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ON GENERALIZATIONS OF RADON-NIKODÝM
COMPACT SPACES

I. NAMIOKA

Abstract. There are two notions weaker than that of Radon-
Nikodým compact spaces and stronger than that of fragmen-
table compact spaces. They are the notions of “strongly frag-
mentable” compact spaces due to Reznichenko and that of
“quasi-Radon-Nikodým” compact spaces due to Arvanitakis.
We show below that the last two notions are equivalent. We
also give an exposition of Arvanitakis’s short topological proof
of the fact that each quasi-Radon-Nikodým Corson compact
space is Eberlein compact using the concept of “almost neigh-
borhoods of the diagonal”.

1. Introduction

Let (X, τ) be a topological space and let ϕ be a non-negative
function on X × X such that ϕ(x, x) = 0 for each x ∈ X. The
space (X, τ) is said to be fragmented by ϕ if, whenever ε > 0 and
A is a non-empty subset of X, there is a τ -open set U in X such
that U ∩ A 6= ∅ and ϕ−diam(U ∩ A) < ε. Here, for a non-empty
subset S of X, ϕ−diam(S) = sup{ϕ(x, y) : x, y ∈ S}.
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742 I. NAMIOKA

In [4] and [5], the author defined a compact Hausdorff space
(K, τ) to be Radon-Nikodým (RN) compact if (K, τ) is homeomor-
phic to a weak∗ compact subset of the dual of an Asplund space.
It is proved that the compact space (K, τ) is RN compact if and
only if it is fragmented by a metric which is lower semicontinuous
on (K × K, τ × τ). Generalizing this, Ribarska [7] has defined a
topological space (X, τ) to be fragmentable if (X, τ) is fragmented
by some metric on X. There exist fragmentable compact Hausdorff
spaces which are not RN compact (see [6]).

There are two notions that are, at least formally, between the two
mentioned above. The first one, which is attributed to Reznichenko
in [2], is the following: A topological space (X, τ) is strongly frag-
mentable if (X, τ) is fragmented by a metric ρ satisfying the Con-
dition (R):

(R) whenever x, y ∈ X and x 6= y, there are open neighborhood
U and V of x and y respectively such that

inf{ρ(u, v) : u ∈ U, v ∈ V } > 0.

The second notion, due to Arvanitakis [3], is that of quasi-Radon-
Nikodým compact spaces. A compact Haudorff space (K, τ) is said
to be quasi-Radon-Nikodým compact (quasi-RN compact) if (K, τ)
is fragmented by a lower (τ×τ)-semicontinuous quasi-metric on K,
where a quasi-metric on K is a function ϕ : K × K → [0, 1] such
that ϕ(x, y) = ϕ(y, x) for all x, y ∈ K and ϕ(x, y) = 0 if and only
if x = y.

One of the aims of the present note is to show that a compact
Hausdorff space is strongly fragmentable if and only if it is quasi-
RN. In so doing, we find the notion of “almost neighborhoods of
the diagonal” introduced in [5] useful.

In response to Problem 4 in [5], Orihuela, Schachermayer and
Valdivia [6] have proved that an RN compact space is Eberlein
compact if and only if it is Corson compact (terms recalled in §3).
Their proof relies on Banach space techniques and it is rather in-
volved. Recently Arvanitakis [3] gave a relatively short topological
proof of a stronger result: A quasi-RN compact space is Eberlein
compact if and only if it is Corson compact. Our second aim is to
give an exposition of Arvanitakis’s proof stated in terms of almost
neighborhoods of the diagonal.



ON GENERALIZATIONS OF RADON-NIKODÝM COMPACT SPACES 743

2. The equivalences

Let (X, τ) be a topological space. Then we denote the diagonal
{(x, x) : x ∈ X} by ∆X . Let C be a subset of X × X containing
∆X . Then we say that a subset A of X is C-small if A × A ⊂ C.
The set C is called an almost neighborhood of ∆X if, whenever A
is a non-empty subset of X, there is a non-empty relatively τ -open
subset of A which is C-small. This notion was given in [5]. We note
that if C is an almost neighborhood of ∆X , then so is its inverse
C−1 = {(y, x) : (x, y) ∈ C}. Also if C1, C2, . . . , Ck are almost
neighborhoods of ∆X , then so is the intersection

⋂k
j=1 Cj . The

following is the main result of this section.

