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HYPERCONVEX SEMI-METRIC SPACES

MICHAEL B. SMYTH∗ AND RUEIHER TSAUR

Abstract. We examine the close analogy which exists
between Helly graphs and hyperconvex metric spaces, and
propose the hyperconvex semi-metric space as an unifying
concept. Unlike the metric spaces, these semi-metric spaces
have a rich theory in the discrete case. Apart from some
new results on Helly graphs, the main results concern: fixed
point property of contractible semi-metric spaces (for nonex-
pansive multifunctions); and the injectivity of hyperconvex
semi-metric spaces.

1. Introduction

The notion of hyperconvex spaces was introduced by Aronszajn
and Panitchpakdi in [1], where it is shown that a metric space
is hyperconvex if and only if it is injective (with respect to the
nonexpansive mappings). Since every metric space has an injec-
tive hull [7], it follows that every metric space is isometric with a
subspace of a (minimal) hyperconvex superspace. Also it is known
that a real Banach space is hyperconvex if and only if it is isomet-
rically isomorphic to a space of continuous real-valued functions on
a Stone space. Classical examples of hyperconvex spaces include
the well-known spaces `∞ and L∞.

Quilliot concludes his note [14] with some brief but intriguing
speculations about the application of graph theory to topology. The
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body of the paper is a study of Helly graphs, where a connected
graph G is Helly if the balls of G have the (2-)Helly property : if C
is any collection of pairwise intersecting balls (where a ball is taken
with respect to the usual hop-distance metric dG), then there is a
vertex common to all the members of C. Quilliot suggests that this
definition be adapted to metric spaces in general, so that a “Helly
space” is a compact metric space satisfying the Helly condition for
its family of closed balls (and satisfying also a certain convexity
condition, which we consider later). He then states some results
and a conjecture about Helly spaces, analogous to previous results
about Helly graphs.

As it happens, these Helly spaces (minus the compactness
restriction) are exactly the hyperconvex spaces from the functional
analysis literature. This means that, besides trying to extend ideas
about Helly graphs to “Helly spaces”, one may consider mining the
(by now) fairly extensive literature on hyperconvex spaces for ideas
to transfer back to Helly graphs. We give a couple of examples of
this in Section 2. This kind of exercise is not, however, our main
concern in the present paper. Rather, we are motivated by the
following problem. The concept of a Helly graph is defined via the
simple graph metric. It might seem, therefore, that the Helly graph
should be just a special case of the “Helly” (or hyperconvex) metric
space. This, however, is not so. Due to the convexity condition (see
Section 4), only uncountably infinite metric spaces can be hyper-
convex (apart from the singleton space). Our proposal for finding a
common generalization, and explaining the overwhelmingly strong
analogies which exist between Helly graphs and hyperconvex met-
ric spaces, is to weaken the notion of metric involved. The weak
metrics which are relevant here are those which have been found
useful before in domain theory [6, 8, 10] and digital topology [17]:
partial metrics and semi-metrics. These “metrics” are the topic of
Section 3.

Section 4 contains our key definition: the hyperconvex semi-
metric space. In fact it is exactly the usual definition, except that
“metric” is weakened to “semi-metric”. We then give a sample of
results about discrete (in fact, finite) spaces of this kind. These are
inspired by (Helly) graph theory, and lead to a fixed point theorem
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which generalizes several existing fixed point results from graph the-
ory/digital topology. The theme here is that “discrete hyperconvex
space” is not an oxymoron.

Section 5 presents the extension (= injectivity) result for our
structures. In fact there are two versions: the unrestricted
version, which generalizes the extension property of hyperconvex
metric spaces, and the discrete version, which generalizes the
corresponding Helly graph property.

The last main section (6) is concerned with the idea that the
(usual) hyperconvex metric spaces are expressible as inverse limits
of our discrete hyperconvex spaces. Our results here are incomplete,
and involve a conjecture which we have been unable to prove.

2. Helly Graph Results Suggested by Hyperconvexity

Theory

The purpose of this section is to illustrate the transfer of ideas
from hyperconvex theory to Helly graph theory by showing that, in
analogy with results in [16], we can develop good notions of power
graph and function graph for Helly graphs. Nearly all of this section
may be skipped by the reader who is not interested in graph theory.

