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COMPACTIFICATIONS OF BAIRE SPACES κω

A. SZYMANSKI

Abstract. We show that the space of irrationals can be com-
pactified in such a way that the remainder is the union of,
apriori prescribed, countably many compact spaces each of
weight not exceeding ω1. We show that any Baire space of
an uncountable weight has a compactification such that its
remainder is a σ-discrete space.

1. Compactifying Baire spaces of uncountable weight

The Cartesian product of countably many copies of an infinite
discrete space of cardinality κ is called the Baire space of weight
κ. The Baire space of weight ω is homeomorphic to the space of
irrational numbers.

No Baire space of any uncountable weight can have a compacti-
fication whose remainder is going to be the union of finitely many
metrizable subspaces. We shall show that there is a one whose re-
mainder is the union of countably many discrete (just metrizable)
subspaces.

Throughout our discussion, we treat cardinals as von Neumann
ordinals endowed with the discrete topology. Let κ be an uncount-
able cardinal. The symbol ≤ωκ denotes the complete tree of height
ω + 1, i.e.,

≤ωκ =<ω κ ∪ω κ,
where
<ωκ = {s : s is a function and Dom (s) ∈ ω and Rng (s) ⊆ κ}

and
ωκ = {s : s is a function and Dom (s) = ω and Rng (s) ⊆ κ} .
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If s ∈<ω κ and α ∈ κ, then s_α denotes the concatenation of s
by α.

For each n ∈ ω, let Ln = {t ∈<ω κ : |t| = n} and Tn =
{t ∈<ω κ : |t| ≤ n}.

For each s ∈<ω κ, let Cone(s) = {t ∈≤ω κ : s ⊆ t}.
Let Xκ be the space whose underlying set is ≤ωκ which is

endowed with the tree topology, i.e., topology generated by sets
of the form

Cone(s)− (Cone(s_α1) ∪ Cone(s_α2) ∪ ... ∪ Cone(s_αk)),
where s ∈<ω κ and αi ∈ κ for each i = 1, 2, .., k. In the series of
simple lemmas that follows we will verify the required properties for
the space Xκ to be a required compactification of the Baire space
of the uncountable weight κ.

Lemma 1. If s, t ∈<ω κ, s 6= t, and

t ∈ Cone(s)− (Cone(s_α1) ∪ Cone(s_α2) ∪ ... ∪ Cone(s_αk))
then

Cone(t)⊆Cone(s)−(Cone(s_α1)∪Cone(s_α2)∪...∪Cone(s_αk)).

Lemma 2. If s, t ∈<ω κ, s * t, and s + t, then Cone(t) ∩
Cone(s) = ∅.

Lemma 3. If s ∈<ω κ, then Cone(s) ∩ω κ =
∏
{Ci : i ∈ ω}, where

Ci = {s(i)} for each i ∈ Dom(s), and Ci = κ for each i /∈ Dom(s).
Thus the subspace ωκ of Xκ is the Baire space of weight κ.

Lemma 4. For each n ∈ ω, Ln is a discrete subspace of Xκ (and
Tn is a closed subspace of Xκ).

Proof. If s ∈ Ln, then Ln ∩ Cone(s) = {s}. �

Theorem 5. Xκ is a compactification of the Baire space ωκ.

Proof. The space Xκ is Hausdorff (use Lemma 2). By Lemma 3,
the Baire space ωκ is a dense subspace of the space Xκ.

Suppose to the contrary that Xκ is not a compact space. Thus
there exists an open cover P of Xκ without a finite subcover. With-
out loss of generality we may assume that P consists of the basic
open sets. Let U0 ∈ P be a basic set containing ∅ ∈ Xκ. Since
U0 = Cone(∅)\(Cone(∅_α1) ∪ Cone(∅_α2) ∪ ... ∪ Cone(∅_αk)),
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one of Cone(∅_αi), i = 1, 2, .., k, cannot be covered by finitely
many elements of the cover P. Thus there exists a sequence s1 of
length 1 such that Cone(s1) cannot be covered by finitely many
elements of the cover P.

