Topology Proceedings Web: http://topology.auburn.edu/tp/ Mail: Topology Proceedings Department of Mathematics & Statistics Auburn University, Alabama 36849, USA $\textbf{E-mail:} \quad topolog@auburn.edu$ **ISSN:** 0146-4124 COPYRIGHT \bigodot by Topology Proceedings. All rights reserved. ## COMPACTIFICATIONS OF BAIRE SPACES κ^{ω} #### A. SZYMANSKI ABSTRACT. We show that the space of irrationals can be compactified in such a way that the remainder is the union of, apriori prescribed, countably many compact spaces each of weight not exceeding ω_1 . We show that any Baire space of an uncountable weight has a compactification such that its remainder is a σ -discrete space. #### 1. Compactifying Baire spaces of uncountable weight The Cartesian product of countably many copies of an infinite discrete space of cardinality κ is called the Baire space of weight κ . The Baire space of weight ω is homeomorphic to the space of irrational numbers. No Baire space of any uncountable weight can have a compactification whose remainder is going to be the union of finitely many metrizable subspaces. We shall show that there is a one whose remainder is the union of countably many discrete (just metrizable) subspaces. Throughout our discussion, we treat cardinals as von Neumann ordinals endowed with the discrete topology. Let κ be an uncountable cardinal. The symbol $\leq \omega \kappa$ denotes the complete tree of height $\omega + 1$, i.e., $$\leq^{\omega} \kappa = <^{\omega} \kappa \cup^{\omega} \kappa,$$ where $<\omega \kappa = \{s : s \text{ is a function and } Dom(s) \in \omega \text{ and } Rng(s) \subseteq \kappa \}$ and $^{\omega}\kappa = \{s : s \text{ is a function and } Dom(s) = \omega \text{ and } Rng(s) \subseteq \kappa\}.$ ²⁰⁰⁰ Mathematics Subject Classification. 54A25, 54D30. Key words and phrases. Compact space, the Bare space of weight κ , metrizability number. If $s \in {}^{<\omega} \kappa$ and $\alpha \in \kappa$, then $s \cap \alpha$ denotes the concatenation of s by α . For each $n \in \omega$, let $L_n = \{t \in {}^{<\omega} \kappa : |t| = n\}$ and $T_n = \{t \in {}^{<\omega} \kappa : |t| \le n\}$. For each $s \in {}^{<\omega} \kappa$, let $Cone(s) = \{t \in {}^{\leq\omega} \kappa : s \subseteq t\}$. Let X_{κ} be the space whose underlying set is $\leq^{\omega} \kappa$ which is endowed with the *tree topology*, i.e., topology generated by sets of the form $$Cone(s) - (Cone(s \cap \alpha_1) \cup Cone(s \cap \alpha_2) \cup ... \cup Cone(s \cap \alpha_k)),$$ where $s \in {}^{<\omega} \kappa$ and $\alpha_i \in \kappa$ for each i = 1, 2, ..., k. In the series of simple lemmas that follows we will verify the required properties for the space X_{κ} to be a required compactification of the Baire space of the uncountable weight κ . **Lemma 1.** If $s, t \in {}^{<\omega} \kappa$, $s \neq t$, and $t \in Cone(s) - (Cone(s \cap \alpha_1) \cup Cone(s \cap \alpha_2) \cup \dots \cup Cone(s \cap \alpha_k))$ then $Cone(t) \subseteq Cone(s) - (Cone(s \cap \alpha_1) \cup Cone(s \cap \alpha_2) \cup ... \cup Cone(s \cap \alpha_k)).$ **Lemma 2.** If $s,t \in {}^{<\omega} \kappa$, $s \nsubseteq t$, and $s \nsupseteq t$, then $Cone(t) \cap Cone(s) = \emptyset$. **Lemma 3.