# **Topology Proceedings**

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$ 

**ISSN:** 0146-4124

COPYRIGHT  $\bigodot$  by Topology Proceedings. All rights reserved.





## COMPACTIFICATIONS OF BAIRE SPACES $\kappa^{\omega}$

#### A. SZYMANSKI

ABSTRACT. We show that the space of irrationals can be compactified in such a way that the remainder is the union of, apriori prescribed, countably many compact spaces each of weight not exceeding  $\omega_1$ . We show that any Baire space of an uncountable weight has a compactification such that its remainder is a  $\sigma$ -discrete space.

#### 1. Compactifying Baire spaces of uncountable weight

The Cartesian product of countably many copies of an infinite discrete space of cardinality  $\kappa$  is called the Baire space of weight  $\kappa$ . The Baire space of weight  $\omega$  is homeomorphic to the space of irrational numbers.

No Baire space of any uncountable weight can have a compactification whose remainder is going to be the union of finitely many metrizable subspaces. We shall show that there is a one whose remainder is the union of countably many discrete (just metrizable) subspaces.

Throughout our discussion, we treat cardinals as von Neumann ordinals endowed with the discrete topology. Let  $\kappa$  be an uncountable cardinal. The symbol  $\leq \omega \kappa$  denotes the complete tree of height  $\omega + 1$ , i.e.,

$$\leq^{\omega} \kappa = <^{\omega} \kappa \cup^{\omega} \kappa,$$

where

 $<\omega \kappa = \{s : s \text{ is a function and } Dom(s) \in \omega \text{ and } Rng(s) \subseteq \kappa \}$ 

and

 $^{\omega}\kappa = \{s : s \text{ is a function and } Dom(s) = \omega \text{ and } Rng(s) \subseteq \kappa\}.$ 

<sup>2000</sup> Mathematics Subject Classification. 54A25, 54D30.

Key words and phrases. Compact space, the Bare space of weight  $\kappa$ , metrizability number.

If  $s \in {}^{<\omega} \kappa$  and  $\alpha \in \kappa$ , then  $s \cap \alpha$  denotes the concatenation of s by  $\alpha$ .

For each  $n \in \omega$ , let  $L_n = \{t \in {}^{<\omega} \kappa : |t| = n\}$  and  $T_n = \{t \in {}^{<\omega} \kappa : |t| \le n\}$ .

For each  $s \in {}^{<\omega} \kappa$ , let  $Cone(s) = \{t \in {}^{\leq\omega} \kappa : s \subseteq t\}$ .

Let  $X_{\kappa}$  be the space whose underlying set is  $\leq^{\omega} \kappa$  which is endowed with the *tree topology*, i.e., topology generated by sets of the form

$$Cone(s) - (Cone(s \cap \alpha_1) \cup Cone(s \cap \alpha_2) \cup ... \cup Cone(s \cap \alpha_k)),$$

where  $s \in {}^{<\omega} \kappa$  and  $\alpha_i \in \kappa$  for each i = 1, 2, ..., k. In the series of simple lemmas that follows we will verify the required properties for the space  $X_{\kappa}$  to be a required compactification of the Baire space of the uncountable weight  $\kappa$ .

**Lemma 1.** If  $s, t \in {}^{<\omega} \kappa$ ,  $s \neq t$ , and

 $t \in Cone(s) - (Cone(s \cap \alpha_1) \cup Cone(s \cap \alpha_2) \cup \dots \cup Cone(s \cap \alpha_k))$ then

 $Cone(t) \subseteq Cone(s) - (Cone(s \cap \alpha_1) \cup Cone(s \cap \alpha_2) \cup ... \cup Cone(s \cap \alpha_k)).$ 

**Lemma 2.** If  $s,t \in {}^{<\omega} \kappa$ ,  $s \nsubseteq t$ , and  $s \nsupseteq t$ , then  $Cone(t) \cap Cone(s) = \emptyset$ .

**Lemma 3.** If  $s \in {}^{<\omega} \kappa$ , then  $Cone(s) \cap {}^{\omega} \kappa = \prod \{C_i : i \in \omega\}$ , where  $C_i = \{s(i)\}$  for each  $i \in Dom(s)$ , and  $C_i = \kappa$  for each  $i \notin Dom(s)$ . Thus the subspace  ${}^{\omega} \kappa$  of  $X_{\kappa}$  is the Baire space of weight  $\kappa$ .