Theorem 1. Let (X, τ) be a topological space. Then the following
conditions are equivalent.

(a) (X, τ) is fragmented by a lower semicontinuous quasi-metric
on X.

(b) (X, τ) is fragmented by a lower semicontinuous function ϕ :
X ×X → [0,∞) such that ϕ(x, y) = 0 if and only if x = y.

(c) (X, τ) is strongly fragmentable.
(d) There is a sequence {Cj : j ∈ N} of (τ × τ)-closed almost

neighborhoods of ∆X such that
⋂
{Cj : j ∈ N} = ∆X .

Before we begin the proof, we restate Condition (R) in a conve-
nient form. The proof is straightforward and is omitted.

Lemma 2. A metric ρ on the topological space (X, τ) satisfies
Condition (R) if and only if

∞⋂
n=1

{(x, y) : ρ(x, y) ≤ 1/n}τ×τ = ∆X .

Proof of Theorem 1. (a)⇒(b) is trivial.
(b)⇒(d): Let Cj = {(x, y) : ϕ(x, y) ≤ 1/j}. Then clearly each Cj
is a closed almost neighborhood of ∆X and

⋂
{Cj : j ∈ N} = ∆X .

(d)⇒(a): Let {Cj : j ∈ N} be as in (d). By replacing Cj with⋂
{Cn ∩ C−1

n : 1 ≤ n ≤ j} we may assume that Cj = C−1
j and

Cj+1 ⊂ Cj for each j ∈ N.
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For each j, let ϕj : X ×X → [0, 1] be defined by

ϕj (x, y) =
{

0, if (x, y) ∈ Cj ;
1, otherwise.

Then ϕj is lower semicontinuous function such that ϕj(x, y) =
ϕj(y, x) for x, y ∈ X. Let ϕ =

∑
{2−jϕj : j ∈ N}. Then ϕ(x, y) = 0

if and only if ϕj(x, y) = 0 for each j ∈ N and this is the case if and
only if (x, y) ∈ Cj for each j or equivalently (x, y)∈

⋂
{Cj :j∈N}=

∆X . Hence ϕ is a lower semicontinuous quasi-metric as defined
above. It remains to show that (X, τ) is fragmented by ϕ.

Let A be a non-empty subset of X and let ε > 0. Choose an
n ∈ N so that 2−n < ε. Then there is a τ -open subset U of X such
that U ∩A is non-empty and Cn-small. Since U ∩A is also Cj small
for j ≤ n, if (x, y) ∈ U ∩A, then

ϕ(x, y) =
∞∑

j=n+1

2−jϕj(x, y) ≤ 2−n.

Hence ϕ−diam (U ∩ A) ≤ 2−n < ε. This proves that (X, τ) is
fragmented by ϕ.
(c)⇒(d): Let ρ be a metric satisfying Condition (R) by which (X, τ)
is fragmented. Let

Cj = {(x, y) ∈ X ×X : ρ(x, y) ≤ 1/j}τ×τ .

Since (x, τ) is fragmented by ρ, each Cj is an almost neighborhood
of ∆X . Clearly each Cj is closed and

⋂
{Cj : j ∈ N} = ∆X by

Lemma 2.
(d)⇒(c): It is shown in the proof of [5, Theorem 6.1] that, if C is an
almost neighborhood of ∆X , then there is a {0, 1}-valued pseudo-
metric d on X such that the set {(x, y) : d(x, y) = 0} is an almost
neighborhood of ∆X contained in C. Such d is said to be associated
with C.

Now let {Cj : j ∈ N} be as in (d) and, for each j, let dj be
a pseudo-metric associated with Cj . Let ρ =

∑
{2−jdj : j ∈ N}.

Then as shown in the proof of [5, Theorem 6.1], ρ is a metric and
(X, τ) is fragmented by ρ. If x, y ∈ X and ρ(x, y) < 2−j , then
dj(x, y) = 0, i.e. (x, y) ∈ Cj . Since Cj is τ × τ -closed,

{(x, y) : ρ(x, y) < 2−j}τ×τ ⊂ Cj .



ON GENERALIZATIONS OF RADON-NIKODÝM COMPACT SPACES 745

It follows that

∞⋂
n=1

{(x, y) : ρ(x, y) ≤ 1/n}τ×τ ⊂
⋂
{Cj : j ∈ N} = ∆X .

Hence by Lemma 2, ρ satisfies Condition (R).