By a graph G we mean a set V (G) of vertices (or points), with a
reflexive and symmetric relation E(G) the edges, also known as a
tolerance graph in [12]. For graphs G1 and G2, a mapping f : G1 →
G2 is a graph homomorphism if f maps vertices of G1 to vertices
of G2, preserving the tolerance relation, i.e., (f(x), f(y)) ∈ E(G2)
whenever (x, y) ∈ E(G1). By a multifunction g : G1 → G2 we
understand a function that assigns to a vertex x of G1 a nonempty
subset g(x) in G2. The multifunction g is said to be strong if
(x, y) ∈ E(G1) implies that every vertex in g(x) is adjacent to some
vertex in g(y), and vice versa. For the multifunction f : G1 → G2,
a selection of f is a graph homomorphism ḟ : G1 → G2 such that
ḟ(x) ∈ f(x) for any vertex x ∈ V (G1). An (induced) subgraph G of
a graph H is a retract of H if there exists a graph homomorphism
r : H → G called retraction such that r(x) = x for each vertex x of
G. The strong product of graphs G1 and G2 is the graph G1×G2

which has the vertex set V (G1)×V (G2) the cartesian product of
the vertex sets of G1 and G2, and the edge set E(G1×G2) such
that ((x1, x2), (y1, y2)) ∈ E(G1×G2) if and only if (x1, y1) ∈ E(G1)
and (x2, y2) ∈ E(G2).
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For any connected graph G, the r-ball , for any r ∈ N, centered at
a vertex x ∈ V (G), is the set BG(x, r) = {y ∈ V (G) | dG(x, y) ≤ r}
(where dG is the usual graph distance). If G is finite, then G is
said to be Helly if every subfamily F of the closed balls of G is
intersection nonempty whenever any two elements of F are pair-
wise intersecting. If G is infinite, graph theorists usually use the
term “strong Helly” for this property. It is well-known that the
class of Helly graphs is closed under retracts and strong products
(moreover, every Helly graph is a retract of a finite strong prod-
uct of m-paths Im) [9, 14]. We shall state following results for
finite graphs, though the restriction to the finite case can easily be
removed.

In [22] we introduced the “neighbourhood convexity” of a Helly
graph. The neighbourhood convex sets of the Helly graph G are
the sets of the form ⋂

i

BG(xi, ri).

Thus they are exactly the “admissible sets” of hyperconvex theory.
A useful result about neighbourhood convexity is that every strong
multifunction f : H → G which maps each vertex of any finite
graph H to a nonempty neighbourhood convex set of the Helly
graph G has a selection [22].

For any Helly graph G, denote by D(G) the set of all nonempty
neighbourhood convex sets of G. Let Ps(G) be the graph with ver-
tex set V (Ps(G)) = D(G), and edge set E(Ps(G)), where (A,B) ∈
E(Ps(G)) if and only if

∀x ∈ A,∃y ∈ B, (x, y) ∈ E(G) & ∀y ∈ B,∃x ∈ A, (x, y) ∈ E(G).

Notice that the “strong” relation E(Ps(G)) is the conjunction of
the two “weak power” relations in Brink [2]. Also it is easy to see
that the graph distance on Ps(G) is the Hausdorff metric derived
from dG [21].

Proposition 2.1. Ps(G) is a Helly graph if G is Helly.

Proof. Let H = Ps(G). For any subset A of V (G), denote NG(A)
to be the subset {x ∈ V (G) | ∃y ∈ A, (x, y) ∈ E(G)}. Since
E(G) is reflexive, for any A ∈ D(G), it is clear that A is a ball,
or the intersection of some balls of G; hence A can be repre-
sented by

⋂
αBG(xα, rα). We show that (NG)n(A) ∈ D(G), and
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it is enough to consider the case n = 1 only: clearly NG(A) ⊆⋂
αNG(BG(xα, rα)). If s ∈

⋂
αNG(BG(xα, rα)), then BG(s, 1) ∩

BG(xα, rα) 6= ∅ for all α. By the Helly property of G, there exists
a vertex, say z, such that z ∈

⋂
αBG(xα, rα) and (z, s) ∈ E(G).

Therefore we have s ∈ NG(A).
Now let B = {BH(Ai, ri) | i ∈ I} be a collection of balls in

H such that BH(Ai, ri) ∩ BH(Aj , rj) 6= ∅ for any i, j ∈ I. We
claim that

⋂
i∈I BH(Ai, ri) 6= ∅: it is clear that (NG)ri(Ai) is the

maximal element of BH(Ai, ri) (under inclusion in V (G)). For any
(NG)ri(Ai) and (NG)rj (Aj), since BH(Ai, ri) ∩ BH(Aj , rj) 6= ∅,
there must exist ∆ ∈ D(G) such that ∆ ⊆ (NG)ri(Ai)∩(NG)rj (Aj);
hence (NG)ri(Ai) ∩ (NG)rj (Aj) 6= ∅. By the Helly property of G,
we have

⋂
i∈I(NG)ri(Ai) 6= ∅.

We still have to show that
⋂
i∈I(NG)ri(Ai) ∈

⋂
i∈I BH(Ai, ri).