** If $s \in {}^{<\omega} \kappa$, then $Cone(s) \cap {}^{\omega} \kappa = \prod \{C_i : i \in \omega\}$, where $C_i = \{s(i)\}$ for each $i \in Dom(s)$, and $C_i = \kappa$ for each $i \notin Dom(s)$. Thus the subspace ${}^{\omega} \kappa$ of X_{κ} is the Baire space of weight κ . **Lemma 4.** For each $n \in \omega$, L_n is a discrete subspace of X_{κ} (and T_n is a closed subspace of X_{κ}). *Proof.* If $$s \in L_n$$, then $L_n \cap Cone(s) = \{s\}$. **Theorem 5.** X_{κ} is a compactification of the Baire space ${}^{\omega}\kappa$. *Proof.* The space X_{κ} is Hausdorff (use Lemma 2). By Lemma 3, the Baire space ${}^{\omega}\kappa$ is a dense subspace of the space X_{κ} . Suppose to the contrary that X_{κ} is not a compact space. Thus there exists an open cover \mathcal{P} of X_{κ} without a finite subcover. Without loss of generality we may assume that \mathcal{P} consists of the basic open sets. Let $U_0 \in \mathcal{P}$ be a basic set containing $\emptyset \in X_{\kappa}$. Since $U_0 = Cone(\emptyset) \setminus (Cone(\emptyset \cap \alpha_1) \cup Cone(\emptyset \cap \alpha_2) \cup ... \cup Cone(\emptyset \cap \alpha_k)),$ one of $Cone(\emptyset \cap \alpha_i)$, i = 1, 2, ..., k, cannot be covered by finitely many elements of the cover \mathcal{P} . Thus there exists a sequence s_1 of length 1 such that $Cone(s_1)$ cannot be covered by finitely many elements of the cover \mathcal{P} . Suppose that we have defined sequences $s_1, s_2, ..., s_n$ satisfying the following conditions: - (i) For each $k \leq n$, $s_k \in^{<\omega} \kappa$ and $Dom(s_k) = k$; - (ii) $s_1 \subset s_2 \subset ... \subset s_n$; - (iii) For each $k \leq n$, the set $Cone(s_k)$ cannot be covered by finitely many elements of the cover \mathcal{P} . Let $U_n \in \mathcal{P}$ be a basic set containing $s_n \in {}^{<\omega} \kappa$. Since $U_n = Cone(t) \setminus (Cone(t \cap \beta_1) \cup Cone(t \cap \beta_2) \cup ... \cup Cone(t \cap \beta_k))$, s_n must be equal to t, by virtue of Lemma 1. Hence one of $Cone(s_n \cap \beta_j)$, j = 1, 2, ..., k, cannot be covered by finitely many elements of the cover \mathcal{P} . Thus there exists a sequence s_{n+1} of length n+1 such that $s_n \subset s_{n+1}$ and $Cone(s_{n+1})$ cannot be covered by finitely many elements of the cover \mathcal{P} . By induction, there exists a sequence $s_0, s_1, ..., s_n, ...$ satisfying the following conditions: - (i) For each $k \in \omega$, $s_k \in^{<\omega} \kappa$ and $Dom(s_k) = k$; - (ii) $s_1 \subset s_2 \subset ... \subset s_n \subset ...$ - (iii) For each k > 0, the set $Cone(s_k)$ cannot be covered by finitely many elements of the cover \mathcal{P} . Let $x = \bigcup \{s_k : k \in \omega\}$. Since $x \in {}^{\omega} \kappa$, there exists U in \mathcal{P} that contains the point x. Thus $x \in Cone(t) - (Cone(t \cap \beta_1) \cup Cone(t \cap \beta_2) \cup ... \cup Cone(t \cap \beta_k))$. It follows that $t \subset x$ and thus $t = s_n$ for some $n \in \omega$. Since $x \in Cone(t) - (Cone(t \cap \beta_1) \cup Cone(t \cap \beta_2) \cup ... \cup Cone(t \cap \beta_k))$, $s_{n+1} \in Cone(t) - (Cone(t \cap \beta_1) \cup Cone(t \cap \beta_2) \cup ... \cup Cone(t \cap \beta_k))$ too. By lemma 1, $Cone(s_{n+1}) \subseteq Cone(t) - (Cone(t \cap \beta_1) \cup Cone(t \cap \beta_2) \cup ... \cup Cone(t \cap \beta_k))$, a contradiction. #### 2. Compactifying irrationals We begin by proving an easy fact. **Lemma 6.