Remarks. (i) It follows from Theorem 1 that a compact Hausdorff
space is quasi-RN compact if and only if it is strongly fragmentable.
Clearly each RN compact space is quasi-RN but the converse is
unknown.

Problem 1. Is a quasi-RN compact Hausdorff space necessarily
RN compact?

It is yet unknown if each Haudorff quotient of an arbitrary RN
compact space is RN compact (Problem 1 in [5]). However, each
Hausdorff quotient of each quasi-RN compact space is again quasi-
RN compact ([3], or implicitly in the proof of [5, Theorem 6.8]).
Hence, if Problem 1 is solved affirmatively, then the problem of
quotients of RN compact spaces is also solved.

(ii) The relationship among the notions discussed thus far can be
summarized in terms of almost neighborhoods of the diagonal as
follows:

(a) A topological space (X, τ) is fragmentable if and only if
there is a sequence {Cn : n ∈ N} of almost neighborhoods
of ∆X with

⋂
{Cn : n ∈ N} = ∆X (cf. [5, Theorem 6.1]).

(b) A compact Hausdorff space (K, τ) is quasi-RN compact if
and only if there is a sequence {Cn : n ∈ N} of (τ×τ)-closed
almost neighborhoods of ∆K with

⋂
{Cn : n ∈ N} = ∆K

(cf. Theorem 1).

(c) A compact Haudorff space (K, τ) is RN compact if and
only if (b) is satisfied with the additional condition that
Cn+1 ◦ Cn+1 ⊂ Cn for each n (cf. [5, Theorem 6.6]).
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3. Arvanitakis’s Theorem

Recall that a compact Haudorff space is said to be Eberlein com-
pact if it is homeomorphic to a weakly compact subset of a Banach
space. Recall also that a compact Hausdorff space is said to be
Corson compact if it is homeomorphic to a compact subset K of
the product [0, 1]Γ such that, for each x ∈ K, {γ ∈ Γ : x(γ) > 0}
is countable. Equivalently, a compact Hausdorff space K is Corson
compact if and only if there is a family {fγ : γ ∈ Γ} of contin-
uous functions fγ : K → [0, 1] separating points of K such that
{γ ∈ Γ : fγ(x) > 0} is countable for each x ∈ K. In [1], Al-
ster has proved that a Corson compact space is a “strong-Eberlein
compact space” if and only if it is scattered. The crucial step of
this proof consists of an interesting transfinite induction. Arvan-
itakis has adapted the pattern of Alster’s proof in order to prove
the result quoted in the introduction. We give in this section an
exposition of ideas of Alster and Arvanitakis using the notion of
almost neighborhoods of the diagonal.

Let X be a Hausdorff topological space and let C be a fixed
almost neighborhood of ∆X . For each non-empty compact set F ⊂
X and each ordinal α, we define inductively a compact subset F (α)
of F as follows: Let F (0) = F , and suppose that F (β) is defined
for all β < α. If α = β + 1, then let

F (α) = F (β + 1) =
F (β) \

⋃
{U : U is a C-small relatively open subset of F (β)}.

If α is a limit ordinal, let F (α) =
⋂
β<α F (β). Clearly, α ≤ α′

implies F (α′) ⊂ F (α). Since C is an almost-neighborhood of ∆X ,
F (α) = ∅ eventually. Let α0 be the least ordinal with F (α0) = ∅.
Then by compactness, α0 is not a limit ordinal. Let β0 = α0 − 1.
Then F (β0) 6= ∅ and it can be covered by a family (hence, by a
finite family) of C-small relatively open subsets of F (β0). Define
Z(F ) = F (β0) and α(F ) = β0. Then Z(F ) = F (α(F )). Let K
denote the family of all compact subsets of X.
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Lemma 3. Using the notation above,

(i) If F ∈ K and non-empty, then Z(F ) is a compact non-
empty subset of F and can be covered by finitely many C-
small relatively open subsets of Z(F ).

(ii) If F1, F2 ∈ K and F1 ⊂ F2, then F1(α) ⊂ F2(α) for all α
and α(F1) ≤ α(F2).

(iii) If {Fn : n ∈ N} is a sequence in K with
⋂∞
n=1 Fn 6= ∅, then

there is a k ∈ N such that

Z(F1 ∩ · · · ∩ Fk) ∩ Fm 6= ∅ for all m ∈ N.