It is clear that, for any vertex z ∈
⋂
i∈I(NG)ri(Ai), z is rj adja-

cent to some vertex yj of Aj for any j ∈ I. We show the con-
verse: for any j ∈ I and any vertex y ∈ Aj , we consider the collec-
tion L = {BG(y, rj)} ∪ {(NG)ri(Ai) | i ∈ I}. Clearly BG(y, rj) ⊆
(NG)rj (Aj). Furthermore, we have BG(y, rj) ∩ (NG)ri(Ai) 6= ∅,
since BH(Aj , rj) ∩ BH(Ai, ri) 6= ∅ for any i ∈ I, j 6= i. Thus
L ⊆ D(G) is pairwise intersecting. By the Helly property of G, we
have BG(y, rj) ∩

⋂
i∈I(NG)ri(Ai) 6= ∅, which implies that y is rj

adjacent to some vertex z ∈
⋂
i∈I(NG)ri(Ai). �

For any pair of finite graphs H and G, we define a “function
graph” GH such that, V (GH) is the set of all graph homomorphisms
from H to G, and (f, g) ∈ E(GH) if and only if (f(x), g(x)) ∈ E(G)
for all x ∈ V (H). Then

Proposition 2.2. GH is a Helly graph if G is Helly.

Remark 2.3. It suffices to prove this for the case that G = Im,
due to the fact that Helly graphs are exactly the retracts of (finite)
strong products of m-paths Im. In more detail:

(1) If Proposition 2.2 holds for G = K1, G = K2, it holds for
K1×K2, since (K1×K2)H ∼= KH

1 ×KH
2 ;

(2) If Proposition 2.2 holds for G = K, it holds for any retract
L of K, since LH is a retract of KH .
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Proof of Proposition 2.2. Consider any collection of balls in GH ,
B = {BGH (fi, ri) | i ∈ I}, such that BGH (fi, ri) ∩ BGH (fj , rj) 6= ∅
for any i, j ∈ I. We have to show that

⋂
B =

⋂
i∈I BGH (fi, ri) 6= ∅.

For any g ∈ V (GH), r ∈ N, and x ∈ V (H), let Φ(g, r, x) =⋃
{φ(x) | φ ∈ BGH (g, r)}. We claim that Φ(g, r, x) = BG(g(x), r).

It is clear that Φ(g, r, x) ⊆ BG(g(x), r), since dG(g(x), φ(x)) ≤ r
for any φ ∈ BGH (g, r). For the reverse inclusion, we shall for con-
venience make the assumption that G = Im. Let y ∈ BG(g(x), r);
without loss of generality, we can assume that y = g(x) − k, 0 ≤
k ≤ r. (Here we have assumed that the vertices of Im are denoted
0, 1, . . . ,m.) Define the “shift” mapping sk : Im → Im (that is,
G→ G) by:

sk(z) = z−̇k,
for each z ∈ V (G). Then sk is a graph homomorphism, sk◦g is a
graph homomorphism such that dGH (g, sk◦g) ≤ r, and sk◦g(x) = y.
Thus y ∈ Φ(g, r, x).

We define a multifunction h : H → G by

h(x) =
⋂
i

Φ(fi, ri, x),

for all x ∈ V (H). In the following we would like to show that h is a
strong multifunction which maps each vertex of H to a neighbour-
hood convex set of G. (Notice that, invoking the assumption that
G = Im, a neighbourhood convex set is just a subinterval of Im.
Moreover, the selection property is trivial, since we can for example
always select the leftmost vertex of an interval. These observations
do not, however, seem to lead to any significant simplification of this
part of the proof.) For then, by the selection property of G, we can
conclude that h has a selection f : H → G, and clearly, for any such
selection, f ∈

⋂
B: we have already shown that, for any x ∈ V (H),

h(x) is a neighbourhood convex set of G. (h is well-defined:) It is
easy to check that, for any x ∈ V (H) and any i, j ∈ I, we have
Φ(fi, ri, x) ∩ Φ(fj , rj , x) 6= ∅ since BGH (fi, ri) ∩ BGH (fj , rj) 6= ∅.
Thus, by the Helly property ofG, we have h(x) =

⋂
i∈I Φ(fi, ri, x) 6=

∅. (h is a strong multifunction:) Let x, y be any vertices of H such
that (x, y) ∈ E(H). We claim that h(x) and h(y) are strongly
adjacent: let z be any vertex of h(x). It is clear that we have
z ∈ Φ(fi, ri, x) for all i ∈ I. Furthermore, for any j ∈ I, we have
dG(z, fj(y)) ≤ dG(z, fj(x)) + dG(fj(x), fj(y)) ≤ rj + 1. Thus, we
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have BG(z, 1) ∩ Φ(fj , rj , y) 6= ∅. By the Helly property of G, we
have BG(z, 1) ∩

⋂
i∈I Φ(fi, ri, y) 6= ∅. Hence there exists w ∈ h(y)

such that (z, w) ∈ E(G). Similarly, we can prove that, for any
w ∈ h(y), there exists z ∈ h(x) such that (z, w) ∈ E(G). �

3. Semi-metrics, Partial Metrics

The distance functions we shall work with are weaker than met-
rics, in that the triangle inequality is relaxed, or even dispensed
with altogether. For most of our results, including those in the next
section, we require distance functions satisfying just the
axioms

(1) d(x, x) = 0,∀x ∈ X,
(2) d(x, y) = d(y, x)(≥ 0),∀x, y ∈ X.