Suppose that we have defined sequences s1, s2, .., sn satisfying
the following conditions:

(i) For each k ≤ n, sk ∈<ω κ and Dom(sk) = k;
(ii) s1 ⊂ s2 ⊂ ... ⊂ sn;
(iii) For each k ≤ n, the set Cone(sk) cannot be covered by

finitely many elements of the cover P.
Let Un ∈ P be a basic set containing sn ∈<ω κ. Since Un =

Cone(t)\(Cone(t_β1) ∪ Cone(t_β2) ∪ ... ∪ Cone(t_βk)), sn must
be equal to t, by virtue of Lemma 1. Hence one of Cone(s_n βj),
j = 1, 2, .., k, cannot be covered by finitely many elements of the
cover P. Thus there exists a sequence sn+1 of length n + 1 such
that sn ⊂ sn+1 and Cone(sn+1) cannot be covered by finitely many
elements of the cover P.

By induction, there exists a sequence s0, s1, .., sn, ... satisfying
the following conditions:

(i) For each k ∈ ω, sk ∈<ω κ and Dom(sk) = k;
(ii) s1 ⊂ s2 ⊂ ... ⊂ sn ⊂ ....
(iii) For each k > 0, the set Cone(sk) cannot be covered by

finitely many elements of the cover P.
Let x =

⋃
{sk : k ∈ ω}. Since x ∈ω κ, there exists U in P

that contains the point x. Thus x ∈ Cone(t) − (Cone(t_β1) ∪
Cone(t_β2) ∪ ... ∪ Cone(t_βk)). It follows that t ⊂ x and thus
t = sn for some n ∈ ω. Since x ∈ Cone(t) − (Cone(t_β1) ∪
Cone(t_β2) ∪ ... ∪Cone(t_βk)), sn+1 ∈ Cone(t)− (Cone(t_β1) ∪
Cone(t_β2) ∪ ... ∪ Cone(t_βk)) too. By lemma 1, Cone(sn+1) ⊆
Cone(t) − (Cone(t_β1) ∪ Cone(t_β2) ∪ ... ∪ Cone(t_βk)), a con-
tradiction. �

2. Compactifying irrationals

We begin by proving an easy fact.

Lemma 6. Let Y be a compact Hausdorff space and let p ∈ Y be
a non-isolated point. Suppose that X is a compactification of the
space Y − {p} with remainder Z. Let U be an open neighborhood
of the point p in the space Y and let V be an open neighborhood of
a point x ∈ Z. Then U ∩ V 6= ∅.
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Proof. The set F = X − U is a compact subset of the space
Y − {p} ⊂ X. So V − F is an open neighborhood of the point
x. Hence ∅ 6= (V − F ) ∩ (Y − {p}) ⊆ V ∩ U. �

Let R be the class of all compact Hausdorff spaces that can
be used as a remainder of some compactification of the discrete
countable space ω. According to Parovičenko’s theorem (cf. [1]),
any compact Hausdorff space of weight not exceeding ω1 is in R.

Lemma 7. Let Y = ⊕{Xn : n ∈ ω} be the topological sum of
compact Hausdorff spaces Xn. If Z ∈ R, then there exists a com-
pactification X of the space Y such that the remainder X − Y is
homeomorphic to Z.

Proof. Without loss of generality, we may assume that Y and Z are
disjoint. Let X̃ be a compactification of the discrete space ω such
that the remainder X̃ − ω is homeomorphic to Z. For any open
set U of the space X̃ such that U ∩ Z 6= ∅, let e(U) = ⊕{Xn : n ∈
U ∩ ω} ∪ (U ∩ Z). We take X to be the set Y ∪ Z with topology
generated by the sets that are open subsets of the space Y or of the
form e(U). �

Lemma 8. Let Y be a compact Hausdorff space and let p ∈ Y be a
non-isolated point that has a countable base of closed-open subsets
of Y . If Z ∈ R, then there exists a compactification X of the space
Y − {p} such that the remainder X − (Y − {p}) is homeomorphic
to Z.