Proof. (i) is a summary of the facts stated above. The first state-
ment of (ii) can be established by an obvious transfinite induction,
and clearly the second statement follows from the first. To see
(iii), let {Fn} be as given, and let Gk =

⋂k
n=1 Fk. Then by (ii),

α(G1) ≥ α(G2) ≥ . . . . Hence, there is a k ∈ N with α(Gk) = α(Gm)
for all m ≥ k. Then using (ii), for m ≥ k, Z(Gk) ∩ Fm =
Gk(α(Gk)) ∩ Fm ⊃ Gm(α(Gk)) = Gm(α(Gm)) = Z(Gm) 6= ∅. For
m < k, Z(Gk) ∩ Fm ⊃ Z(Gk) ∩Gk = Z(Gk) 6= ∅. �

An indexed family {Aγ : γ ∈ Γ} of subsets of X is said to be point-
finite (point-countable) if for each x ∈ X, {γ ∈ Γ : x ∈ Aγ} is finite
(resp. countable). It is said to be σ-point-finite if Γ =

⋃∞
n=1 Γn and

for each n, {Aγ : γ ∈ Γn} is point-finite.

Theorem 4. Let X be a Hausdorff topological space and let C be
an almost neighborhood of ∆X . Let {Aγ : γ ∈ Γ} and {Bγ : γ ∈ Γ}
be indexed families of non-empty subsets of X such that, for each
γ ∈ Γ, Aγ is compact, Aγ ⊂ Bγ and (Aγ × (X \ Bγ)) ∩ C = ∅. If
{Bγ : γ ∈ Γ} is point-countable, then {Aγ : γ ∈ Γ} is σ-point-finite.

Proof. We use the following notation: For each non-empty subset
Ψ of Γ, let

Z(Ψ) = {Z(Aγ1 ∩ · · · ∩Aγk) : γ1, . . . γk ∈ Ψ, k ∈ N}.

Here, we let Z(∅) = ∅. Clearly |Z(Ψ)| ≤ |Ψ|∗, where |Ψ| is the
cardinality of Ψ and |Ψ|∗ = max(ℵ0, |Ψ|). We also let

H(Ψ) = {η ∈ Γ : Z ∩Aη 6= ∅ for some Z ∈ Z(Ψ)}.
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Clearly, Ψ ⊂ H(Ψ) and we claim that

(1) |H(Ψ)| ≤ |Ψ|∗.

To see (1), it is sufficient to show that for each Z ∈ Z(Ψ), there
are at most countably many η’s such that Z ∩ Aη 6= ∅. Suppose
that it is not the case, i.e. Z ∩ Aη 6= ∅ for uncountably many
η’s. By Lemma 3 (i), Z =

⋃k
n=1 Un where each Un is C-small, i.e.

Un × Un ⊂ C. Hence for some n ∈ {1, 2, . . . , k}, Un ∩ Aη 6= ∅ for
uncountably many η’s. By hypothesis (Aη×(X\Bη))∩(Un×Un) = ∅
for each η. It follows that Un∩ (X \Bη) = ∅ whenever Un∩Aη 6= ∅.
Hence ∅ 6= Un ⊂ Bη for uncountably many η’s, contradicting the
assumption that {Bγ : γ ∈ Γ} is point-countable.

The proof of Theorem 4 is by induction on |Γ|. If |Γ| ≤ ℵ0,
there is nothing to prove. Now let ℵ (> ℵ0) be a cardinal such that
Theorem 4 is true whenever |Γ| < ℵ. We must prove the theorem
when |Γ| = ℵ. We may assume that Γ is the least ordinal with
|Γ| = ℵ. (So, in particular, γ ∈ Γ ⇐⇒ γ < Γ and α = {γ : γ < α}
for each α ≤ Γ.)

We define inductively Ψα ⊂ Γ for α < Γ so that

(2) |Ψα| ≤ |α|∗.

Let Ψ0 = 0 (= ∅). Suppose that Ψβ is defined for all β < α.
If α = β + 1, then let Ψα = Ψβ+1 = α ∪ H(Ψβ). If α is a limit
ordinal, then let Ψα =

⋃
β<α Ψβ. Clearly {Ψα : α < Γ} is increasing

and
⋃
{Ψα : α < Γ} = Γ. (2) follows from (1) and the inductive

hypothesis.