**Lemma 4.** For each  $n \in \omega$ ,  $L_n$  is a discrete subspace of  $X_{\kappa}$  (and  $T_n$  is a closed subspace of  $X_{\kappa}$ ).

*Proof.* If 
$$s \in L_n$$
, then  $L_n \cap Cone(s) = \{s\}$ .

**Theorem 5.**  $X_{\kappa}$  is a compactification of the Baire space  ${}^{\omega}\kappa$ .

*Proof.* The space  $X_{\kappa}$  is Hausdorff (use Lemma 2). By Lemma 3, the Baire space  ${}^{\omega}\kappa$  is a dense subspace of the space  $X_{\kappa}$ .

Suppose to the contrary that  $X_{\kappa}$  is not a compact space. Thus there exists an open cover  $\mathcal{P}$  of  $X_{\kappa}$  without a finite subcover. Without loss of generality we may assume that  $\mathcal{P}$  consists of the basic open sets. Let  $U_0 \in \mathcal{P}$  be a basic set containing  $\emptyset \in X_{\kappa}$ . Since  $U_0 = Cone(\emptyset) \setminus (Cone(\emptyset \cap \alpha_1) \cup Cone(\emptyset \cap \alpha_2) \cup ... \cup Cone(\emptyset \cap \alpha_k)),$  one of  $Cone(\emptyset \cap \alpha_i)$ , i = 1, 2, ..., k, cannot be covered by finitely many elements of the cover  $\mathcal{P}$ . Thus there exists a sequence  $s_1$  of length 1 such that  $Cone(s_1)$  cannot be covered by finitely many elements of the cover  $\mathcal{P}$ .

Suppose that we have defined sequences  $s_1, s_2, ..., s_n$  satisfying the following conditions:

- (i) For each  $k \leq n$ ,  $s_k \in^{<\omega} \kappa$  and  $Dom(s_k) = k$ ;
- (ii)  $s_1 \subset s_2 \subset ... \subset s_n$ ;
- (iii) For each  $k \leq n$ , the set  $Cone(s_k)$  cannot be covered by finitely many elements of the cover  $\mathcal{P}$ .

Let  $U_n \in \mathcal{P}$  be a basic set containing  $s_n \in {}^{<\omega} \kappa$ . Since  $U_n = Cone(t) \setminus (Cone(t \cap \beta_1) \cup Cone(t \cap \beta_2) \cup ... \cup Cone(t \cap \beta_k))$ ,  $s_n$  must be equal to t, by virtue of Lemma 1. Hence one of  $Cone(s_n \cap \beta_j)$ , j = 1, 2, ..., k, cannot be covered by finitely many elements of the cover  $\mathcal{P}$ . Thus there exists a sequence  $s_{n+1}$  of length n+1 such that  $s_n \subset s_{n+1}$  and  $Cone(s_{n+1})$  cannot be covered by finitely many elements of the cover  $\mathcal{P}$ .

By induction, there exists a sequence  $s_0, s_1, ..., s_n, ...$  satisfying the following conditions:

- (i) For each  $k \in \omega$ ,  $s_k \in^{<\omega} \kappa$  and  $Dom(s_k) = k$ ;
- (ii)  $s_1 \subset s_2 \subset ... \subset s_n \subset ...$
- (iii) For each k > 0, the set  $Cone(s_k)$  cannot be covered by finitely many elements of the cover  $\mathcal{P}$ .

Let  $x = \bigcup \{s_k : k \in \omega\}$ . Since  $x \in {}^{\omega} \kappa$ , there exists U in  $\mathcal{P}$  that contains the point x. Thus  $x \in Cone(t) - (Cone(t \cap \beta_1) \cup Cone(t \cap \beta_2) \cup ... \cup Cone(t \cap \beta_k))$ . It follows that  $t \subset x$  and thus  $t = s_n$  for some  $n \in \omega$ . Since  $x \in Cone(t) - (Cone(t \cap \beta_1) \cup Cone(t \cap \beta_2) \cup ... \cup Cone(t \cap \beta_k))$ ,  $s_{n+1} \in Cone(t) - (Cone(t \cap \beta_1) \cup Cone(t \cap \beta_2) \cup ... \cup Cone(t \cap \beta_k))$  too. By lemma 1,  $Cone(s_{n+1}) \subseteq Cone(t) - (Cone(t \cap \beta_1) \cup Cone(t \cap \beta_2) \cup ... \cup Cone(t \cap \beta_k))$ , a contradiction.

