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THE CONDITION WEAK-P(v,a) AND ITS
IMPORTANCE TO COUNT THE NUMBER OF
DENSE w-BOUNDED SUBGROUPS

LUIS RECODER-NUNEZ*

ABSTRACT. Let v and v be infinite cardinals. We say that
condition weak-P(v,«) holds if there is a Hausdorff, zero-
dimensional weak-P-space X of size v and weight at most a.
We say that condition P(v, «) holds if there is a Tychonoff,
P-space X of size v and weight at most a. Comfort and van
Mill [Topology and Its Applications 77 (1977), 105-113] in-
troduced those conditions and asked the following question:
Do conditions P (v, @) and weak-P(~, ) hold for all cardinals
o > w? For all cardinals « > ¢? For all cardinals o such that
cf(a) > w? In the present paper, a partial answer to this
question is given. For an ordinal &, it is proved that (i) condi-
tion P(27¢,J¢) holds provided £ is either a successor ordinal
or a limit ordinal with uncountable cofinality; (ii) condition
P(27¢,3¢) fails provided ¢ is a limit ordinal with countable
cofinality. Indeed, if K is a strong limit cardinal with count-
able cofinality then condition P(x™, x) fails. Also it is shown
that if « is an infinite cardinal of uncountable cofinality then
condition weak-P(a™, a) holds. Using this fact, it is proved
that the number of dense w-bounded subgroups of a compact
group G of w(G) = a with c¢f(a) > w which in addition is
cither Abelian or connected is at least 2(®7). If in addition
2% < 2(™) then the number of such subgroups is at least |G| ™.
This also gives a partial answer to a question of Itzkowitz and
Shakhmatov [Math. Japonica 45 (1997), 497-501].

2000 Mathematics Subject Classification. 54G10.

Key words and phrases. Weak-P-space, P-space, w-bounded space, Topolog-
ical group.

*It is my pleasure to thank Professor W. Wistar Comfort for teaching me
all the topology I was capable to absorb during my Ph.D. studies at Wesleyan
University.

751



752 LUIS RECODER-NUNEZ

1. NOTATION, DEFINITIONS, AND PRELIMINARIES

The symbols a and « denote infinite cardinals, and n and £ de-
note ordinals. Following [5], I define Jy := w. If £ is a successor
ordinal, say { = n+ 1, then J¢ := 2. If £ is a limit ordinal, then
J¢ := Up<ey. The German letter ¢ will be reserved for the power
of the continuum.

Given a set X and a cardinal «, I denote by [X]* the set
{A C X:|A| = a} and by [X]=® the set {A C X:|A| < a}.
Following [8], I denote by (G) the set of dense, w-bounded sub-
groups of a topological group G.

Definition 1.1. Let o and « be infinite cardinals. We say that:
(a) Condition weak-P(,a) holds if there is a Hausdorff, zero-
dimensional weak-P-space X of size v and weight at most «, and
(b) Condition P(7, a) holds if there is a Tychonoff, P-space X of
size v and weight at most .

Remark 1.2. For infinite cardinals « and 7y, we have that condition
P(v, ) implies condition weak-P(7v, a).

Proof. Tt follows from the fact that in a Tychonoff P-space X the
family of cozero sets is a base consisting of open-and-closed sets. [

Part (c) of the following Lemma of Comfort and van Mill will be
crucial for my application of the condition weak-P-(v, ) to topo-
logical groups.

Lemma 1.3. [Comfort and van Mill] For a and v any two infinite
cardinals, the following conditions are equivalent:

(a) Condition w-P(v,a) holds;

(b) The compact space {0,1}* contains a subspace X such that
|X| =~ and X is a weak-P-space; and

(c) The set {0,1}* contains a subset X with these properties:
|X| =7, and if C € [X]¥ and p € X \ C then there exists £ < «
such that w¢(p) = pe =1 and m¢ | C = 0.

2. NEW RESULTS REGARDING CONDITIONS W-P(y,) AND P(y, )

In [8], these authors prove the following Theorem. Also, they
prove that the least cardinal o > ¢ where condition w-P (2%, «) fails
satisfies cf(a) = w. In this section, I extend a little bit of our
knowledge of conditions w-P(2%, ) and P(2%, «).
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Theorem 2.1. [Comfort and van Mill] If 1 < a = %, then con-
dition P(2%,«) holds.