These are the semi-pseudo metrics of Čech [3]. We shall generally
abbreviate this to smetric. A weighted smetric space is a triple
(X, d,w) where d is an smetric on X, and w : X → R

+0 is an
assignment of non-negative “weights” to the points of X, satisfying

(3) d(x, z) ≤ d(x, y) + w(y) + d(y, z),∀x, y, z ∈ X.
A suitable intuition for these structures is that the elements are
“approximate” elements of some space (say, intervals in R or, more
generally, balls in some metric space), the smetric distance is the
inf of the distances between points of the two balls, and the weight
is the diameter. One may also think of weighted graphs, where the
smetric distance is the sum of the weights along a path of least
weight between two vertices. (Both of these types of example will
be discussed in a more precise fashion a little later.)

The requirement that a weighting function should exist is not
too restrictive, at least in bounded spaces; in fact, we have:

Proposition 3.1. Every bounded smetric space is weightable.

Proof. Let (X, d) be an smetric space. The (relaxed) triangle axiom
requires that the weight of an element x ∈ X satisfies:

w(x) ≥ d(y, z)− d(x, y)− d(x, z),

for all y, z ∈ X. Hence we obtain a weighting function by putting

w(x) = sup{d(y, z)− d(x, y)− d(x, z) | y, z ∈ X},
for any x ∈ X. �
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Weighted smetrics may be compared with the partial metrics
(pmetrics) of Matthews [8]. Incorporating modifications due to
O’Neill [10] and Heckmann [6], we have that a pmetric on a set X
is a map p : X×X → R satisfying:

(p1) p(x, y) = p(y, x),
(p2) x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(p3) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y),

for all x, y, z ∈ X. These axioms are due to Matthews; the change
made by O’Neill was to allow the distance function to take nega-
tive as well as non-negative values. Following Heckmann, we have
omitted the axiom of “small self-distances” (so that what we have
defined is actually a weak pmetric). Given a pmetric p onX, O’Neill
defines the dual pmetric by:

p∗(x, y) = p(x, y)− p(x, x)− p(y, y).

An elementary property of the dual is that the sum p + p∗ is a
metric.

We are particularly interested in pmetrics derived from weighted
graphs. Let w : V (G)→ R

+ be a vertex weighting on the graph G.
Then the length of a path π = 〈v0, . . . , vn〉 ⊆ V (G), lgth(π), is the
sum

n∑
i=0

w(vi).

The distance function p is defined by p(x, y) = inf{lgth(π) | π =
〈v0, . . . , vn〉 ⊆ V (G), x = v0, y = vn}. It is easy to check that
p is a pmetric on V (G). Consider the dual pmetric, p∗. Since
p(x, x) = w(x) (in which case p∗(x, x) = −w(x)), p∗ is in effect
calculated by deducting the weights of the end points from the
path length given above. Notice that p∗(x, y) is negative if and
only if x = y, and p∗(x, y) ≤ 0 if and only if (x, y) is an edge of
G. In general, it is this “dual” pmetric p∗ that we shall take as
the pmetric associated with a weighted graph G. The pmetric p∗

obtained by assigning weight 1 to each vertex is related to the usual
“distance” dG defined on G by:

p∗(x, y) = dG(x, y)− 1 =
1
2

(p+ p∗)(x, y)− 1.
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Finally, by “forgetting” the negative self-distances (that is, by
setting each p∗(x, x) to 0), we obtain a weighted smetric s; thus
we take s as the smetric associated with the weighted graph G. A
pmetric or smetric associated with a graph G is called uniform if
the weight function of G itself is constant.

It would be possible to develop the results below in terms of
(O’Neill) pmetrics. The negative distances, however, are unfa-
miliar, and cause some technical complications. Hence we have
preferred to work with the very rudimentary structure of smetric
spaces.

Given a pmetric or smetric d on a set X, the induced graph has
X as vertex set, and (x, y) as an edge if and only if d(x, y) ≤ 0.

