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EQUIVALENCE OF STAR-PRODUCTS ON
SYMPLECTIC MANIFOLDS

AUGUSTIN BATUBENGE, SIZWE MABIZELA, AND FERDINAND
TEMO BEKO

Abstract. Besides properties related to the Hochschild co-
homology of a symplectic manifold model in analytical dy-
namics with applications in quantum theory, this paper also
shows the equivalence of two differential star-products, more
specifically, that every differential star-product of two func-
tions u and v on a symplectic manifold is equivalent to one
whose linear term is half of the Poisson bracket of these func-
tions, i.e., 1

2
{u, v}.

1. Introduction

Star-products were introduced in [2] to consider a particular de-
formation of the space C∞(M) of smooth functions on a symplectic
manifold equipped with its double structure of associative algebra
according to the usual pointwise multiplication of functions and the
Poisson Lie algebra structure for a new approach of quantum me-
chanics. That is, a star-product is a formal deformation of these
two algebraic structures. J. Vey [7] proved the existence of such
deformations assuming that the third De Rham cohomology group
of the manifold vanishes. Then, in 1983, M. De Wilde and P. B. A.
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Lecomte [4] proved the existence of a star-product on a symplectic
manifold. In this paper, we will only be concerned with differential
star-products, that is, star-products defined by a series of bidif-
ferential operators on a symplectic manifold. A particular type of
such star-products is defined.

2. Preliminaries

Definition 2.1. A symplectic structure on a manifold M is a closed
and nondegenerate 2-form ω on M . The pair (M,ω) is called sym-
plectic manifold.

Definition 2.2. Let (M,ω) be a symplectic manifold. A vector
field X is said to be locally Hamiltonian if iXω is an exact 1-form
on M , where i is the interior product on M .

Notation. We shall denote by Xu the unique Hamiltonian vector
field such that iXuω = du for u ∈ C∞(M).

Remarks:

(1) The space of symplectic vector fields modulo the space of
Hamiltonian vector fields is isomorphic to the space of closed
1-forms modulo the space of exact 1-forms. That is, it is
isomorphic to the first group of De Rham cohomology of M
denoted by H1(M,R).

(2) It is a consequence of the Poincare Lemma that every sym-
plectic vector field is locally Hamiltonian.

Definition 2.3. Let (M,ω) be a symplectic manifold, and let u
and v be two smooth functions on M . The Poisson bracket of u
and v, denoted by {u, v}, is defined by

{u, v} = Xu(v) = ω(Xv, Xu).

Note that the Poisson bracket of u and v can also be defined in
terms of the Lie derivative as follows:

{u, v} = −LXu(v) = LXv(u) = −iXu ◦ iXv(ω).

Defined in this way, the Poisson bracket can be viewed as a deriva-
tion on the space C∞(M) of smooth functions on the manifold M .
The vector space C∞(M) equipped with the Poisson bracket is a
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Lie algebra. The Poisson tensor
∧

is a 2-alternative vector field
such that:

{u, v} = i
∧

(du ∧ dv)

whose local co-ordinates ∧ij define a square matrix (∧ij) so that the
inverse of this matrix is (ωij), where ωij are the components of the
symplectic 2-form ω. In what follows, we consider formal deforma-
tions of the associative structure of the algebra N = (C∞(M), {, }),
that is, the deformations defined on the space N [ν] of formal series
in the formal parameter ν with coefficients inN . The linear (or mul-
tilinear) map T on N [ν] is formal if N [ν] = {fν/fν =

∑∞
k=0 ν

kfk;
fk ∈ N}, and the linear (or multilinear) map T on N [ν] is formal
if T (νfν) = νT (fν) (satisfied by each argument in the multilinear
case).

3. Star-product on a symplectic manifold (M,ω)

Unless otherwise indicated, the manifold that we consider will
be assumed paracompact. Furthermore, to set the following defini-
tion, we consider on C∞(M) the functions Cr (r a natural number)
defined by Cr : C∞(M)× C∞(M) −→ C∞(M) such that

(1) Cr is a differential operator in both variables and annihilates
constants;

(2) C0(u, v) = u · v where · is the pointwise multiplication of
functions;

(3) C1(u, v)−C1(v, u) ≡ {u, v} is the Poisson bracket on (M,ω);
(4) Ck(u, v) = (−1)kCk(v, u) for k ≥ 2;
(5) Ck(1, u) = Ck(u, 1) = 0.