** Let Y be a compact Hausdorff space and let $p \in Y$ be a non-isolated point. Suppose that X is a compactification of the space $Y - \{p\}$ with remainder Z. Let U be an open neighborhood of the point p in the space Y and let V be an open neighborhood of a point $x \in Z$. Then $U \cap V \neq \emptyset$. *Proof.* The set F = X - U is a compact subset of the space $Y - \{p\} \subset X$. So V - F is an open neighborhood of the point x. Hence $\emptyset \neq (V - F) \cap (Y - \{p\}) \subseteq V \cap U$. Let \mathcal{R} be the class of all compact Hausdorff spaces that can be used as a remainder of some compactification of the discrete countable space ω . According to Parovičenko's theorem (cf. [1]), any compact Hausdorff space of weight not exceeding ω_1 is in \mathcal{R} . **Lemma 7.** Let $Y = \bigoplus \{X_n : n \in \omega\}$ be the topological sum of compact Hausdorff spaces X_n . If $Z \in \mathcal{R}$, then there exists a compactification X of the space Y such that the remainder X - Y is homeomorphic to Z. *Proof.* Without loss of generality, we may assume that Y and Z are disjoint. Let \widetilde{X} be a compactification of the discrete space ω such that the remainder $\widetilde{X} - \omega$ is homeomorphic to Z. For any open set U of the space \widetilde{X} such that $U \cap Z \neq \emptyset$, let $e(U) = \bigoplus \{X_n : n \in U \cap \omega\} \cup (U \cap Z)$. We take X to be the set $Y \cup Z$ with topology generated by the sets that are open subsets of the space Y or of the form e(U). **Lemma 8.** Let Y be a compact Hausdorff space and let $p \in Y$ be a non-isolated point that has a countable base of closed-open subsets of Y. If $Z \in \mathcal{R}$, then there exists a compactification X of the space $Y - \{p\}$ such that the remainder $X - (Y - \{p\})$ is homeomorphic to Z. Let C be a compact Hausdorff space and let $\{d_n : n \in \omega\}$ be an enumeration of a countable subset of C. Suppose further that each point d_n is non-isolated and has a countable base of closed-open subsets of C. Let $Z_n \in \mathcal{R}$ for each n = 1, 2, ... By induction, we define a sequence of spaces $\{C_n : n \in \omega\}$ as follows: $$C_0 = C;$$ $C_{n+1} = \text{a compactification of the space } C_n - \{d_n\} \text{ such that the remainder } C_{n+1}^* = C_{n+1} - (C_n - \{d_n\}) \text{ is homeomorphic to the space } Z_{n+1} \text{ (such a compactification exists by virtue of Lemma 8).}$ For n = 1, 2, ..., let p_n be the natural projection from C_n to C_{n-1} , i.e., $$p_n(x) = \begin{cases} d_{n-1}, & \text{if } x \in C_n^* \\ x, & \text{if } x \notin C_n^* \end{cases}.$$ **Lemma 9.** For $n = 1, 2, ..., p_n : C_n \rightarrow C_{n-1}$ is continuous. *Proof.* Proof. Let U be an open neighborhood of the point d_{n-1} in the space C_{n-1} . The set $F = C_{n-1} - U$ is a compact subset of the space C_n . Clearly $p_n^{-1}(U) = (U - \{d_{n-1}\}) \cup Z = C_n - F$. In consequence, the set $p_n^{-1}(U)$ is open in the space C_n . Let us consider the inverse sequence $$C_0 \leftarrow^{p_1} C_1 \leftarrow^{p_2} C_2 \leftarrow^{p_3} \dots \leftarrow C_{n-1} \leftarrow^{p_n} C_n \leftarrow \dots$$ and its limit X, i.e., $$X = \left\{ (x_i) \in \prod \{ C_i : i \in \omega \} : p_n(x_n) = x_{n-1} \text{ for } n = 1, 2, \dots \right\}.