
Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



TOPOLOGY
PROCEEDINGS
Volume 26, 2001–2002

Pages 811–818

THE UNIFORMITY INVARIANTS OF THE IDEAL
OF NULL SETS IN SEPARABLE METRIC SPACES

JURIS STEPRĀNS∗

Abstract. P. Komjath has asked the following question: If
every set of reals of size ℵ1 has measure zero does it follow
that the union of ℵ1 lines in the plane also has measure zero.
In order to obtain a model establishing the negative result it is
necessary to consider models where all sets of reals of size ℵ1

have measure zero yet the analogous statement for the plane
fails.

P. Komjath has asked the following question: If every set of reals
of size ℵ1 has measure zero does it follow that the union of ℵ1 lines
also has measure zero. The following observation, while simple in
itself, significantly narrows the range of possibilities for the models
of set theory one might hope to use to provide a negative answer
to Komjath’s question. To begin, the notion of a null set can be
generalized to an arbitrary metric space.

Definition 1. If X = (X, d) is a metric space and S ⊆ X then S
will be said to be a X -null set if for every ε > 0 there is a sequence
{(xi, εi)}∞i=0 ⊆ X × R+ such that

∑∞
i=0 εi < ε and for every s ∈ S

there is some i such that d(xi, s) < εi.

Let Rn represent n-dimensional space with the Euclidean metric.
Observe that if X ⊆ Rn then X being a Rn-null set is the same
as being a n-dimensional Lebesgue null set only in the case when
n = 1.

2000 Mathematics Subject Classification. 03E35, 03E75.
Key words and phrases. Strong null set, normed forcing, cardinal invariants

of continuum.
∗Research for this paper was partially supported by NSERC of Canada.

811



812 J. STEPRĀNS

Proposition 1. If every subset of the plane of size ℵ1 is a
R

2-null set then the union of any ℵ1 lines in the plane has Lebesgue
measure zero.

Proof. To begin, observe that it suffices to show that the union
of any ℵ1 lines segments spanning the unit square has Lebesgue
measure zero. Except for those which pass through just a corner,
thus clearly having null union, any such set of lines can decomposed
in 6 sets depending on which pair of sides of the unit square they
intersect. The argument is similar in all 6 cases, so assume that L
is a set of line segments whose endpoints are on the top and bottom
of the unit square and that ε > 0. Let L = {(x, y) ∈ [0, 1]2 : (∃L ∈
L){(x, 0), (y, 1)} ⊆ L} and choose points {(xi, yi)}∞i=0 ⊆ [0, 1]2 such
that

(∀(x, y) ∈ L)(∃i)
√

(xi − x)2 + (yi − y)2 < εi

and
∑∞

i=0 εi < ε/2. Let Qi be the parallelogram whose corners are
(xi− εi, 0), (xi + εi, 0), (yi− εi, 1) and (yi + εi, 1) and note that the
planar Lebesgue measure of Qi is 2εi. Moreover, for every L ∈ L
there is some i such that L ⊆ Qi. Therefore

⋃∞
i=0Qi has planar

Lebesgue measure no greater than ε and it covers the union of the
line segments in L. �

In light of Proposition 1, in order to obtain a negative answer
to Komjath’s question it would be necessary to find a model of set
theory in which ever subset of R size ℵ1 is a R-null set but there
is subset of R2 of size ℵ1 which is not a R2-null set. The first step
would be to find a model in which there are two separable metric
spaces X and Y such that any subset of X of size ℵ1 is X -null but
there is a subset of Y of size ℵ1 which is not Y-null. This is the
point of the following definition and proposition.