Now for each α < Γ, let Γα = Ψα+1 \ Ψα. Then {Γα : α < Γ}
is a disjoint partition of Γ, and |Γα| ≤ |α|∗ < Γ for each α < Γ
by (2). Hence by the inductive hypothesis, Γα =

⋃∞
n=1 Γnα where

{Aγ :γ ∈ Γnα} is point-finite for each n. Let Γn =
⋃
{Γnα :α < Γ}.

Clearly Γ =
⋃
{Γn : n ∈ N} and the proof is complete once

{Aγ : γ ∈ Γn} is shown to be point finite. By construction, it
suffices to show that if α1 < α2 < · · · < Γ and if γj ∈ Γαj for j ∈ N,
then

⋂∞
j=1Aγj = ∅. Suppose, on the contrary,

⋂∞
j=1Aγj 6= ∅. Then

by Lemma 3(iii) there is a k ∈ N such that

Z(Aγ1 ∩ · · · ∩Aγk) ∩Aγm 6= ∅ for m ∈ N.
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Since γ1, . . . , γk ∈ Ψαk+1, γm ∈ H(Ψαk+1) ⊂ Ψαk+2 for all m ∈ N.
It follows that γm 6∈ Γαm = Ψαm+1 \ Ψαm whenever αm ≥ αk + 2.
Since αj ↑, the last condition holds for large enough m’s. This
contradicts our choice of γj ’s. This completes the proof. �

Corollary 5 (Arvanitakis [3]). Let K be a quasi-RN compact
Hausdorff space and let {Aγ : γ ∈ Γ} and {Vγ : γ ∈ Γ} be indexed
families of non-empty subsets of K such that, for each γ ∈ Γ, Aγ is
closed, Vγ is open and Aγ ⊂ Vγ. If {Vγ : γ ∈ Γ} is point-countable,
then {Aγ : γ ∈ Γ} is σ-point-finite.

Proof. Let {Cn : n ∈ N} be a sequence of closed almost neigh-
borhoods of ∆K such that

⋂∞
n=1Cn = ∆K . By the remark at

the beginning of §2, we may assume that Cn ⊃ Cn+1 for each n.
For each γ, (Aγ × (K \ Vγ)) ∩ ∆K = ∅. Hence by compactness,
(Aγ × (K \ Vγ)) ∩ Cn = ∅ for some n. Therefore, it is possible to
partition Γ as Γ =

⋃∞
n=1 Γn, where (Aγ×(K \Vγ))∩Cn = ∅ for each

γ ∈ Γn. By Theorem 4, {Aγ : γ ∈ Γn} is σ-point-finite. Therefore
{Aγ : γ ∈ Γ} is σ-point-finite. �

Recall that Rosenthal [8] proved that a compact Hausdorff is
Eberlein compact if and only if it admits a σ-point-finite separating
family of open Fσ-subsets. Here a family S of subsets of a space X
is said to be separating if, whenever x, y ∈ X and x 6= y, {x, y} ∩ S
is a singleton for some S ∈ S.

Theorem 6 (Arvanitakis [3]). If a compact Hausdorff space K
is both quasi-RN and Corson compact, then it is Eberlein compact.

Proof. Let {fγ : γ ∈ Γ} be a family of continuous maps
fγ : K → [0, 1] that separates points of K and, for each x ∈ K,
{γ ∈ Γ : fγ(x) > 0} is countable. Let H denote the set of all
rationals in (0, 1) and, for each α = (q, γ) ∈ H × Γ, let

Uα = f−1
γ ((q, 1]), Aα = f−1

γ ([q, 1]) and Vα = f−1
γ ((0, 1]).

Then for each α, Aα is closed, Vα open and Aα ⊂ Vα. More-
over {Vα : α ∈ H × Γ} is point-countable. Hence by Corollary 5,
{Aα : α ∈ H × Γ} is σ-point-finite and hence {Uα : α ∈ H × Γ} is
also σ-point-finite. Clearly {Uα : α ∈ H × Γ} is a family of open
Fσ-subsets of K, and, for x, y ∈ K with x 6= y, {x, y} ∩ Uα is a
singleton for a suitable α. Hence by Rosenthal’s characterization
of Eberlein compact spaces, K is Eberlein compact. �
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Remark. The following result, presumably by Reznichenko, is
stated in [2]: each strongly fragmentable Corson compact space is
Eberlein compact. On account of Theorem 1, this result is equiva-
lent to Theorem 6 above. However, the result cited in [2] has never
been published as far as we know.
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