4. Hyperconvex Semi-metric Spaces

Given an smetric space (X, d), x ∈ X, and r ≥ 0, the closed ball
of x ∈ X with radius r, B(x, r), is defined in the usual way. The ba-
sic definitions concerning hyperconvexity extend straightforwardly
to smetric spaces:

Definition 4.1. An smetric space (X, d) is called hyperconvex if for
any indexed collection of closed balls in X, {B(xi, ri)}, satisfying

(4.1) d(xi, xj) ≤ ri + rj ,

it follows that
⋂
iB(xi, ri) 6= ∅.

An smetric space (X, d) will be called totally convex if:

(C) For any two points x, y ∈ X, such that d(x, y) ≤ r1 + r2

(r1 ≥ 0, r2 ≥ 0), there exists a point z ∈ X such that
d(x, z) ≤ r1 and d(y, z) ≤ r2.

Recall that a family F of subsets of X is said to satisfy the
(2-)Helly property if for every subfamily F ′ of F such that any
two elements of F ′ are intersection nonempty, F ′ is intersection
nonempty.

Clearly, an smetric space (X, d) is totally convex if and only if the
closed balls B(xi, ri), B(xj , rj) with Property 4.1 are intersection
nonempty. Hence it is easy to check that Definition 4.1 is equivalent
to total convexity plus the Helly property for closed balls.
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Let G be a connected weighted graph, and s the associated smet-
ric defined in Section 3. Then it is easy to verify that (V (G), s) is
totally convex. Notice that total convexity fails, in general, if one
tries to use the metric p+ p∗ (or dG) in place of s. (If the distance
function d that we are working with is a metric, then the inequali-
ties d(x, z) ≤ r1 and d(y, z) ≤ r2 are actually equalities in the case
d(x, y) = r1 + r2; this forces us to have a non-denumerable infin-
ity of points between any two distinct points.) A further evident
fact is that, if the weighting w is uniform, the set of (closed) balls
with respect to s coincides with the set of balls with respect to the
standard graph distance dG except that some dG-balls of radius 0
(i.e. singletons) may fail to be s-balls. We thus have:

Proposition 4.2. A finite graph G is Helly if and only if, giv-
ing each vertex the (constant) weight k, (V (G), s) is a hyperconvex
smetric space.

An admissible subset of an smetric space (X, d) is a set of the
form ⋂

i

B(xi, ri).

Proposition 4.3. The admissible subsets in any finite hyperconvex
smetric space are connected (in the induced graph).

Proof. Let (X, d) be an smetric space, and S ⊆ X an admissible set
of X. Suppose S is not connected. Let x, y ∈ S be points lying in
distinct components of S, such that the distance d(x, y) is as small
as possible. Then d(x, y) = r > 0. By the property of total con-
vexity, ∃z ∈ X, d(x, z) ≤ r

2 and d(z, y) ≤ r
2 . Then the (admissible)

subsets B(x, r2), B(y, r2), S intersect pairwise. However, there is no
point common to all of them. Contradiction. �

Recall that a graph convexity [4, 5] on a finite connected graph
G is a collection C of subsets of V (G), called the convex sets, such
that

(c1) the set V (G) is convex,
(c2) the intersection of convex sets is convex,
(c3) any convex set induces a connected subgraph of graph G.
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It follows at once that the admissible sets of a finite hyperconvex
smetric space constitute a graph convexity. Thus Proposition 4.3
generalizes Theorem 3.1 of [22] (where we showed that the closed
balls of a Helly graph generate a graph convexity). More properties
of Helly graphs can in fact be generalized to hyperconvex smetrics.
We provide a few examples here, leaving a more systematic inves-
tigation for another occasion.

As morphisms of smetric spaces we take the nonexpansive maps,
that is, maps f : (X, d)→ (X ′, d′) such that

d′(f(x), f(y)) ≤ d(x, y),

for all x, y ∈ X. Then we have

Proposition 4.4. Any retract of a hyperconvex smetric space is
hyperconvex.

In case the smetric spaces in question are graphs with their stan-
dard metrics or smetrics (dG or s), these morphisms reduce to the
usual graph homomorphisms. Moreover, the following recursive
definition of “contractible” for smetrics provides a straightforward
generalization of contractible (or dismantlable) graphs:

Definition 4.5. A finite smetric space (X, d) is contractible if X
is either a singleton, or else has distinct points x, y ∈ X such that

(1) for any r ≥ 0, B(x, r) ⊆ B(y, r) (when this holds the point
x is said to be dominated by y);

(2) (X\{x}, d) is contractible.

Notice that every contraction mapping (that is, a function which
maps some point x to a point y which dominates x, and leaves all
other points fixed) is a retraction, but the converse is not true even
for retractions which have at most one non-fixed point. For exam-
ple, let X = {a, b} be the two-point metric space with d(a, b) = 1.
Then the map f : a 7→ a, b 7→ a is a retraction, but it is not a
contraction since B(b, 1

2) 6⊆ B(a, 1
2). In fact, a necessary condition

for x to be dominated by y is that d(x, y) = 0. There are many
non-trivial contractible smetric spaces (including of course all the
contractible graphs), but the only contractible finite metric space
is the singleton.