Definition 2. If f and g are functions from N to N define non(f, g)
to be the least cardinal κ such that there exists A ⊆

∏∞
i=0 f(i) of

cardinality κ such that for each sequence of finite sets {Bi}∞i=0 such
that Bi ∈

∏i
j=0 [f(j)]g(i) there is a ∈ A such that a � m+ 1 /∈ B(m)

for all integers m. In order to avoid the clumsy notation a � m+ 1,
unless mentioned otherwise, the notation a � m will be used to
denote the restriction of a function to the initial segment m+ 1.
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Definition 3. If f and g are functions from N to N define a two
metric spaces X (f, g)=(

∏∞
i=0 f(i), df ) and Y(f, g)=(

∏∞
i=0 f(i), dg)

where

dg(h, h′) =
∞∑
i=0

δ(h(i), h′(i))
g(i)

df (h, h′) =
∞∑
i=0

δ(h(i), h′(i))
f(i)

and where δ(n,m) = 1 if n = m and δ(n,m) = 0 otherwise.

Observe that X (f, g) and Y(f, g) are homeomorphic to the
Cantor space provided that

∑∞
i=0 1/f(i) <∞ and

∑∞
i=0 1/g(i) <∞

respectively.

Proposition 2. Let f and g be functions from N to N such that

(0.1)
∞∑
i=0

g(i)
f(i)

<∞

(0.2)
1
f(i)

>
∞∑

m=i+1

1
f(m)

Then any subset of X (f, g) of cardinality less than non(f, g) is
X (f, g)-null.

Proof. Let A ⊆
∏∞
i=0 f(i) be of size less than non(f, g). From

Definition 3 it follows that there are Bi ∈
[∏i

j=0 f(j)
]g(i)

such that
for each a ∈ A there is some i such that a � i ∈ Bi. Since it may as
well be assumed that A is closed under finite modifications it follows
that it may also be assumed that for each a ∈ A there are infinitely
many i such that a � i ∈ Bi. Given ε > 0 use Hypothesis 0.1 to find
k such that

∑∞
i=k

g(i)
f(i) < ε. Let {(xn, εn)}∞n=0 ⊆

∏∞
i=0 ai × R+ be a

sequence chosen so that

(∀m ≥ k)(∀b ∈ Bm)(∃j)
m−1∑
i=k

g(i) ≤ j <
m∑
i=k

g(i) and b = xj � m
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(where
∑k−1

i=k g(i) is defined to be 0) and εj = 1
f(m) . Then

∞∑
i=0

εi =
∞∑
j=k

g(j)
f(j)

< ε

by the choice of k. Moreover, for each a ∈ A there is some m > k
such that a � m ∈ Bm and, hence, a � m = xj � m for some j
such that

∑m−1
i=k g(i) ≤ j <

∑m
i=k g(i). It follows that df (xj , a) ≤∑∞

i=m+1 1/f(i) < 1/f(m) = εj by Hypothesis 0.2. Hence A is a
X (f, g)-null set. �

Proposition 3. If f and g are monotonic functions from N to N
then there is a subset of Y(f, g) of cardinality non(f, g) which is
not Y(f, g)-null.

Proof. Let A ⊆
∏∞
i=0 f(i) be the set of size non(f, g) whose

existence is implied by Definition 3. If {(yi, εi)}∞i=0 are such that∑∞
i=0 εi < 1 and yi ∈

∏∞
i=0 f(i) then let

Bm =
{
yi � m :

1
g(m− 1)

> εi ≥
1

g(m)

}
and note that |Bm| < g(m) since otherwise

∑∞
i=0 εi ≥

∑
i∈Bm εi ≥

|Bm|/g(m) ≥ 1. It follows that there is some a ∈ A such that
a � m /∈ Bm for all m ∈ N. Hence, if yi � m ∈ Bm then there is
some j < m such that yi(j) 6= f(j) and so dg(yi, a) ≥ 1/g(j) ≥
1/g(m− 1) > εi; in other words, A is not a Y(f, g)-null set. �

Propositions 2 and 3 point to the fact that it would be of interest
to find models of set theory where there are monotonic functions
f , g, F and G such that non(f, g) = ℵ1 and non(F,G) = ℵ2 and

(0.3)
∞∑
i=0

1/g(i) <∞ and
∞∑
i=0

1/F (i) <∞

(so that the associated metric spaces X (F,G) and Y(f, g) are
separable) and such that

(0.4)
∞∑
i=0

F (i)/G(i) <∞ and 1/F (i) >
∞∑

m=i+1

1/F (m)
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so that the hypotheses of Proposition 2 are satisfied. This would
allow the conclusion that any subset of cardinality ℵ1 is X (F,G)-
null while, on the other hand, then there is a subset of Y(f, g) of
cardinality ℵ1 which is not Y(f, g)-null.