Let C be a compact Hausdorff space and let {dn : n ∈ ω} be an
enumeration of a countable subset of C. Suppose further that each
point dn is non-isolated and has a countable base of closed-open
subsets of C. Let Zn ∈ R for each n = 1, 2, .... By induction, we
define a sequence of spaces {Cn : n ∈ ω} as follows:
C0 = C;
Cn+1 = a compactification of the space Cn − {dn} such that the

remainder C∗n+1 = Cn+1 − (Cn − {dn}) is homeomorphic to the
space Zn+1 (such a compactification exists by virtue of Lemma 8).

For n = 1, 2, ..., let pn be the natural projection from Cn to Cn−1,
i.e.,

pn(x) =
{
dn−1, if x ∈ C∗n
x, if x /∈ C∗n

.
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Lemma 9. For n = 1, 2, ..., pn : Cn → Cn−1 is continuous.

Proof. Proof. Let U be an open neighborhood of the point dn−1

in the space Cn−1. The set F = Cn−1 − U is a compact subset of
the space Cn. Clearly p−1

n (U) = (U − {dn−1}) ∪ Z = Cn − F . In
consequence, the set p−1

n (U) is open in the space Cn. �

Let us consider the inverse sequence

C0 ←p1 C1 ←p2 C2 ←p3 ....← Cn−1 ←pn Cn ← ...

and its limit X, i.e.,

X =
{

(xi) ∈
∏
{Ci : i ∈ ω} : pn(xn) = xn−1 for n = 1, 2, ...

}
.

Lemma 10. X is a compact Hausdorff space.

Let M0 ={
(xi) ∈

∏
{Ci : i ∈ ω} : xi = x for i ∈ ω and x ∈ C − {dn : n ∈ ω}

}
;

If n > 0, Mn = {(xi) ∈
∏
{Ci : i ∈ ω} : xi = dn−1 for i =

0, 1, 2, ..., n−1and xi = x for i ≥ n and x ∈ C∗n}. The sets Mn, n ∈
ω, are pairwise disjoint.

Lemma 11. M0 and C − {dn : n ∈ ω} are homeomorphic.

Lemma 12. For each n = 1, 2, ..., Mn and Zn are homeomorphic.

Both lemmas, above, follow immediately from the following one:

Lemma 13. Let
∏
{Xα : α ∈ S} be the product of spaces Xα,

where Xα = X for each α ∈ S. Then the diagonal ∆ = {(xα) ∈∏
{Xα : α ∈ S} : xα = x for each α ∈ S and x ∈ X} and the space

X are homeomorphic.

Proof. Let h : X → ∆ be defined as follows:

h(x) = (xα) , where xα = x for each α ∈ S.

One can easily see that if A ⊆ X and α ∈ S and πα :
∏
{Xα : α ∈

S} → Xα is a natural projection, then h(A) = ∆ ∩ π−1
α (A). �

Lemma 14. X =
⋃
{Mn : n ∈ ω}.
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Proof. Let (xi) ∈ X. Consider the following two cases:
Case (a) ∀i xi = xi+1;
Case (b) ∃i xi 6= xi+1.
In case (a), let x = xi for each i. Since x0 = x, x ∈ C. Clearly,
x 6= dn for each n ∈ ω (for if x = dn, then pn+1(xn+1) = dn = x
and x = xn+1 ∈ C∗n+1; a contradiction). Hence (xi) ∈M0.
In case (b), since pi+1(xi+1) = xi, xi+1 ∈ C∗n+1 and xi = di. Thus
xj = di for each j ≤ i, and xj = xi+1 for each j ≥ i + 1. Hence
(xi) ∈Mi+1. �

Lemma 15. Let U = U0 ×U1 × ...×Un ×Cn+1 ×Cn+2 × ... be an
open basic subset of the product

∏
{Ci : i ∈ ω}. If U ∩X 6= ∅, then

(U0 ∩ U1 ∩ ... ∩ Un) ∩ (C − {d0, d1, ..., dn−1}) 6= ∅.