#### 2. Compactifying irrationals

We begin by proving an easy fact.

**Lemma 6.** Let Y be a compact Hausdorff space and let  $p \in Y$  be a non-isolated point. Suppose that X is a compactification of the space  $Y - \{p\}$  with remainder Z. Let U be an open neighborhood of the point p in the space Y and let V be an open neighborhood of a point  $x \in Z$ . Then  $U \cap V \neq \emptyset$ .

*Proof.* The set F = X - U is a compact subset of the space  $Y - \{p\} \subset X$ . So V - F is an open neighborhood of the point x. Hence  $\emptyset \neq (V - F) \cap (Y - \{p\}) \subseteq V \cap U$ .

Let  $\mathcal{R}$  be the class of all compact Hausdorff spaces that can be used as a remainder of some compactification of the discrete countable space  $\omega$ . According to Parovičenko's theorem (cf. [1]), any compact Hausdorff space of weight not exceeding  $\omega_1$  is in  $\mathcal{R}$ .

**Lemma 7.** Let  $Y = \bigoplus \{X_n : n \in \omega\}$  be the topological sum of compact Hausdorff spaces  $X_n$ . If  $Z \in \mathcal{R}$ , then there exists a compactification X of the space Y such that the remainder X - Y is homeomorphic to Z.

*Proof.* Without loss of generality, we may assume that Y and Z are disjoint. Let  $\widetilde{X}$  be a compactification of the discrete space  $\omega$  such that the remainder  $\widetilde{X} - \omega$  is homeomorphic to Z. For any open set U of the space  $\widetilde{X}$  such that  $U \cap Z \neq \emptyset$ , let  $e(U) = \bigoplus \{X_n : n \in U \cap \omega\} \cup (U \cap Z)$ . We take X to be the set  $Y \cup Z$  with topology generated by the sets that are open subsets of the space Y or of the form e(U).

**Lemma 8.** Let Y be a compact Hausdorff space and let  $p \in Y$  be a non-isolated point that has a countable base of closed-open subsets of Y. If  $Z \in \mathcal{R}$ , then there exists a compactification X of the space  $Y - \{p\}$  such that the remainder  $X - (Y - \{p\})$  is homeomorphic to Z.

Let C be a compact Hausdorff space and let  $\{d_n : n \in \omega\}$  be an enumeration of a countable subset of C. Suppose further that each point  $d_n$  is non-isolated and has a countable base of closed-open subsets of C. Let  $Z_n \in \mathcal{R}$  for each n = 1, 2, ... By induction, we define a sequence of spaces  $\{C_n : n \in \omega\}$  as follows:

$$C_0 = C;$$

 $C_{n+1} = \text{a compactification of the space } C_n - \{d_n\} \text{ such that the remainder } C_{n+1}^* = C_{n+1} - (C_n - \{d_n\}) \text{ is homeomorphic to the space } Z_{n+1} \text{ (such a compactification exists by virtue of Lemma 8).}$ 

For n = 1, 2, ..., let  $p_n$  be the natural projection from  $C_n$  to  $C_{n-1}$ , i.e.,

$$p_n(x) = \begin{cases} d_{n-1}, & \text{if } x \in C_n^* \\ x, & \text{if } x \notin C_n^* \end{cases}.$$

**Lemma 9.** For  $n = 1, 2, ..., p_n : C_n \rightarrow C_{n-1}$  is continuous.

*Proof.* Proof. Let U be an open neighborhood of the point  $d_{n-1}$  in the space  $C_{n-1}$ . The set  $F = C_{n-1} - U$  is a compact subset of the space  $C_n$ . Clearly  $p_n^{-1}(U) = (U - \{d_{n-1}\}) \cup Z = C_n - F$ . In consequence, the set  $p_n^{-1}(U)$  is open in the space  $C_n$ .

Let us consider the inverse sequence

$$C_0 \leftarrow^{p_1} C_1 \leftarrow^{p_2} C_2 \leftarrow^{p_3} \dots \leftarrow C_{n-1} \leftarrow^{p_n} C_n \leftarrow \dots$$

and its limit X, i.e.,

$$X = \left\{ (x_i) \in \prod \{ C_i : i \in \omega \} : p_n(x_n) = x_{n-1} \text{ for } n = 1, 2, \dots \right\}.$$

**Lemma 10.** X is a compact Hausdorff space.

Let  $M_0 =$ 

$$\left\{ (x_i) \in \prod \{ C_i : i \in \omega \} : x_i = x \text{ for } i \in \omega \text{ and } x \in C - \{ d_n : n \in \omega \} \right\};$$

If n > 0,  $M_n = \{(x_i) \in \prod \{C_i : i \in \omega\} : x_i = d_{n-1} \text{ for } i = 0, 1, 2, ..., n-1 \text{ and } x_i = x \text{ for } i \geq n \text{ and } x \in C_n^*\}$ . The sets  $M_n, n \in \omega$ , are pairwise disjoint.