$$ **Lemma 10.** X is a compact Hausdorff space. Let $M_0 =$ $$\left\{ (x_i) \in \prod \{ C_i : i \in \omega \} : x_i = x \text{ for } i \in \omega \text{ and } x \in C - \{ d_n : n \in \omega \} \right\};$$ If n > 0, $M_n = \{(x_i) \in \prod \{C_i : i \in \omega\} : x_i = d_{n-1} \text{ for } i = 0, 1, 2, ..., n-1 \text{ and } x_i = x \text{ for } i \geq n \text{ and } x \in C_n^*\}$. The sets $M_n, n \in \omega$, are pairwise disjoint. **Lemma 11.** M_0 and $C - \{d_n : n \in \omega\}$ are homeomorphic. **Lemma 12.** For each $n = 1, 2, ..., M_n$ and Z_n are homeomorphic. Both lemmas, above, follow immediately from the following one: **Lemma 13.** Let $\prod \{X_{\alpha} : \alpha \in S\}$ be the product of spaces X_{α} , where $X_{\alpha} = X$ for each $\alpha \in S$. Then the diagonal $\Delta = \{(x_{\alpha}) \in \prod \{X_{\alpha} : \alpha \in S\} : x_{\alpha} = x \text{ for each } \alpha \in S \text{ and } x \in X\}$ and the space X are homeomorphic. *Proof.* Let $h: X \to \Delta$ be defined as follows: $$h(x) = (x_{\alpha})$$, where $x_{\alpha} = x$ for each $\alpha \in S$. One can easily see that if $A \subseteq X$ and $\alpha \in S$ and $\pi_{\alpha} : \prod \{X_{\alpha} : \alpha \in S\} \to X_{\alpha}$ is a natural projection, then $h(A) = \Delta \cap \pi_{\alpha}^{-1}(A)$. Lemma 14. $X = \bigcup \{M_n : n \in \omega\}.$ *Proof.* Let $(x_i) \in X$. Consider the following two cases: Case (a) $\forall i \ x_i = x_{i+1};$ Case (b) $\exists i \ x_i \neq x_{i+1}$. In case (a), let $x = x_i$ for each i. Since $x_0 = x$, $x \in C$. Clearly, $x \neq d_n$ for each $n \in \omega$ (for if $x = d_n$, then $p_{n+1}(x_{n+1}) = d_n = x$ and $x = x_{n+1} \in C_{n+1}^*$; a contradiction). Hence $(x_i) \in M_0$. In case (b), since $p_{i+1}(x_{i+1}) = x_i$, $x_{i+1} \in C_{n+1}^*$ and $x_i = d_i$. Thus $x_j = d_i$ for each $j \leq i$, and $x_j = x_{i+1}$ for each $j \geq i+1$. Hence $(x_i) \in M_{i+1}$. **Lemma 15.** Let $U = U_0 \times U_1 \times ... \times U_n \times C_{n+1} \times C_{n+2} \times ...$ be an open basic subset of the product $\prod \{C_i : i \in \omega\}$. If $U \cap X \neq \emptyset$, then $(U_0 \cap U_1 \cap ... \cap U_n) \cap (C - \{d_0, d_1, ..., d_{n-1}\}) \neq \emptyset$. *Proof.* By Lemma 14, $U \cap M_k \neq \emptyset$ for some $k \in \omega$. If k = 0, then there exists $x \in C - \{d_n : n \in \omega\}$ such that $(x_i) \in U$ and $x_i = x$ for each $i \in \omega$. Hence $x \in U_0 \cap U_1 \cap ... \cap U_n$. Thus $(U_0 \cap U_1 \cap ... \cap U_n) \cap (C - \{d_0, d_1, ..., d_{n-1}\}) \neq \emptyset$. Let k > 0 and let $(x_i) \in U \cap M_k$. Thus there exists $x \in C_k^*$ such that $$x_i = \begin{cases} d_{k-1}, & \text{if } i < k \\ x, & \text{if } i \ge k \end{cases}$$ If k > n, then $d_{k-1} \in U_0 \cap U_1 \cap ... \cap U_n$. Assume that $k \le n$. The set $U = \bigcap \{U_i : i \le k-1\} \cap (C - \{d_0, d_1, ..., d_{k-2}\})$ is an open neighborhood of the point d_{k-1} in the subspace $(C - \{d_0, d_1, ..., d_{k-2}\})$. The set $V = \bigcap \{U_i : k \le i \le n\}$ an open neighborhood of the point x in the space C_k . By Lemma 6, $U \cap V \ne \emptyset$. **Lemma 16.