The construction of such models can be accomplished using forc-
ing partial orders, invented by Shelah, consisting of trees whose
successors have norms attached to them — such partial orders are
described in Sections 7.3 and 7.4 of [1]. A countable support prod-
uct of these can be used along lines similar to those described in
[2]. The appendix will sketch the argument.

Of course, finding the two metric spaces X (F,G) and Y(f, g)
does not admit the conclusion that it is consistent that any subset of
cardinality ℵ1 is R-null while there is a subset of R2 of cardinality ℵ1

which is not R2-null. But is there some indication of how far off the
mark this result is? To answer this, for any compact metric space
X = (X, d) let ∆X : N→ N be the function defined by the fact that
∆X (k) is the least cardinal such that there is A ∈ [X]∆X (k) such
that for every x ∈ X there is a ∈ A such that d(a, x) < 1/k. An
examination of the proof in the Appendix will reveal that ∆Y(f,g)

grows much more quickly than ∆X (F,G) whereas ∆
R2 grows only as

the square of ∆R. Hence the following is of interest.

Question 1. Given metric spaces X and Y such that every subset
of cardinality ℵ1 is X -null while there is a subset of cardinality ℵ1

which is not Y-null, what can be said about the growth rates of ∆Y
and ∆X? Is it consistent that

∆Y(n)
∆X (n)

be bounded by a linear function of n? While this would be required
in order to deal with the case of R and R2 it is not even known if
this ratio could be bounded by an exponential function.

Appendix

Definition 4. If k and n are integers and A ⊆ P(P(k)) then define
νk,n(A) as follows:

• if ∪A = k then νk,n(A) ≥ 0
• if for every P : A → n there is some j ∈ n such that
νk,n(P−1{j}) ≥ i then νk,n(A) ≥ i+ 1
• otherwise νk,n(A) is defined to be -1.
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Lemma 1. If k and n are integers then νk,n([k]n
p
) ≥ p.

Proof. This is elementary. �

For the rest of this section, fix a function g : N → N such that∑∞
i=0 1/g(i) < ∞. Define functions f , F , and G and a sequence

{bi}∞i=0 by setting b0 = 1 and inductively defining

(0.5) G(n) = (bn)n

(0.6) F (n) = 2nG(n)

(0.7) f(n) = g(n)bn + 1

(0.8) bn+1 =

(
n∏
i=0

(
f(i)
g(i)

))∏n
i=0

(
F (i)
G(i)

)

and observe that conditions 0.3 and 0.4 are satisfied. Then define
ν∗i = νF (i),G(i) and note that ν∗i ([F (i)]G(i)) ≥ i. Therefore it is
possible to define the partial order P to consist of all sequences s
such that

• s(k) ⊆ [F (k)]G(k) for each k
• for each j there is some k such that ν∗k(s(k)) > j

with the ordering s ≤ t if and only if s(i) ⊆ t(i) for each i. Let Pκ
be the countable support product of κ copies of P. Elements of Pκ
will be thought of as functions with domain κ× N

If p ∈ Pκ then it is possible to find an extension q ≤ p such that
for each integer k there is at most one η ∈ κ such that q(η, k) has
more than one element of [F (k)]G(k) in it — such conditions are
known as skew conditions. If p is a skew condition define k to be
a non-trivial level if there is some η ∈ κ such that p(η, k) has more
than one element of [F (k)]G(k). It will henceforth be assumed that
all p ∈ Pκ are skew conditions.

