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CONCERNING METRIZABLE CONTINUA OF
CONVERGENCE

D. DANIEL AND C. T. KENNAUGH

Abstract. We consider compact Hausdorff spaces with the
property that each continuum of convergence is metrizable.
We first conduct a comprehensive study of this property. We
then investigate the relationship of this property to the Hahn-
Mazurkiewicz Problem in the class of locally connected con-
tinua. In so doing, we find analogues to theorems of J. Cor-
nette, J. Simone, and L. B. Treybig, respectively.

1. Introduction

We wish to study apparently essential questions regarding metriz-
able continua of convergence and their relationship to the Hahn-
Mazurkiewicz Problem. It has long been known that metric con-
tinua play a large role in the non-metric Hahn-Mazurkiewicz Prob-
lem. Results addressing the role of metric subcontinua in the Hahn-
Mazurkiewicz Problem include [3], [5], [7], [9], [12], and [19].

Additionally, J. Nikiel [11] has shown that each hereditarily lo-
cally connected continuum is the continuous image of an ordered
continuum, and J. Simone [14] has shown that each continuum that
is not hereditarily locally connected contains a non-degenerate con-
tinuum of convergence. It is therefore somewhat natural to consider
those continua which have the property that each continuum of con-
vergence is metrizable.
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Herein, we study that property and explore results analogous
to those cited above, primarily in the class of locally connected
continua.

2. Definitions and Notation

Definition 2.1. Suppose X is a topological space and let {Sn}∞n=1

be a sequence of subsets of X. Then
lim supSn = {x ∈ X : each open set containing x intersects
infinitely many Sn}, and
lim inf Sn = {x ∈ X : each open set containing x intersects
all but finitely many Sn}.

In case lim supSn = lim inf Sn = L, we say that {Sn}∞n=1 is said to
be convergent and L is said to be the limit of {Sn}∞n=1. We may
write limSn = L. (It is well known that if X is compact and each
Sn is connected, then L = limSn is a continuum.)

We will say that a continuum C is a continuum of convergence
of X provided that there exists a countable collection {Ci}∞i=1 of
continua inX such that {Ci}∞i=1 converges, C is the limit of {Ci}∞i=1,
and no continuum Cn ∈ {Ci}∞i=1 intersects C.

Definition 2.2. A compact Hausdorff space X is said to have the
metrizable continua of convergence property (MCC) if and only if
each continuum of convergence of X is metrizable. We will also say
simply that X is MCC.

Some additional definitions are also needed. A continuum is a
compact connected Hausdorff space. A continuum X is said to
be hereditarily locally connected provided that each subcontinuum
of X is locally connected. A Hausdorff space X is said to be an
IOK provided there exists a compact totally ordered space K and
a continuous onto map f : K → X. If K is connected, X is said to
be an IOC. A space S is rim-P if and only if S admits a basis of
open sets so that each open set has boundary with property P .

All mappings herein are continuous. For spaces X and Y , the
onto mapping f : X → Y is monotone if for every y ∈ Y , f−1(y) is
connected. For compact space X and space Y , the onto mapping
f : X → Y is confluent if for every subcontinuum K in Y and every
component C of f−1(K), f(C) = K.

For space X and U ⊆ X, the closure of U in X is denoted Cl(U)
and the boundary of U in X is denoted Bd(U).
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3. Fundamental Properties of MCC Compacta

We first investigate the nature of MCC spaces. In particular,
we study whether MCC is preserved under continuous maps, under
products, etc.

Lemma 3.1. Suppose X is a continuum and C is a continuum of
convergence of X. Then there exists a countable collection {Ci}∞i=1
of mutually disjoint continua in X, and C is the continuum of
convergence of {Ci}∞i=1.