For an infinite cardinal «, we defined condition w-P(2%, «). For
my results in the present section, it is important to have the notion
of condition w-P(2¢,¢) when ¢ is an infinite ordinal. So, we have
the following definition.

Definition 2.2. Let ¢ be an infinite ordinal. We say that condition
w-P(28, €) holds if condition w-P(2/¢l|£]) holds.

The following is a new result and it improves a Theorem due
to Comfort and van Mill in [8]. The main idea in the argument
presented here closely parallels that in [8, 2.7]. We also deduce
[8, Theorem 2.7] as a Corollary to our Theorem 2.3.

Theorem 2.3. Let a and k be two infinite cardinals such that
cf(a) > w and k < a. If condition w-P(25,€) holds for each x <
¢ < a, then condition w-P (2%, «) holds.

Proof. Given k<& < a, we can define a Hausdorff, zero-dimensional
weak-P-space topology, say 7¢, on the set {0,1}¢ such that
w({0,1}%) < |¢| < a. This is possible since w-P(2¢,¢) holds and
Lemma 1.3-(b) applies. For each x < ¢ < «, we choose a 7¢-
clopen base, say Sg, of {0,1}¢ with |S¢| < [¢] and consider the
“natural” projection ¢ from {0,1}* onto {0,1}5. We define S =
UH§§<Q{W51[S’} : S € S¢} and notice that [S| <30, ., |{7Tg1[5] :
S € St £ DicecalSel £ Yicecalél £ @ a = a. We set
B=S8US', where S’ = {{0,1}*\ B : B € §}. Since |S| < a, it is
clear that B is a subbase for a Hausdorff, zero-dimensional topol-
ogy, say 7, on {0,1}* such that w({0,1}%) < a. We claim that
({0,1}*,7) is a weak-P-space. For this, we take C' € [{0,1}]“
and p € ({0,1}*\ C). We then show that p ¢ M We
write C = {¢, : n € w}. Since p # ¢,, there exists &, < «
such that p(&,) # cn(&n), for each n € w. Now, we can find
k < & < a such that &, < £ for each n € w, since ¢f(a) > w. Then
me(p) = p | € # ¢ | € for each n € w. Since {0,1}¢ is a weak-P-
space, and {c, | €:ncw} e [{0,1}]¥, and p| ¢ {c, | €:n € w},
there exists a basic open set S in S¢ such that p | £ € § C
({0, 1\ {cn | £ : m € w}). Then p € 7S] C ({0,1}\ C).
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Since wgl[S] is a subbasic open set in {0,1}* and p € ({0,1}*\ C)
was chosen arbitrarily, we have that {0,1}* \ C' is a 7¢-open set,
hence C' is a closed set. Therefore {0,1}% is a weak-P-space as

claimed, since C' was an arbitrary countable set in {0,1}“. Thus
condition w-P (2%, «) holds. O

Corollary 2.4. Let k be an infinite cardinal such that condition
w-P(2", k) holds. Then the least cardinal oo > Kk for which condition
w-P(2% «) fails has uncountable cofinality.

Proof. 1t follows from Theorem 2.3. To see this, we take o > &
such that condition w-P (2%, «) fails with « the least cardinal with
respect to this property. Hence, for each £k < £ < «, condition
w-P(2¢,€) holds. If c¢f(a) were uncountable, then we would have
that condition w-P(2% «) holds, due to Theorem 2.3 which is a
contradiction. Thus cf(a) = w. O

The following Corollary is Theorem 2.7 in [8].

Corollary 2.5. [Comfort and van Mill] Let « be the least cardinal
such that o > ¢ and condition w-P(2%, «) fails. Then cf(a) = w.

Proof. In view of Corollary 2.4, it suffices to show that w-P(2€,¢)
holds. Since ¢ = ¢ and Theorem 2.1 applies, we have that condition
w-P(2¢ ¢) holds. Therefore cf(a) = w. O

Corollary 2.6. Let k be an infinite cardinal such that condition
w-P (2%, k) holds. Then condition w-P(2") | k) holds.