**Lemma 11.**  $M_0$  and  $C - \{d_n : n \in \omega\}$  are homeomorphic.

**Lemma 12.** For each  $n = 1, 2, ..., M_n$  and  $Z_n$  are homeomorphic.

Both lemmas, above, follow immediately from the following one:

**Lemma 13.** Let  $\prod \{X_{\alpha} : \alpha \in S\}$  be the product of spaces  $X_{\alpha}$ , where  $X_{\alpha} = X$  for each  $\alpha \in S$ . Then the diagonal  $\Delta = \{(x_{\alpha}) \in \prod \{X_{\alpha} : \alpha \in S\} : x_{\alpha} = x \text{ for each } \alpha \in S \text{ and } x \in X\}$  and the space X are homeomorphic.

*Proof.* Let  $h: X \to \Delta$  be defined as follows:

$$h(x) = (x_{\alpha})$$
, where  $x_{\alpha} = x$  for each  $\alpha \in S$ .

One can easily see that if  $A \subseteq X$  and  $\alpha \in S$  and  $\pi_{\alpha} : \prod \{X_{\alpha} : \alpha \in S\} \to X_{\alpha}$  is a natural projection, then  $h(A) = \Delta \cap \pi_{\alpha}^{-1}(A)$ .

Lemma 14.  $X = \bigcup \{M_n : n \in \omega\}.$ 

*Proof.* Let  $(x_i) \in X$ . Consider the following two cases:

Case (a)  $\forall i \ x_i = x_{i+1};$ 

Case (b)  $\exists i \ x_i \neq x_{i+1}$ .

In case (a), let  $x = x_i$  for each i. Since  $x_0 = x$ ,  $x \in C$ . Clearly,  $x \neq d_n$  for each  $n \in \omega$  (for if  $x = d_n$ , then  $p_{n+1}(x_{n+1}) = d_n = x$  and  $x = x_{n+1} \in C_{n+1}^*$ ; a contradiction). Hence  $(x_i) \in M_0$ .

In case (b), since  $p_{i+1}(x_{i+1}) = x_i$ ,  $x_{i+1} \in C_{n+1}^*$  and  $x_i = d_i$ . Thus  $x_j = d_i$  for each  $j \leq i$ , and  $x_j = x_{i+1}$  for each  $j \geq i+1$ . Hence  $(x_i) \in M_{i+1}$ .

**Lemma 15.** Let  $U = U_0 \times U_1 \times ... \times U_n \times C_{n+1} \times C_{n+2} \times ...$  be an open basic subset of the product  $\prod \{C_i : i \in \omega\}$ . If  $U \cap X \neq \emptyset$ , then  $(U_0 \cap U_1 \cap ... \cap U_n) \cap (C - \{d_0, d_1, ..., d_{n-1}\}) \neq \emptyset$ .

*Proof.* By Lemma 14,  $U \cap M_k \neq \emptyset$  for some  $k \in \omega$ . If k = 0, then there exists  $x \in C - \{d_n : n \in \omega\}$  such that  $(x_i) \in U$  and  $x_i = x$  for each  $i \in \omega$ . Hence  $x \in U_0 \cap U_1 \cap ... \cap U_n$ . Thus  $(U_0 \cap U_1 \cap ... \cap U_n) \cap (C - \{d_0, d_1, ..., d_{n-1}\}) \neq \emptyset$ . Let k > 0 and let  $(x_i) \in U \cap M_k$ . Thus there exists  $x \in C_k^*$  such that

$$x_i = \begin{cases} d_{k-1}, & \text{if } i < k \\ x, & \text{if } i \ge k \end{cases}$$

If k > n, then  $d_{k-1} \in U_0 \cap U_1 \cap ... \cap U_n$ . Assume that  $k \le n$ . The set  $U = \bigcap \{U_i : i \le k-1\} \cap (C - \{d_0, d_1, ..., d_{k-2}\})$  is an open neighborhood of the point  $d_{k-1}$  in the subspace  $(C - \{d_0, d_1, ..., d_{k-2}\})$ . The set  $V = \bigcap \{U_i : k \le i \le n\}$  an open neighborhood of the point x in the space  $C_k$ . By Lemma 6,  $U \cap V \ne \emptyset$ .