Proof: Let S = {C ′i}∞i=1 denote a countable collection of continua
in X such that C is the continuum of convergence of {C ′i}∞i=1.
Notice that, for each fixed j ∈ N , there exists m ∈ N such that
for all n > m, C ′j ∩ C ′n = ∅. If not, there exists a sequence
C ′j1 , C

′
j2
, C ′j3 , . . . of elements of S such that C ′j ∩ C ′jn 6= ∅ for each

n. For each n ∈ N , select xn ∈ (C ′j ∩ C ′jn). Then there exists a
limit point x of the sequence {xn} such that x ∈ C ′j and x ∈ C, a
contradiction.

Consider C ′1. Let S1 denote the collection of all elements of S
that meet C ′1. Let C1 = ∪S1. Let k2 denote the maximum of all
subscripts of elements of S that meet some element of S1. Consider
C ′k2+1. Let S2 denote the collection of all elements of S that meet
C ′k2+1. Let C2 = ∪S2. Let k3 denote the maximum of all subscripts
of elements of S that meet some element of S2. Consider C ′k3+1.
Let S3 denote the collection of all elements of S that meet C ′k3+1.
Let C3 = ∪S3. Let k4 denote the maximum of all subscripts of
elements of S that meet some element of S3.

We continue inductively to generate a sequence {Ci}∞i=1 whose
elements are mutually disjoint continua by construction. �

Theorem 3.2. Suppose X is an MCC continuum and X fails to be
locally connected at x ∈ X. Then, for each open set O containing
x, there exists a non-degenerate metric subcontinuum M of X such
that M ⊆ O.

Proof: Let x ∈ O with O open in X. Since X fails to be locally
connected at x ∈ X, X is not connected im kleinen at x. As
such (see [18, Theorem 2]), there exist open sets U and U ′ and
mutually disjoint continua C ′1, C

′
2, . . . so that x ∈ U ⊂ Cl(U) ⊂

U ′ ⊂ Cl(U ′) ⊂ O and each C ′i ⊆ O meets both U and (X − U ′).
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For each i, select a component Ci of C ′i∩Cl(U ′) such that Ci meets
both U and (X−U ′). The continuum of convergence M of {Ci}∞i=1
is metrizable and, by construction, is contained in O. �

The proof of the following is straightforward and is left to the
reader.

Theorem 3.3. A space X is MCC if and only if each closed sub-
space of X is MCC.

Definition 3.4. A subset C of a locally connected continuum X
is a cyclic element of X if and only if C is maximal with respect to
the property of having no cut point.

We next show a natural analogue to a classical result of J. Cor-
nette [1] - a locally connected continuum X is an IOC if and only
if each cyclic element of X is an IOC. K. Kuratowski ([6, pp. 317-
318]) has shown that every continuum of convergence C of a con-
tinuum X is a continuum of convergence of some cyclic element
(containing C) of X. Combining this result with 3.3 above yields
the following.

Theorem 3.5. A locally connected continuum X is MCC if and
only if each cyclic element of X is MCC.

Theorem 3.6. Let X be a compact Hausdorff space. Suppose f :
X → Y is a monotone mapping onto the Hausdorff space Y . If X
is MCC then Y is MCC.

Proof: Suppose C is a non-degenerate continuum of convergence
of Y and {Ci}∞i=1 is a sequence of mutually disjoint continua in Y for
which C = limCi. By a result of R. Engelking ([4, Theorem 6.1.29,
p. 441]), the inverse f−1(Ci) is connected for each i. Then there
exists a sequence {Di}∞i=1 of mutually disjoint continua in X so that
f(Di) = Ci for each i. By R. L. Moore ([10, Theorem 59, p. 24])
and by the confluence of f , there exists a subsequence {Ck}∞k=1 such
that the continuum of convergence D of {Dk}∞k=1 is non-degenerate
and metrizable. It is straightforward, using continuity, to show that
f(D) ⊇ C and therefore C is metrizable. �

Corollary 3.7. Let X be a compact Hausdorff MCC space and G
an upper semi-continuous decomposition of X into continua. Then
X/G is MCC.
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There does exist an example of a continuous map of a compact
MCC Hausdorff space such that the image is not MCC. Let X
denote [0, 1] ∪ {{ 1

n} × C} ∪ {{0} × [a, b]}, where C denotes the
Cantor set and [a, b] denotes a non-separable arc. Similarly, let Y
denote [0, 1]∪ {{ 1

n}× [0, 1]} ∪ {{0}× [a, b]}. Let g : C → [0, 1] be a
continuous map of the Cantor set onto [0, 1] and define f : X → Y
by

(3.1)

f(x, t) =
{

(x, g(t)) if t ∈ {{ 1
n} × C} for some n = 1, 2, . . .

