A = {a}. Consider constant
functions f1 : A → {1} and fi : A → {0} (i ≥ 2), and let Ui = A
(i ∈ N). Then, the open cover {Vi : i ∈ N} does not have a partition
of unity subordinated to itself (see [4, 5.1.8]).

If we require the extended cover {Vα : α ∈ Ω} of X to be locally
finite in the above question, we have a positive answer as follows:

Proposition 3.11. Let A be a closed subspace of a normal space
X, and let {fα : α ∈ Ω} be a partition of unity on A subordinated
to a locally finite open cover {Uα : α ∈ Ω} of A. If {Vα : α ∈ Ω}
is a locally finite open cover of X such that Vα ∩ A = Uα for each
α ∈ Ω, then there exists a partition of unity {gα : α ∈ Ω} on X
subordinated to {Vα : α ∈ Ω} such that gα|A = fα for each α ∈ Ω.
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Proof: Let {Vα : α ∈ Ω} be a locally finite open cover of X such
that Vα ∩ A = Uα for each α ∈ Ω. Since {f−1

α ((0, 1]) ∪ (Vα − A) :
α ∈ Ω} is a locally finite open cover of a normal space X, there
exists a locally finite cozero-set cover {Wα : α ∈ Ω} of X such that

Wα ⊂ f−1
α ((0, 1]) ∪ (Vα −A)

for each α ∈ Ω (cf. [1, Theorems 10.10 and 11.7]). Since X is
normal and A is closed in X, for every α ∈ Ω, there exists a cozero-
set W ′

α in X such that

W ′
α ∩A = f−1

α ((0, 1]) and W ′
α ⊂ Vα.

Then, {Wα ∪W ′
α : α ∈ Ω} is a locally finite cozero-set cover of X

satisfying
(Wα ∪W ′

α) ∩A = f−1
α ((0, 1])

for each α ∈ Ω. By Theorem 1.1 or Theorem 1.2, for every α ∈ Ω,
there exists a continuous function hα : X → [0, 1] such that

h−1
α ((0, 1]) = Wα ∪W ′

α and hα|A = fα.

Let h : X → R be a function defined by h =
∑

α∈Ω hα; then h
is positive-valued and continuous. Put gα = hα/h for each α ∈
Ω. Then, {gα : α ∈ Ω} is the required partition of unity. This
completes the proof. ¤
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