Proof. Since condition w-P(2¢,&) holds for each x < ¢ < w7
and cf(kT) > w, Theorem 2.3 applies. Therefore condition w-

P(2(+") k+) holds. O

Lemma 2.7. Let X be the disjoint union of the family {X; : i € I}.
Then X is a P-space (weak-P-space) if and only if each X; is a
P-space (weak-P-space).

Proof. 1t is routine. O

Theorem 2.8. Let k and « be two cardinals such that cf (k) < a.
Assume that condition P(u,a) (w-P(u,a)) holds for each p < k.
Then condition P(k,a) (w-P(k,a)) also holds.
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Proof. Case 1. k is a successor, say £ = ut. Let Y =Y (u, ) wit-
ness condition P(u, ) (w-P(u, «)) and define X as the topological
union UY. Then | X|=k-|Y| =k -p =k, and wX = k- (wY) <
k-a=cf(k) -a=a,and X is a P-space (weak-P-space), due to
Lemma 2.7.

Case 2. & is a limit cardinal and take k¢ T & (§ < cf(k)). Let
Y (K¢, o) witness condition P(k¢, ) (w-P(r¢, ) and define X =
U£<cf(H)Y(ﬁ§7a)' Then [ X| = Z§<cf(n) ‘Y(FLE’O‘)‘ = Z§<cf(n) ke =
£, and wX < 3o g = cf(k) @ = aand X is a P-space
(weak-P-space), by Lemma 2.7. O

The following Theorem answers partially a question posed by
Comfort and van Mill in [8].

Theorem 2.9. Let £ be an ordinal.

(a) If € is a successor ordinal or a limit ordinal with uncountable
cofinality, then condition P(27%,3¢) holds.

(b) If € is a limit ordinal with countable cofinality, then condition
P(27%,2) fails.

Proof. (a) Let £ be a successor ordinal. Since (J¢)* = 3¢, Theorem
2.1 applies. Therefore condition P(Zjﬁ,ﬂg) holds.

Let £ be a limit ordinal with c¢f(£) > w. In order to prove that
Je = (3¢)¥, it suffices to show that (35, 3y)* < 32, ()~
For this, we take f € (3, ¢3,)”. Then for each n < w there
exists n < ¢ such that f(n) € 3,,. Since c¢f(§) > w, we can find
n' < & such that f € (3,/)¥. Now Theorem 2.1 applies. Therefore
condition P(27%, 3;) holds.

(b) Let £ be a limit ordinal with countable cofinality. It is well
known that J¢ is a strong limit with ¢f(J¢) = w; see [5]. Suppose
on the contrary that condition P (27%,3¢) holds. Let X witness
condition P(27%,3). Since wX < J¢ and d(X) < wX, we can take
D a dense subset of X such that |[D| = J;. Write D as a countable
union of subsets with cardinality less than J¢, say D = Upeo Dy,
and |D,| < Jg¢ for each n € w. This is possible because ¢f(J¢) = w.
Since X is a P-space, and in such spaces the countable union of

. _— X —X
closed sets is a closed set, we have that U,c,D,,” = UncwDn

Hence 2% = |X| = [D~| = [UncwDn | = | Upcw D 1| Tt is well

known that for each regular T space Y, we have |Y| < 22"
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Hence |D—nX] < 22 for each n € w. Since |Dy| < 3¢ and J¢
< 3¢ for each n. So
2% = |Unew Do | € Ty D | < T, 22! < 3¢ < 2% which
is impossible. Therefore condition P(27%,J;) fails. This completes
the proof. O

Remark 2.10. The proof of part (b) shows even more. That is, if
k is a strong limit cardinal with countable cofinality, then condition
P(k™, k) fails.

Proof. 1t is known that each strong limit cardinal, say &, is of the
form Jg for some limit ordinal § and that cf(J¢) = cf(£); see
[5]. The Remark follows from the proof of part (b) in the previous
Theorem applied to x = J¢. O

. . . ID
is a strong limit cardinal, we have 22"

The following Theorem 2.11 appears in [5].

Theorem 2.11. Let a be an infinite cardinal and consider the
following four conditions:

(i) v is a measurable cardinal.

(ii) « is a strongly inaccessible cardinal (that is, it is a regular
and strong limit cardinal.

(i11) @ = 2<% and « is a reqular cardinal.

(v) a = a<*.