(x, t) otherwise

Then X trivially is MCC and Y is not.
H. M. Tuncali [21] has shown that rim-metrizability is also pre-

served under monotone mappings of such spaces. However, rim-
metrizability and MCC do not coincide in the class of continua.
There exist rim-metrizable continua that are not MCC and vice
versa. Let L and C denote the long line, L = ([0, ω1) × [0, 1)) ∪
{(ω1, 0)} ordered lexicographically, and the Cantor set, respectively.
Then X = ({0} × [0, 1]) ∪ (∪{L× {t} : t ∈ C}) is a rim-metrizable
continuum that clearly is not MCC. This example is due to Tuncali
and is studied in detail in [20]. Similarly, X = L ∪ {Ω × [0, 1]} is
an MCC continuum which is not rim-metrizable. The fact that X
is not rim-metrizable follows from Corollary 2.2 of [21].

The following simple theorem is an analogue to an important
result of L. B. Treybig [16] - if the product X × Y of two infinite
Hausdorff spaces X and Y is an IOK then each of X and Y is
metrizable.

Theorem 3.8. Let X and Y be non-degenerate continua. X × Y
is MCC if and only if each of X and Y is metrizable.

Proof: Suppose {xk}∞k=1 is a countable sequence in X with limit
point x0. Then the product {xk}∞k=1 × Y is a sequence of disjoint
continua in X × Y with metrizable limiting continuum {x0} × Y .
Therefore, πY ({x0} × Y ) = Y is metrizable. A similar argument
shows that X is metrizable. �

It is straightforward to show that both X and Y must be con-
tinua in the preceding theorem. Additionally, the product of locally
connected MCC continua need not be MCC. Let A = [a, b] denote
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a non-separable arc and A trivially is MCC. However, there exists
a sequence of disjoint continua in the product A×A such that the
limiting continuum of the sequence is a copy of A.

4. Applications to the Hahn-Mazurkiewicz Problem

Our interest in MCC spaces was initially spurred by the following
result; we show that certain continuous images of ordered compacta
are MCC. The reader is referred to a closely related (unpublished)
result by A. J. Ward [22], quoted by Simone [15].

Theorem 4.1. If X is a first countable IOK, X is MCC.

Proof: Let C be a continuum of convergence in X and let {Ci}∞i=1
be a sequence of mutually exclusive continua in X such that C =
limCi. Suppose also that {xi}∞i=0 is a sequence of elements of X
such that xi ∈ Ci for all i ≥ 1, x0 ∈ C, and x0 is the unique
limit point of {xi}∞i=1 in X. Then C ∪ (∪∞i=1Ci) is closed so that
it is itself an IOK. Let [a, b] denote a real arc and {ai}∞i=0 be a
sequence of distinct points in [a, b] such that a = a1, b = a0 and
a0 is the only limit point of {ai}∞i=0. Let Z denote the disjoint
union [a, b] ∪ {gi}∞i=0. Now let H be the decomposition of Z into
{an, xn} for each n = 0, 1, 2, 3, . . . and points of Z − {{an, xn} :
n = 0, 1, 2, 3, . . . }. The proof that H is an upper semi-continuous
decomposition of Z is straightforward and is left to reader. Note
that Z/H is an IOK since Z is. Since C is closed in Z/H, the
set N = [a, b) ∪ {Ci}∞i=1 is open Fσ in Z/H. Then C = BdZN is
metrizable by [8]. �

In [13] and [15], Simone investigates the “metric” components of
a Hausdorff space X where X is a Suslinian IOK. Define a relation
R on X by xRy if and only if there exists a metric continuum in X
containing x and y. For each x ∈ X, define Mx = {y ∈ X : xRy}.
Mx is called the metric component of x. Simone shows that R
is an equivalence relation, and if X is also first countable then
Mx is a continuum for each x ∈ X. Simone’s construction in [13]
and a result of Treybig [18, Theorem 3], respectively, motivate the
following theorem.