Definition 3.1. A star product (?-product) on a symplectic mani-
fold (M,ω) is a formal deformation Mν defined on N [ν] such that
for all u and v in N ,

Mν(u, v) = u ? v = u ?ν v =
∑
r≥0

νrCr(u, v)

where Cr is defined as above and the constant function 1 is the
unity. A ?-product is said to be of order k if u?ν v =

∑k
r=0Cr(u, v).

The star-commutator on a symplectic manifold (M,ω) is defined
in terms of a star-product as follows

[u, v]? = u ? v − v ? u.
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This is closely related to the commutator of observables in quan-
tum theory. The symplectic manifold (M,ω) is said to admit a
deformation quantization provided a star-product always exists on
M .

Note that the set N [ν] is a Lie algebra whose adjoint represen-
tation is given by

ad?(u)(v) = [u, v]? .

From the definition of the star-product, we have

[u, v]? = ν{u, v} − 2
∞∑
r=1

C2r+1(u, v)ν2r+1 + ....

Definition 3.2. Two star-products, ? and ?′, on the symplectic
manifold (M,ω) are equivalent if there exists a series

T =
∞∑
r=0

νrTr

where for each natural number r, Tr is a linear operator on N ,
T0 = idN is the identity function on N , and T is a linear bijection
on N [ν] which satisfies

T (u ? v) = T (u) ?′ T (v).

The study of a star-product on its star-product algebra N [ν] =
C∞(M)[ν] modulo this equivalence relation requires M. Gersten-
haber’s deformation theory [5] which is based on the Hochschild
cohomology of the algebra N .

Definition 3.3. A Hochschild p-cochain on the commutative alge-
bra N is the p-linear map from N × N × ... × N (p copies of N)
into N , and a Hochschild coboundary operator on the algebra N is
a map ∂ satisfying the following property:
for all p-cochains C on N ,

(∂C)(u0, ..., up) = u0 ?ν C(u1, ..., up) +
p∑
r=1

(−1)rC(u0, ..., ur−1 ?ν ur, ..., up) +

(−1)p+1C(u0, ..., up−1) ?ν up .
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Remark: In this paper, p-cochains, p-coboundaries, and the co-
boundary operator are related to Hochschild cohomology.

Example. A 1 or 2-coboundary ∂ is given by

(∂C1)(u, v) = uC1(v)− C1(u · v) + C1(u) · v
(∂C2)(u, v, w) =
uC2(v, w)− C2(u · v, w) + C2(u, v · w)− C2(u, v) · w

where C1 and C2 are cochains.

Definition 3.4. A p-cochain C is said to be a p-cocycle if ∂C = 0,
and it is said to be a coboundary if C = ∂B for some (p−1)-cochain
B.

Definition 3.5. A p-cochain C is said to be
(1) differential if its variables are all differential operators;
(2) k-differential if each variable is a k-differential operator.

A p-cochain is said to annihilate constants if it vanishes for any
constant among its variables.

It can be seen immediately that annihilating differential 1-co-
chains are cocycles, and that 1-cocycles are derivations on N =
C∞(M). In fact, from

0 = (∂C)(u, v) = uC(v)− C(u · v) + C(u) · v,
one deduces that

C(u · v) = uC(v) + C(u) · v,
so that if the 1-cocycles define vector fields on M, then they define
the 1-differential annihilating cochains.

Definition 3.6. The differential p-group of Hochschild cohomology
of N is the quotient of the space of differential p-cocycles by the
space of differential p-coboundaries.

From a p-cochain C and a q-cochain D, a (p + q)-cochain is
defined by

(C⊗D)(u1, ..., up, up+1, ..., up+q) = C(u1, ..., up)+D(up+1, ..., up+q)

and the coboundary operator is a graded derivation, that is,

∂(C ⊗D) = (∂C)⊗D + (−1)pC ⊗ (∂D).
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When the cochain C is expressed in terms of local co-ordinates,
its support suppC is the union of supports of coefficients.

Proposition 3.1. If C is a differential p-cocycle on C∞(Rn), then
there exists a (p− 1)-cochain B and a differential p-cocycle A such
that C = ∂B+A. If C annihilates constants, then A and B can be
chosen such that they also annihilate constants and their supports
are contained in the support of C.