These are related as follows: (i) = (ii) = (iii) = (iv).
Remark 2.12. The consistency of MA + — CH is well known;
see [15]. In such a model, we can find cardinals « satisfying (iv)
but not (7). For example, consider av = ¢. It is well known that ¢
is not measurable. To see that ¢<¢ = ¢, recall from [15] that under
MA, we have 2* = ¢ for each w < X < ¢. We then have
< = Z)\<cc>\ = ng)\<cc>\ = ng)\<c(2w))\ = ng)\<c(2>\)w =
Y w<rec € <o c = ¢, as required.

Corollary 2.13. Let a be an uncountable measurable cardinal.
Then condition P(2%, «) holds.

Proof. In view of Theorem 2.1, it suffices to show that o = «.
Since « is a measurable cardinal, Theorem 2.11 implies that « is
a regular cardinal and o = 2<% We know that (2<%)% = 2<
for each 3 < cf(a); see [5]. Hence (2<%)¥ = 2<% since « is an
uncountable regular cardinal. Therefore o = (2<*)* = 2<% = q.
Thus condition P(2%, «) holds. O
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The following Lemma is well-known; see [5, 12.19].

Lemma 2.14. Let o be an infinite cardinal. Then there exists
F C a® such that |F| = a™ and |{¢ € a: f(§) = g()} < «
whenever f # g, and f, g € F.

Theorem 2.15. Let o be a cardinal number with uncountable co-
finality. Then condition w-P(a™, ) holds.

Proof. 1t is clear that a® is a Hausdorff, zero-dimensional space
and that w(a®) = «, when a has the discrete topology and o®
the Tychonoff product topology. We take X as in Lemma 2.14
and claim that X with the topology inherited from a® witnesses
condition w-P(a™, «). Since X as a subspace of a® is a Hausdorff,
zero-dimensional space with w(X) < w(a®) = a and |X| = o™,
it suffices to prove that X is a weak-P-space. For this, we take an
arbitrary countable set {f, : n € w} in X, and an arbitrary point
fe(X\{fn:ne€w}). Foreachn € w,weset A, ={{ €a: f(§) =
fn(€)}. Then |A,| < afor each n € w, since {fr,: n € WIU{f} C X
and f # f, for each n € w. Since c¢f(a) > w, we can find £ € «
such that &£ is not in Upe,A,. Hence fr,(§) ¢ {f(€)} for each
n € w. So, we have {f, : n € w} ﬂwgl[{f(é)}] = (. Now, it is

clear that ng[{f(f)}] N X is an open set in X containing f and

missing {f,: n € w}. Hence f ¢ {f,:n € w}X. Therefore f is a
weak-P-point of X for each f € X. Thus X is a weak-P-space. [

Remark 2.16. We notice that the hypothesis c¢f(a) > w in Theo-
rem 2.15 cannot be omitted. For example, condition w-P(w™,w)
fails (and hence condition w-P(v,w) fails for all v > w*). To
see this, suppose there is a Hausdoff weak-P-space X such that
|X] = w' and w(X) < w. Since d(X) < w(X) < w, we can find a
countable dense set in X. But each countable set in X is closed,
because X is a weak-P-space. Therefore X has a countable dense
closed set, so | X| = w which is a contradiction. Thus condition
w-P(wt,w) fails.

3. AN APPLICATION TO COMPACT GROUPS

Definition 3.1. Let X be a topological space. We say that X is
w-bounded if each countable subset of X has compact closure (in
X).
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Lemma 3.2. Let X be a Hausdorff topological space. Then X is
an w-bounded space if, and only if, for each A € [X]* there exists
a compact set K such that AC K C X.

Proof. Trivial. O

The following Lemma 3.3 is taken from [8]. It gives to us a
method to generate w-bounded subgroups.

Lemma 3.3. [Comfort-van Mill] Let X be an w-bounded space. For

any subset A of X, let w(A) be the set U{ﬁX: D e [A]“}. Then:
(a) w(A) is the smallest w-bounded subset of X containing A;
and
(b) if X is a topological group and A is a subgroup, then w(A) is
a subgroup of X.

The following Theorem improves the lower bound for the number
of dense w-bounded subgroups given by Itzkowitz and Shakhmatov
in [14]. Tts proof closely parallels an argument presented by Comfort
and van Mill in [8].