Proof. By Lemma 14, U ∩ Mk 6= ∅ for some k ∈ ω. If k = 0,
then there exists x ∈ C − {dn : n ∈ ω} such that (xi) ∈ U and
xi = x for each i ∈ ω. Hence x ∈ U0 ∩ U1 ∩ ... ∩ Un. Thus
(U0 ∩ U1 ∩ ... ∩ Un) ∩ (C − {d0, d1, ..., dn−1}) 6= ∅. Let k > 0 and
let (xi) ∈ U ∩Mk. Thus there exists x ∈ C∗k such that

xi =
{
dk−1, if i < k
x, if i ≥ k .

If k > n, then dk−1 ∈ U0∩U1∩ ...∩Un. Assume that k ≤ n. The set
U =

⋂
{Ui : i ≤ k − 1} ∩ (C − {d0, d1, ..., dk−2}) is an open neigh-

borhood of the point dk−1 in the subspace (C − {d0, d1, ..., dk−2}).
The set V =

⋂
{Ui : k ≤ i ≤ n}} an open neighborhood of the

point x in the space Ck. By Lemma 6, U ∩ V 6= ∅. �

Lemma 16. M0 is a dense subset of X.

Proof. Let U = U0 × U1 × ...× Un × Cn+1 × Cn+2 × ... be an open
basic subset of the product

∏
{Ci : i ∈ ω} such that U ∩ X 6= ∅.

By Lemma 15, (U0 ∩ U1 ∩ ... ∩ Un) ∩ (C − {d0, d1, ..., dn−1}) 6= ∅.
In consequence, (U0 ∩ U1 ∩ ... ∩ Un) ∩ (C − {dn : n ∈ ω}) 6= ∅. If
x ∈ (U0 ∩ U1 ∩ ... ∩ Un) ∩ (C − {dn : n ∈ ω}) and (xi) is such that
xi = x for i ∈ ω, then (xi) ∈ U ∩M0. �

Lemma 17. If {dn : n ∈ ω} is a dense subset of C, then
{Mn : n ≥ 1} is a π − net in X.

Proof. Let U = U0 × U1 × ...× Un × Cn+1 × Cn+2 × ... be an open
basic subset of the product

∏
{Ci : i ∈ ω} such that U ∩ X 6= ∅.
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By Lemma 15, (U0 ∩ U1 ∩ ... ∩ Un) ∩ (C − {d0, d1, ..., dn−1}) 6= ∅.
In consequence, U0∩U1∩ ...∩Un contains infinitely many elements
among {dn : n ∈ ω}. Pick any m such that m > n and dm ∈
U0 ∩ U1 ∩ ... ∩ Un. Then Mm ⊆ U. �

Theorem 18. There exists a compactification X of the space of
irrational numbers ωω such that: (i) X − ωω =

⋃
{Mn : n ≥ 1},

(ii) {Mn : n ≥ 1} is a π − net in X, (iii) For each n = 1, 2, ...,
Mn and Zn are homeomorphic.

3. Applications

The metrizability number m(X) of a space X is the smallest
cardinal number κ such that X can be represented as a union of κ
many metrizable subspaces. In [2] we showed that compact Haus-
dorff spaces with finite metrizability number can be represented as
follows:

Theorem 19. If X is a (locally) compact Hausdorff space with
m(X) = n, 2 ≤ n < ω, then X can be represented as X = G ∪ F ,
where G is an open dense metrizable subspace of X, F ∩ G = ∅,
and m(F ) = n− 1.

A similar representation theorem may not hold for compact Haus-
dorff spaces with countable metrizability number.

Theorem 20. There exists a compact Hausdorff space X with a
countable π − base such that m(U) = ω for each non-empty open
subset U of X.

Proof. Let X be the space constructed from the Cantor set C, an
arbitrary countable dense subset {dn : n ∈ ω}, and from Zn that is
e.g., the one-point compactification of a discrete space of cardinality
ℵ1, for each n = 1, 2, .... �

Theorem 21. If M is a zero-dimensional metrizable space, then
M has a compactification Y such that Y \M is a union of countably
many discrete subspaces of Y.

Proof. The space M can be embedded into a Baire space κω. Let
X be the compactification of the Baire space κω as given in The-
orem 5. Then the closure of M in the space X gives the required
compactification Y . �
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