Proof: Let p = 1. Then every 1-cocycle is a vector field and so,
the proposition holds trivially.

Now let us suppose that this result holds for a differential r-
cocycle C(u1, ..., ur) with 1 ≥ r ≤ (p − 1) and u1 an operator of
order k (k > 1). There exists a coboundary of first order as we can
let

C(u1, ..., up) =
∑
i1,...,ik

∂ku1

∂xi1 ...∂xik
Di1...ik(u2, ..., up) + ...

where Di1...ik are the symmetric cochains with respect to i1, ..., ik;
or, using the multi-index notation, it follows that

C =
∑
|i|=k

∂i ⊗Di + ....

Thus, we can use the identities (1) and (2) above and the fact that
∂2 = 0 to get

∂C = −
∑
|i|=k

∂i ⊗ ∂Di + ....

That is, if C is a p-cocycle, the coefficients of higher degree deriva-
tives with respect to us (s = 1, ..., k) are (p − 1)-cocycles. By
induction hypothesis, Di = ∂Ei + Fi, where Fi are 1-differential
and suppFi ⊂ suppC for 1 ≤ i ≤ p− 1. If

G =
∑
|i|=k

∂i ⊗ Ei + Fi ◦ (∂i ⊗ Idp−2),

then a short calculation leads to

∂G = −
∑
|i|=k

∂i ⊗Di + ...
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where ... stands for the terms in which the derivative of the first
variable is of order less than k. Hence, the order of C + ∂G is
at most k − 1 with respect to the first argument. By iteration,
this order can be reduced to 1 with respect to the first argument.
Suppose that

C =
n∑
i=1

∂

∂xi
⊗Di .

Then,

∂C = −
n∑
i=1

∂

∂xi
⊗ ∂Di,

and C is a cocycle if and only if Di are cocycles, i.e.,

Di = ∂Ei + Fi

where Fi are 1-differential and

C + ∂

n∑
i=1

∂

∂xi
⊗ Ei =

n∑
i=1

∂

∂xi
⊗ Fi.

�

Proposition 3.2. If C is a 1-differential p-cochain on Rn whose
alternating part is A, then

C = ∂B +A

where B is 2-differential and is determined by C, and suppB ⊂
suppC.

Proof: Let C be a 1-differential p-cochain annihilating constants.
Then C has the following form:

C(u1, ..., up) =
∑

i1,i2,...,ip

Ci1i2...ip
∂u1

∂xi1
...
∂up
∂xip

,

where the coefficients Ci1i2...ip are given by

Ci1...ip = C(xi1 , ..., xip).

For a permutation σ on p elements {1, ..., p}, let

(σC)(u1, ..., up) = C(uσ−1(1), ..., uσ−1(p))
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define an action of the group σ ∈ Sp of all permutations of p
elements on the p-cochains. For each permutation σ ∈ Sp, we
define a 2-differential (p− 1)-cochain φσ(C) by

∂φσ(C) := C − ε(σ)σ · C
where ε(σ) is the signature for σ ∈ Sp . In particular, if τ is a
transposition of consecutive integers, and if we consider a fixed i
such that i ≤ p− 1, the (p− 1)-cochain φτ (C)

φτ (C)(u1, ..., up−1) =

(−1)i
∑
r,s

C(u1, ..., ui−1, xr, xs, ui+1, ..., up−1)
∂2ui
∂xr∂xs

satisfies
∂φτ (C) = C + τ · C.

Then, we make two transpositions, τ1 and τ2, of two consecutive
integers and we have

∂[φτ1(τ2C)− φτ2(C)] = C − τ1τ2C.

For each σ ∈ Sp, we define a 2-differential (p − 1)-cochain φσ(C)
by letting

∂φσ(C) := C − ε(σ)σ · C
where ε(σ) is the signature of σ. Now, let

φ(C) =
1
p!

∑
σ∈Sp

φσ(C).

Then,

C = ∂φ(C) +
1
p!

∑
σ∈Sp

ε(σ)σ · C

up to p!. Clearly, C is cohomologous to its antisymmetric part and
that suppφ(C) ⊂ suppC. �

Theorem 3.1. A 1-differential p-cocycle C on a manifold M is
the sum of a coboundary of a differential (p − 1)-cochain B and a
1-differential skew-symmetric p-cocycle, A, i.e.,

C = ∂B +A.