Theorem 3.4. Let G be a compact group which is either Abelian
or connected and whose weight wG = « has uncountable cofinality.
Then:

(a) |2(G)| > 207 and;

(b) |2(Q)| > |G| provided 2 < 2(™)

Proof. Tt is well known that a compact group G of weight w(G) = «
which in addition is either Abelian or connected can be mapped
onto a product HE <o Ge with each G¢ a non-trivial compact group
via a continuous epimorphism (see [7]). Indeed if c¢f(a)) > w then we
can take G¢ = F for all { < a with I a non-trivial compact group.
Therefore we can find a continuous epimorphism ¢: G — F<.
Since a has uncountable cofinality, Theorem 2.15 applies. Then
condition w-P(a™,a) holds. Using Lemma 1.3-(¢), we can find
a set X in the set {0,1}* C F* such that |X| = at, and if
C € [X]¥ and p € (X \ C), then there exists an index { € «
such that m¢(p) = p¢ = 1 and m¢ | C = 0. Given A C X, we

know from Lemma 3.3-(b) that w((4)) = U{bFa: D e [(4)]“}
is an w-bounded subgroup of F'“ containing (A). We claim that
w((A4)) # w((B)) whenever A and B are subsets of X and A # B.
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For this, it suffices to show that w((A4)) N X = A for each A C X.
Now, given A C X, it is clear that A C w((4)) N X. Conversely,

take p € w((A)) N X. Then p € D" for some D € [(A)]“. Given
x € D, there exists a finite set C; in A such that x € (C3). So D C
Usen(Ca) € (UsenCy). Since p € D and D" C WhenCa)'
then p € (UzepCy ) . We set C = UgepC, C A. If p were not
in C, then p € (X \ C). Since X has property (c¢) in Lemma 1.3
and |C] < w, there exists an index & € « such that m¢(p) = 1
and m¢(x) = 0 for each v € C. Since m¢ is a homomorphism
between groups such that m¢(x) = 0 for each x € C, we have
that m¢ | (C) = 0 Since 7r§ is a continuous mapping, we have
ﬁg[@F | C 7rf< > {0} = {0}. But, this is impossible be-
cause p € D" C <C’>F would imply 1 = m¢(p) = 0 which is a
contradiction. So p € C C A. Hence p € w((4)) N X. Then
w((A)NX =A. So w((A)) # w((B)) whenever A, B C X and
A # B, as claimed. Therefore {w((A4)): A C X} is a family con-
sisting of distinct w-bounded subgroups of F'*. Thus F“ has at
least 2(a+)—many w-bounded subgroups.

Moreover, the w-bounded subgroups in F'“ can be taken dense,
due to the following argument: Set K = F'*. We consider the di-
agonal mapping from K into K®. That is to say, for each point
p € K, we define a point ¢, in K¢ as follows: For each § € o, we
define ¢, (&) = p. Now set A = {p, € K*: p € K}. It is clear
that A ~ K in the sense that A and K are isomorphic as groups
and homeomorphic as topological spaces. Since A ~ K = F“ and
F“ has 2(a+)—many w-bounded subgroups, we can find 2(‘1+)—many
distinct w-bounded subgroups, say {A(n): n < 2} in A. Since
K% is a compact space, we have that ¥(0) is a dense w-bounded
subspace. Here, we recall that 3(0) is the subset of K* defined as
{p € K*: |{¢€ € a: p(§) # 0}] < w}. Now, since A(n) and X(0)
are w-bounded subspaces of K%, we have that A(n) x 3(0) is an
w-bounded subspace of K¢ x K¢ for each n < 2(0") | Since K is
a topological group, we have that +: K% x K¢ — K is a con-
tinuous function from K¢ x K% onto K®. Since every continuous
onto function takes w-bounded subspaces to w-bounded subspaces,
we have that A(n) + X(0) is an w-bounded subspace of K% for
each n < 2(@") Tt is clear that ¥(0) is a normal subgroup of K.
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Then A(n) + %(0) is a subgroup of K for each n < 2(®7). Since
%(0) is a dense subspace of K¢, and ¥(0) C A(n) + 3(0) for each
n < 2" we have that A(n) + 3(0) is a dense subspace of K for
each 1) < 2(®). Therefore, the family given by the sets A(n) 4 X(0)
for each n < 2(0™) consists of dense w-bounded subgroups of K¢.
It remains to prove that [{A(n) + 2(0): n < 2@} = 207 For
this, given 1,7 < 2(®7) with 7 # 7, we claim that A(n) + X(0) #
A(7) +2(0). We will argue by contradiction. Indeed, suppose that
A(n) + 2(0) = A(7) + 2(0) for some 7,7 < 2(27) and 5 # 7. We
know that A(n) # A(7). So, we can find a point ¢, such that ei-
ther ¢, € (A(n)\A(7)) or ¢, € (A(7)\ A(n)) according to whether
A(n) € A7) or A7) € A(n). Without loss of generality we can
assume that ¢, € (A(n) \ A(77)). We then have ¢, = ¢, +0 €
A(n) + 3(0) = A(7) + 2(0) would imply that ¢, — ¢, € X(0) for
some @, € A(7). Since |supp (pp —¢q)| < w and a > w, there exists
an index £ € « such that (¢, — ¢4)(§) = 0. Hence ¢, = ¢, which
is a contradiction. So {A(n) + £(0): n < 2@} is faithfully in-
dexed, therefore it has cardinality 2007 Since K ~ K “(isomorphic
as groups and homeomorphic as topological spaces) and K¢ has
2(°‘+)—many distinct dense w-bounded subgroups, then K = F'* has
2(°‘+)—many distinct dense w-bounded subgroups.