Lemma 2. If Γ ⊆ Pκ is generic over V then non(F,G) ≥ κ in
V [Γ].

Proof. This is elementary — see Section 7.3 of [1] for details. �

Lemma 3. If Γ ⊆ Pκ is generic over V and 2ℵ0 = ℵ1 holds in V
then non(f, g) = ℵ1 in V [Γ].
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Proof. It will be shown that for every sequence of finite sets {ai}∞i=1

in V [Γ] such that ai ∈ [f(j)]g(i) there is x ∈ V ∩
∏∞
i=0 f(i) such that

x(m) /∈ a(m) for all m. This is more than is required to show that
non(f, g) = ℵ1 in V [Γ].

Assume that the sequence of names {◦ai}∞i=1 is forced to be a coun-
terexample by the condition p ∈ Pκ. Let M ≺ (H(κ),∈) be a count-
able elementary submodel containing p and {◦ai}∞i=1. Let {ηi}∞i=1
enumerate κ∩M in such a way that every ordinal in κ∩M is listed
infinitely often. Now construct, in M, a sequence {(pi, Yi, Li)}∞i=0
such that

• L0 = 0
• p0 ≤ p
• Yi ⊆ [f(i)]g(i) has size bi
• pi+1 
Pκ “

◦
aj∈ Y̌j” for each j such that Li ≤ j < Li+1

• ν∗Li(pi(ηi, Li)) ≥ i
• pi+1(ηj) � Li = pi(ηj) � Li for all j ≤ i

and note that in the last condition, and henceforth, the convention
on the use of “�” introduced in Definition 2 has been dropped.

Assuming that this can be done, it follows that there is some pω ∈
Pκ such that pω ≤ pi for each i. Moreover pω 
Pκ “(∀j) ◦aj∈ Yj”
and it follows from Induction Hypothesis 0.6 that f(i)\∪Yi 6= ∅ for
each i and so it is possible to choose x ∈

∏∞
i=0 f(i) in V as required.

To establish that the induction can be completed suppose that
pn and Ln have been constructed. Choose Ln+1 > bLn+1 such that
ν∗k(pn(ηn+1, Ln+1)) > n + 1. By extending pn, if necessary, it may
be assumed that pn has no non-trivial levels between Ln and Ln+1.
Let Q be the set of all q � (κ×Ln+1) such that q ≤ pn and q has no
non-trivial levels below Ln+1. Notice that the cardinality of Q is
no greater than

∏Ln
i=0

(
F (i)
G(i)

)
which is the exponent in the definition

of bLn+1 and, hence, is less than or equal to the exponent used in
the definition of bLn+1 .

By considering each x ∈ pn(ηn+1, Ln+1) and each element of Q
in turn, it is possible to find q∗ ≤ pn such that q∗ � κ×Ln+1 = pn �
κ× Ln+1 and if q∗x is defined by

q∗x(µ, j) =

{
x if (µ, j) = (ηn+1, Ln+1)
q∗(µ, j) if (µ, j) 6= (ηn+1, Ln+1)
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then there is a function

Ψx : Q→
Ln+1−1∏
j=0

[f(n)]g(n)

such that for any r ≤ q∗x such that r̄ = r � κ× Ln+1 ∈ Q,

q∗ 
Pκ “
◦
aj= Ψx(r̄)(j)”

for each j < Ln+1. The function defined on pn(ηn+1, Ln+1) which
sends x to Ψx has range no greater in cardinality than bL[n+1 and,
therefore, there is X ⊆ pn(ηn+1, Ln+1) such that

ν∗Ln+1
(pn(ηn+1, k)) ≥ n+ 1.

Let pn+1 be defined by

pn+1(µ, j) =

{
X if (µ, j) = (ηn+1, Ln+1)
q(µ, j) if (µ, j) 6= (ηn+1, Ln+1)

and observe that this is the desired condition. If Ψx = Ψ for each
x ∈ X let Yj = {Ψ(q)}q∈Q. �
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