** M_0 is a dense subset of X. Proof. Let $U = U_0 \times U_1 \times ... \times U_n \times C_{n+1} \times C_{n+2} \times ...$ be an open basic subset of the product $\prod \{C_i : i \in \omega\}$ such that $U \cap X \neq \emptyset$. By Lemma 15, $(U_0 \cap U_1 \cap ... \cap U_n) \cap (C - \{d_0, d_1, ..., d_{n-1}\}) \neq \emptyset$. In consequence, $(U_0 \cap U_1 \cap ... \cap U_n) \cap (C - \{d_n : n \in \omega\}) \neq \emptyset$. If $x \in (U_0 \cap U_1 \cap ... \cap U_n) \cap (C - \{d_n : n \in \omega\})$ and (x_i) is such that $x_i = x$ for $i \in \omega$, then $(x_i) \in U \cap M_0$. **Lemma 17.** If $\{d_n : n \in \omega\}$ is a dense subset of C, then $\{M_n : n \geq 1\}$ is a π – net in X. *Proof.* Let $U = U_0 \times U_1 \times ... \times U_n \times C_{n+1} \times C_{n+2} \times ...$ be an open basic subset of the product $\prod \{C_i : i \in \omega\}$ such that $U \cap X \neq \emptyset$. By Lemma 15, $(U_0 \cap U_1 \cap ... \cap U_n) \cap (C - \{d_0, d_1, ..., d_{n-1}\}) \neq \emptyset$. In consequence, $U_0 \cap U_1 \cap ... \cap U_n$ contains infinitely many elements among $\{d_n : n \in \omega\}$. Pick any m such that m > n and $d_m \in U_0 \cap U_1 \cap ... \cap U_n$. Then $M_m \subseteq U$. **Theorem 18.** There exists a compactification X of the space of irrational numbers ω^{ω} such that: (i) $X - \omega^{\omega} = \bigcup \{M_n : n \geq 1\}$, (ii) $\{M_n : n \geq 1\}$ is a π - net in X, (iii) For each $n = 1, 2, ..., M_n$ and Z_n are homeomorphic. ## 3. Applications The metrizability number m(X) of a space X is the smallest cardinal number κ such that X can be represented as a union of κ many metrizable subspaces. In [2] we showed that compact Hausdorff spaces with finite metrizability number can be represented as follows: **Theorem 19.** If X is a (locally) compact Hausdorff space with m(X) = n, $2 \le n < \omega$, then X can be represented as $X = G \cup F$, where G is an open dense metrizable subspace of X, $F \cap G = \emptyset$, and m(F) = n - 1. A similar representation theorem may not hold for compact Hausdorff spaces with countable metrizability number. **Theorem 20.** There exists a compact Hausdorff space X with a countable π – base such that $m(U) = \omega$ for each non-empty open subset U of X. *Proof.* Let X be the space constructed from the Cantor set C, an arbitrary countable dense subset $\{d_n : n \in \omega\}$, and from Z_n that is e.g., the one-point compactification of a discrete space of cardinality \aleph_1 , for each n = 1, 2, ... **Theorem 21.** If M is a zero-dimensional metrizable space, then M has a compactification Y such that $Y \setminus M$ is a union of countably many discrete subspaces of Y. *Proof.* The space M can be embedded into a Baire space κ^{ω} . Let X be the compactification of the Baire space κ^{ω} as given in Theorem 5. Then the closure of M in the space X gives the required compactification Y. ## References - [1] R.Engelking, General Topology (Heldermann-Verlag, Berlin, 1989). - [2] M.Ismail and A.Szymanski, On locally compact Hausdorff spaces with finite metrizability number, Topology and its Applications 71(1996), 179 191. Department of Mathematics, Slippery Rock University, Slippery Rock, PA 16057 $E ext{-}mail\ address: andrzej.szymanski@sru.edu}$