If C annihilates constants, then B can also be chosen to annihilate
constants.
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Proof: Let {Uλ}λ∈∧ be a locally finite covering subordinated to
a partition of unity ρλ of the manifold M . Then, a p-cocycle C can
be written as a locally finite sum of p-cocycles

C =
∑
λ∈
∧ ρλCλ.

From propositions 3.1 and 3.2 above, we can write

ρλCλ = ∂Bλ +Aλ

where suppBλ ⊂ Uλ. Let B =
∑

λ∈
∧Bλ and A =

∑
λ∈
∧Aλ, then

C = ∂B + A, where A and B are locally finite, and are globally
defined. �

Remark: Note that in the symplectic case, the skew-symmetric
1-differential p-cocycle A can be written in terms of Hamiltonian
vector fields as A(u1, ..., up) = α(Xu1 , ..., Xup) where α is therefore
a one p-form and

C(u1, ..., up) = (∂B)(u1, ..., up) + α(Xu1 , ..., Xup).

Definition 3.7. A star-product, ?, on a symplectic manifold (M,ω)
is said to be differential if the 2-cochains Cτ (u, v) defining it are bi-
differential operators.

Definition 3.8. Two star-products, ? and ?′, on a symplectic man-
ifold (M,ω) are said to be differentially equivalent if there exists a
series

T =
∞∑
r=0

νrTr

where Tr are differential operators on N = C∞(M) and such that

T (u ? v) = T (u) ?′ T (v).

Note that star-products that are differentially equivalent are equiv-
alent. The following theorem asserts that when star-products are
differential, they are differentially equivalent if and only if they are
equivalent.

Theorem 3.2. Let ? and ?′ be two differential star-products and
let

T =
∑
r≥0

νrTr,
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where T0 = id be an equivalence with T (u ? v) = T (u) ?′ T (v), then
Tr are differential operators on N .

Proof: Let us suppose that the first k operators T1, ..., Tk in T

are differential and define T ′ =
∑k

r=0 ν
rTr and T ′′ = T ′−1 ◦ T . It

is obvious that the form of T ′′ is

T ′′(u) = u+ νk+1T ′′k+1(u) + ....

Let us define a star-product ?′′ such that

u ?′′ v = T−1(T ′(u) ?′ T ′(v))

and ? satisfies the following relation

u ? v = T ′
−1(T ′′(u) ?′′ T ′′(v)).

Then, T ′′ = T ′−1 ◦ T is an equivalence between two differential
star-products, ? and ?′′. If we consider only the (k+1)-th degree’s
terms in u ? v = T ′−1(T ′′(u) ?′′ T ′′(v)), it follows that

(∂T ′′k+1)(u, v) = T ′′k+1(u)v + uT ′′k+1(v)− T ′′k+1(u · v)

is a 2-cocycle bidifferential and symmetric. Thus, from Theorem
3.1 above, ∂T ′′k+1 is the coboundary of a differential skew-symmetric
1-cochain plus a skew-symmetric differential 1-cocycle. The exact
terms are symmetric so that the skew-symmetric part is equal to
zero. Thus, there exists a differential 1-cochain B such that

∂(T ′′k+1 −B) = 0.

Hence, X = T ′′k+1−B is a vector field on M , that is a derivation on
N = C∞(M). Thus, T ′′k+1 = B + X is differential. Now Tk+1 is a
linear combination of T1,...,Tk and T ′′k+1, which are differential, and
Tk+1 is also. By induction, one concludes that T is differential. �

The next proposition is an immediate application of Theorem
3.1 above.

Proposition 3.3. Every star-product is equivalent to a star-product
such that its linear term in ν is given by 1

2{u, v}.

Proof: Let
u ? v = uv + νC1(u, v) + ...
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be a star-product on a symplectic manifold (M,ω); then, we need
to show that C1(u, v) is a Hochschild cocycle such that its skew-
symmetric part is 1

2{u, v}. That is, from Theorem 3.1, we should
have

C1(u, v) = uB(v)−B(u · v) +B(u) · v + 1
2{u, v}

where B is a differential 1-cochain. Let T (u) = u + νB(u) and
u ?′ v = T (T−1(u) ? T−1(v). Then

u ?′ v = uv + 1
2ν{u, v}+ ... .

Thus, T is a differential equivalence and so, ?′ is a differential star-
product. �
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