Theorem 4.6. Every finite hyperconvex smetric space is contract-
ible.
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Proof. Let (X, d) be finite hyperconvex. We have to find a domi-
nated vertex. Let ∆ be the diameter of X (that is, sup{d(x, y) |
x, y ∈ X}, and let a, b be points such that d(a, b) = ∆. We may as-
sume that ∆ > 0 (since X is obviously contractible if all distances
are zero). Let r be the greatest number such that r < ∆ and
there exists a point z such that d(a, z) = r. Thus, every point in
X\B(a, r) is at distance ∆ from a. Let u be any point in X\B(a, r).
Given any ε with 0 < ε < ∆, we have (by total convexity) a point
v such that d(a, v) ≤ ∆ − ε, d(v, u) ≤ ε. Then v ∈ B(a, r). Since
this holds for arbitrarily small ε > 0, there must (by finiteness)
be a point w in B(a, r) such that d(u,w) = 0. Fix any point u0

in X\B(a, r) (for example, let u0 = b). For each point x ∈ X,
let Bx be the ball B(x, d(x, u0)). By the construction, the family
{B(a, r)} ∪ {Bx | x ∈ X} is pairwise intersecting; let y be a point
common to all the balls. Then u0 is dominated by y. For clause (2)
(of Definition 4.5), use Proposition 4.4 and the remark following
Definition 4.5. �

The “fixed point theorem” we shall consider is actually an almost
fixed point property of nonexpansive multifunctions. Given a map
f : X → P(X) ((X, d) smetric), we say that x is an almost fixed
point of f if there exists y ∈ f(x) such that d(x, y) = 0. Provided
that X is bounded, the Hausdorff distance on P(X) (defined in ex-
actly the usual way) is trivially an smetric, say dH, and this is the
one we assume when we ask that f be nonexpansive. A bounded
smetric space X has the nonexpansive almost fixed point property
(nonexpansive AFPP, for short) if every nonexpansive multifunc-
tion on X has an almost fixed point.

Theorem 4.7. Every contractible smetric space has the nonexpan-
sive AFPP.

Proof. Let (X, d) be a contractible smetric space. Since X is con-
tractible, there exist x, y ∈ X such that B(x, r) ⊆ B(y, r) for any
r ≥ 0 (Condition 1), and the subspace (X\{x}, d) is contractible
(Condition 2).

Let f : X → P(X) be any nonexpansive multifunction. We
prove by induction on #X that f has an almost fixed point.
Initial step: It is clear that X has the nonexpansive AFPP if X is a
singleton.
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g(z)

f(z)

z y x

f(y)
w

Figure 1. x, y, z, w, g(z), f(z) and f(y)

Inductive step: We assume that X has the nonexpansive AFPP
when #X ≤ m ∈ N,m ≥ 1, and we claim that X has the nonexpan-
sive AFPP when #X = m + 1. Define the multifunction g :
X\{x} → X\{x} by

g(u) =

{
f(u), x 6∈ f(u)
(f(u)\{x}) ∪ {y}, x ∈ f(u).

We claim that g is nonexpansive. Indeed, let a, b ∈ X\{x} with
d(a, b) = k. Since f is nonexpansive, dH(f(a), f(b)) ≤ k. Now
g(a), g(b) are obtained from f(a), f(b) by replacing any occurrences
of x by y. Since B(x, r) ⊆ B(y, r) for any r ≥ 0, it is clear that
any true statement of the form dH(A,B) ≤ m remains true af-
ter the replacement of any occurrences of x by y; more precisely,
dH(A,B) ≤ m ⇒ dH((A\{x}) ∪ {y}, (B\{x}) ∪ {y}) ≤ m. In
particular, dH(f(a), f(b)) ≤ k ⇒ dH(g(a), g(b)) ≤ k. Thus g is
nonexpansive.

Therefore by our inductive assumption and Condition 2, there
exists a point z ∈ X\{x} such that z is an almost fixed point of
g, i.e. d(z, z′) = 0 for some z′ ∈ g(z). Then (since f(z) differs
from g(z) by, at most, having x in place of y) z must be an almost
fixed point also of f , except in the following case: y is the only
point of g(z) such that d(y, z) = 0, x ∈ f(z), but y 6∈ f(z), see
Figure 1. Since d(y, z) = 0, we have dH(f(y), f(z)) = 0. So f(y)
contains a point, say w, such that d(w, x) = 0, hence d(w, y) = 0
(∵ B(x, 0) ⊆ B(y, 0)). Thus y is an almost fixed point of f . �
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This result generalizes various graph-theoretic almost fixed point
theorems in the literature, such as Poston [12], Rosenfeld [15], and
our own “AFPP for strong multifunctions” in [21]. For example, in
relation to [15]:

(1) single-valued functions are replaced by multifunctions;
(2) the n-dimensional grid is replaced by an arbitrary con-

tractible graph;
(3) graphs are replaced by smetric spaces.