**Lemma 16.**  $M_0$  is a dense subset of X.

Proof. Let  $U = U_0 \times U_1 \times ... \times U_n \times C_{n+1} \times C_{n+2} \times ...$  be an open basic subset of the product  $\prod \{C_i : i \in \omega\}$  such that  $U \cap X \neq \emptyset$ . By Lemma 15,  $(U_0 \cap U_1 \cap ... \cap U_n) \cap (C - \{d_0, d_1, ..., d_{n-1}\}) \neq \emptyset$ . In consequence,  $(U_0 \cap U_1 \cap ... \cap U_n) \cap (C - \{d_n : n \in \omega\}) \neq \emptyset$ . If  $x \in (U_0 \cap U_1 \cap ... \cap U_n) \cap (C - \{d_n : n \in \omega\})$  and  $(x_i)$  is such that  $x_i = x$  for  $i \in \omega$ , then  $(x_i) \in U \cap M_0$ .

**Lemma 17.** If  $\{d_n : n \in \omega\}$  is a dense subset of C, then  $\{M_n : n \geq 1\}$  is a  $\pi$  – net in X.

*Proof.* Let  $U = U_0 \times U_1 \times ... \times U_n \times C_{n+1} \times C_{n+2} \times ...$  be an open basic subset of the product  $\prod \{C_i : i \in \omega\}$  such that  $U \cap X \neq \emptyset$ .

By Lemma 15,  $(U_0 \cap U_1 \cap ... \cap U_n) \cap (C - \{d_0, d_1, ..., d_{n-1}\}) \neq \emptyset$ . In consequence,  $U_0 \cap U_1 \cap ... \cap U_n$  contains infinitely many elements among  $\{d_n : n \in \omega\}$ . Pick any m such that m > n and  $d_m \in U_0 \cap U_1 \cap ... \cap U_n$ . Then  $M_m \subseteq U$ .

**Theorem 18.** There exists a compactification X of the space of irrational numbers  $\omega^{\omega}$  such that: (i)  $X - \omega^{\omega} = \bigcup \{M_n : n \geq 1\}$ , (ii)  $\{M_n : n \geq 1\}$  is a  $\pi$  - net in X, (iii) For each  $n = 1, 2, ..., M_n$  and  $Z_n$  are homeomorphic.

## 3. Applications

The metrizability number m(X) of a space X is the smallest cardinal number  $\kappa$  such that X can be represented as a union of  $\kappa$  many metrizable subspaces. In [2] we showed that compact Hausdorff spaces with finite metrizability number can be represented as follows:

**Theorem 19.** If X is a (locally) compact Hausdorff space with m(X) = n,  $2 \le n < \omega$ , then X can be represented as  $X = G \cup F$ , where G is an open dense metrizable subspace of X,  $F \cap G = \emptyset$ , and m(F) = n - 1.

A similar representation theorem may not hold for compact Hausdorff spaces with countable metrizability number.

**Theorem 20.** There exists a compact Hausdorff space X with a countable  $\pi$  – base such that  $m(U) = \omega$  for each non-empty open subset U of X.

*Proof.* Let X be the space constructed from the Cantor set C, an arbitrary countable dense subset  $\{d_n : n \in \omega\}$ , and from  $Z_n$  that is e.g., the one-point compactification of a discrete space of cardinality  $\aleph_1$ , for each n = 1, 2, ...

**Theorem 21.** If M is a zero-dimensional metrizable space, then M has a compactification Y such that  $Y \setminus M$  is a union of countably many discrete subspaces of Y.

*Proof.* The space M can be embedded into a Baire space  $\kappa^{\omega}$ . Let X be the compactification of the Baire space  $\kappa^{\omega}$  as given in Theorem 5. Then the closure of M in the space X gives the required compactification Y.

## References

- [1] R.Engelking, General Topology (Heldermann-Verlag, Berlin, 1989).
- [2] M.Ismail and A.Szymanski, On locally compact Hausdorff spaces with finite metrizability number, Topology and its Applications 71(1996), 179 191.

Department of Mathematics, Slippery Rock University, Slippery Rock, PA 16057

 $E ext{-}mail\ address: andrzej.szymanski@sru.edu}$