Theorem 4.2. Suppose X is a first countable locally connected
MCC continuum. Then there exists an upper semi-continuous de-
composition G of X into continua such that X/G is hereditarily
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locally connected and thus an IOC. Furthermore, if x and y are
distinct points in g ∈ G there exists a separable subcontinuum of X
which contains both x and y.

Proof: For each x ∈ X, define Mx = {y ∈ X : there exists a
separable subcontinuum of X containing x and y}. Let G = {Mx :
x ∈ X}.

We first show that Mx is a continuum for each x ∈ X. Mx is
clearly connected so we show that it is closed. Let p be a limit
point of Mx and let {Bn} be a countable basis at p. For each n, let
xn ∈ (Bn∩Mx). For each n, select a separable subcontinuum Mn in
X such that Mn contains xn and x. Then Cl(∪Mn) is a separable
continuum in X containing both x and p. Therefore, p ∈ Mx and
Mx is closed.

Now, suppose G is not upper semi-continuous. Then there exists
g ∈ G, x ∈ g, a countable basis {Bn} at x, an open set U such
that g ⊂ U , and a sequence {hn} of mutually disjoint separable
subcontinua of X such that

i) hn ∩ g = ∅ for all n,
ii) hn ∩Bn 6= ∅ for each n, and
iii) hn ∩ (X − U) 6= ∅ for each n.

For each n, select xn ∈ (Bn ∩ hn) and un ∈ (hn ∩ Bd(U)). Then
xn → x and un → u for some u ∈ Bd(U). Then the continuum of
convergence h of {hn} is a metrizable continuum containing x and
u. Therefore, u ∈ g which is a contradiction.

We finally show that X/G is hereditarily locally connected. Si-
mone has shown [14] that a continuum is hereditarily locally con-
nected if and only if it contains no continuum of convergence. We
then assume that there exists a sequence {Cn}∞n=1 of mutually ex-
clusive non-degenerate continua with continuum of convergence C.
Let φ : X → X/G denote the natural map. Set Dn = φ−1(Cn) for
each n; each Dn is a subcontinuum of X by the confluence of φ.
By the aforementioned result of Moore, there exists a subsequence
{Dk}∞k=1 of {Dn}∞n=1 so that D = limDk is a metrizable continuum
M such that C is contained in φ(M), contradicting the maximality
of the points of C. Therefore, X/G is hereditarily locally connected
and is an IOC by Nikiel [11]. �

We note that, with X and G as in the previous theorem, if X/G
is separable then X/G is metrizable by Treybig [17]. The collection



108 D. DANIEL AND C. T. KENNAUGH

N of non-degenerate elements of G is then dense. If not, there
exist connected open sets U and V in X such that U ⊆ ClX(U) ⊆
V , φ(ClX(U)) = ClX/G(U), ClX(U) is a non-degenerate metric
continuum, and V ∩ (∪N) = ∅. This involves a contradiction since
ClX(U) is then contained in a single non-degenerate element of G.

With the aid of Theorem 9 of [2], the following is immediate.

Corollary 4.3. Let X and G be as in the previous theorem. Sup-
pose further that there exists a finite-to-one map of a first countable
arc onto X/G and Bd(g) is totally disconnected for each g ∈ G.
Then X is an IOC if and only if and each g ∈ G is an IOK.

5. Concluding Remarks

Theorem 4.1 and Corollary 4.3 above motivate the following nat-
ural question. Is an MCC continuum necessarily an IOK? Consider
again the long line L and let X denote the subspace of Y = L×[0, 1]
such that X = L ∪ (Ω × [0, 1]). Then X clearly is MCC but X is
not an IOK by a result of Treybig [16].
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