5. Extension Property and Injectivity

We seek to characterize those smetric spaces M such that, given
an smetric space X and isometric extension Y of X, any morphism
f : X →M can be extended to f ′ : Y →M . For a satisfactory re-
sult of this kind we need to work with weighted smetrics. Moreover,
we need to place a bound on the weights involved.

Definition 5.1. A weighted smetric space (X, d,w) is m-bounded
(m ≥ 0) if w(x) ≤ m for all x ∈ X.

For useful examples of m-bounded smetric spaces, we may con-
sider the ball-sets of hyperconvex spaces. Given a metric space
(X, d), B(X) shall denote the set of closed balls of X, taken with
the “inf” smetric ds:

ds(B1, B2) = inf{d(x, y) | x ∈ B1, y ∈ B2}.

The diameter of a bounded set S in X is sup{d(x, y) | x, y ∈ S}.

Proposition 5.2.

(1) Let X be totally convex. Then, taking the weight of any ball
to be its diameter, B(X) is a weighted smetric space.

(2) With (X, d) hyperconvex, let Bm(X) (m ≥ 0) be the set
of closed balls of X with diameter ≤ m. Then Bm(X) is
hyperconvex (and m-bounded).

Proof. We show (2) only: convexity of Bm(X) is evident. For the
Helly property, let B(Bi, ρi)i∈I be a collection of pairwise inter-
secting balls of Bm(X), where Bi = B(xi, ri). Then the balls
B(xi, ri + ρi + m

2 ) are pairwise intersecting in X, hence have a
common point x. Clearly, ds(B(x, m2 ), Bi) ≤ ρi, for all i ∈ I. �
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With regard to the bound m in Proposition 5.2, it is worth men-
tioning that the unbounded case (with B(X) in place of Bm(X))
is of little interest. For, if X is any bounded metric space, then
B(X) is trivially hyperconvex. (Any set of balls of B(X) has a
nonempty intersection; indeed, any large enough ball of X belongs
to every ball of B(X).) On the other hand, B(X) fails to be hy-
perconvex when X is unbounded. For example, taking X as R, the
balls B(B(k, 1), 1), k ∈ N, are pairwise intersecting, but have no
common element.

An observation relevant to the extension theorem is that, when
X is totally convex, Bm(X) has a convexity property stronger than
the ordinary smetric convexity (C). Namely, we have

(Cm) If d(x, y) ≤ r1 + r2 + m, then there exists u (with weight
≤ m) such that d(x, u) ≤ r1 and d(u, y) ≤ r2.

Theorem 5.3. Let (M,d,w) be m-bounded hyperconvex satisfy-
ing (Cm). Let X,Y be m-bounded smetric spaces, Y an isometric
extension of X, and f : X → M nonexpansive. Then f has a
(nonexpansive) extension f ′ : Y →M .

Proof. We suppose in the first instance that Y is an one-element
extension X ∪ {y}; the result will then follow by a standard maxi-
mality argument. For each pair x1, x2 of elements of X, we have

d(x1, x2) ≤ d(x1, y) + w(y) + d(y, x2).

Hence dM (f(x1), f(x2)) ≤ d(x1, y) +m+ d(y, x2). It follows by the
(Cm) property that the balls B(f(x1), d(x1, y)), B(f(x2), d(x2, y))
intersect. Hence the extension of f to X ∪ {y} may be achieved by
mapping y to any common element of the balls B(f(x), d(x, y)), x ∈
X. Returning to the general case X ⊆ Y , let us call an extension
of f to a domain X ′ with X ⊆ X ′ ⊆ Y a partial extension. Clearly,
the union of any chain of partial extensions is a partial extension.
By Zorn’s lemma there is a maximal partial extension, and by the
preceding argument this must in fact be an extension to the whole
of Y . �

Thus we have that, for the class of m-bounded spaces, the
hyperconvex spaces satisfying (Cm) are injective.
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For a discrete (and constructive) version of these ideas, we may
proceed as follows. Restrict attention to countable spaces in which
all the distances and weights are natural numbers (or more gener-
ally, multiples of a constant ε > 0); for convenience, we call these
spaces discrete. The discrete version (CDm) of (Cm), is the modifi-
cation of (Cm) in which the variables r1, r2 are restricted to have
natural number values. Then we can prove the discrete version of
Theorem 5.3, in which each notion is replaced by (or restricted to)
its discrete counterpart, by the same proof as before. The signifi-
cance of this is twofold:

(1) We do not actually need Zorn’s lemma, since the required
extension can be accomplished by a sequence of one-element
extensions (as in Quilliot [13] for the graph case).