Now, we recall that ¢: G — F is a continuous epimorphism.
Since GG is compact we have that ¢ is a closed mapping with com-
pact fibers. Now, it is easy to show that inverse images under
¢ of w-bounded subgroups of F'“ are w-bounded subgroups of G.
Hence, each w-bounded subgroup of F'* will produce an w-bounded
subgroup of G. Since ¢ is an open mapping due to [12, 5.29], we
have that dense subgroups of F'® will produce dense subgroups of
G. Hence, the inverse image under ¢ of each dense w-bounded
subgroup of F“ will be a dense w-bounded subgroup of G. So
|Q(G)| > |Q(F*)|. This proves that |Q(G)| > 2(®") and hence (a).
For (b) it is enough to note that if 2(©7) > 2% then |Q(G)| > 2(¢™) >
(22)* = |G 0

We observe that if GCH holds, then |G|* = 2I¢l. Therefore we
conclude from the previous Theorem that |2(G)| = 2/¢1.
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Remark 3.5. The previous theorem depends heavily on the fact
that G is Abelian or connected and that its weight has uncountable
cofinality. The relevance of the next Theorem is that we do not
require such hypothesis. The main argument used here is similar
to that in [14, 2.1] presented by Itzkowitz and Shakhmatov. Its
proof was suggested to me by Comfort.

Theorem 3.6. Let F' be a non-trivial compact topological group and
a an uncountable cardinal. Then |Q(F<)| > 2%. Hence assuming
|F| <29, it follows that |QQF*)| > |F|.

Proof. Since o > Ry, we can find a family F in p(«) such that |F| =
2%, and such that either |A\ B| > Y or |B\ A| > X, foreach A, B €
F. For A€ F, theset ¥4(0):= {x € FA: |{i € A: (i) # 0}| < w}
is a dense w-bounded subgroup of F4. Since w-boundedness is
preserved under products, we have that ¥ 4(0) x F®\4 is a dense
w-bounded subgroup of F'*. Now we claim that if A, B € F with
A # B, then ¥ 4(0) x FO\ £ ¥p(0) x F¥\B. To see this, suppose
without loss of generality that |A\ B| > Ry, and define z = (z;) €
F% as follows: For i € (A\ B), we define z; = 0, and z; # 0
otherwise. It is easy to see that 2 € [¥4(0) x F*\A]\ [S5(0) x F\B],
as required. Thus [Q(F%)| > |F|] = 29, and if |F| < 2% then
|QFY)| > 2% = |F|~. O

If k is a strong limit cardinal with countable cofinality, then con-
dition P(k™,k) fails due to Remark 2.10.  Also condition
w-P(wt,w) fails due to Remark 2.16. The author of this paper
has not been able to answer the following questions.

Question 3.7. Does condition w-P(k™, k) hold for all uncountable
strong limit cardinals £ with countable cofinality?

Question 3.8. Does condition P(a™,«) hold for all infinite cardi-
nals a of uncountable cofinality?
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