(2) We now have an abundance of countable, and indeed fi-
nite, injective spaces. For example, M may be taken as
the space of sub-intervals of length m of a fixed (bounded
or unbounded) interval (k, l) of Z (l − k > m + 1), with
obvious weight and distance functions.

Notice that these injectives are not, in general, representable as
(weighted) Helly graphs, whose injectivity properties are already
well understood from the work of Quilliot and others. They may,
perhaps, be regarded as only a fairly modest generalization of the
Helly graphs. The generalization involved would be more note-
worthy, were we to admit negative distances (where, in an interval
model, a negative distance measures the degree of overlap of two
intervals). However, we shall not here investigate the version with
negative distances.

6. Approximation of Hyperconvex Metric Spaces

It was shown in [17] that every compact metric space can be
represented as an inverse limit of finite smetric spaces. The con-
struction, briefly, is as follows. Suppose that (M,d) is compact
metric. Let Σ = C1, C2, . . . be a sequence of finite covers of M by
closed balls such that each Ck+1 refines Ck, and mesh(Cn) → 0 as
n → ∞. Each Cn is considered as an smetric space in the usual
way, that is by putting

ds(B,B′) = inf{d(x, x′) | x ∈ B, x′ ∈ B′}.
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For each k, we define fk : Ck+1 → Ck so that B ⊆ fk(B) for all
B ∈ Ck+1. Then fk is nonexpansive, and we may consider the
inverse limit Lim←−−(Ck, fk) = L. It is easy to see that L is a pseudo-
metric space which is isometric with M .

This construction is extremely simple, but notice that it is essen-
tial that we use the smetric rather than, say, the Hausdorff metric
in each Ck. With the Hausdorff metric we do not get nonexpansive
bonding maps. (To see this, it suffices to consider the case that M
is the unit interval I, and Ck is the cover of I by 2k subintervals of
length 2−k.)

Approximation by discrete structures in this style is not limited
to the compact case, although that is the case that has been most
studied. Indications for the locally compact metrizable case have
been given in [23], and for Polish spaces in [18]. In the present
context the interesting case to consider is the (bounded but non-
compact) hyperconvex metric space I∞. The covering Ck of I by 2k

subintervals of length 2−k gives us a covering C∞k of I∞ by elemen-
tary cubes of size 2−k (actually balls of I∞ of diameter 2−k). The
intersection graph of C∞k , say Gk, is the product of countably many
copies of the intersection graph of Ck, and is therefore (strongly)
Helly. Give each vertex of Gk the weight 2−k. Each uniformly
weighted graph Gk may thus be considered as a hyperconvex smet-
ric space (Proposition 4.2), and, under the same construction as
before, the inverse limit of these smetric spaces is a pseudo-metric
equivalent of I∞. In brief, we have:

Proposition 6.1. The hyperconvex metric space I∞ is approx-
imable by discrete hyperconvex smetric spaces (specifically, by uni-
formly weighted Helly graphs).

This kind of approximation of continuous structures by discrete
structures has been applied, in related cases, to transfer fixed point
results from one type of structure to the other: see [20]. Fixed
point (or fixed clique) properties of infinite graphs have been con-
sidered to a limited extent (see [11]). But the finite case is far better
understood, and we should prefer to set about developing this ap-
plication by comparing compact hyperconvex metric spaces with
finite smetric spaces. Every compact hyperconvex metric space is,
up to a constant multiple of the distance, a (nonexpansive) retract
of I∞, and the finite Helly graphs are exactly those finite graphs
which are retracts of some Gk.
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Such observations suggest that the following is plausible:

Conjecture 6.2. Every compact hyperconvex metric space is
approximable by finite hyperconvex smetric spaces (indeed, by
uniformly weighted Helly graphs).

But so far this remains unproven.

7. Conclusion

We have tried to show that the theories of Helly graphs and of
hyperconvex metric spaces can be unified by means of the concept of
the hyperconvex semi-(pseudo) metric space. Using this idea, many
more individual results of the kind illustrated in this paper can be
developed. Some more systematic topics needing investigation are:

(1) Whether it would be advantageous to use partial metrics
throughout the development;

(2) A more complete development of the inverse limit approach
(Section 6), including if possible settling the conjecture men-
tioned there.

In a wider perspective, the work is intended as a case study in
the geometric aspect of smetrics (or pmetrics), for we think that
these weak metrics are the appropriate ones for digital topology
and geometry.
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3. E. Čech, Topological Spaces, John Wiley, 1966.
4. P. Duchet and H. Meyniel, Ensemble convexes dans les graphes I, théorèmes
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