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NON-NORMALITY NUMBERS

S. DOLECKI, T. NOGURA, R. PEIRONE, AND G. M. REED

Abstract. The non-normality number and the strong non-
normality number of a topological space are introduced to the
effect that a topology is normal if and only if its non-normality
number is 1 if and only if its strong non-normality number is 1.
It is proved that for every cardinal κ, there exists a completely
regular topology of non-normality and strong non-normality
κ; for every uncountable regular cardinal κ, there exists a
(completely regular) Moore space of non-normality and car-
dinality κ. On the other hand, for every pair of cardinals
κ < λ there exists a completely regular topology of strong
non-normality κ and non-normality greater than λ. As an
answer to a question of Umberto Marconi, it is proved that
the non-normality number of every separable regular topol-
ogy with a closed discrete subset of cardinality continuum is
at least continuum.
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1. Introduction

Roughly speaking, the non-normality number indicates how much
non-normal is a topology. The concept has been introduced in [1] on
the occasion of study of kernels of upper semicontinuous relations.

If we denote by N (A) the neighborhood filter of A1, then a
space2 is not normal if and only if there exist two (non-empty)
disjoint closed sets A0, A1 such that the filter supremum N (A0) ∨
N (A1) is non-degenerate. The non-normality (number) ν(X) of a
space X is the supremum of cardinals κ such that there exists a
disjoint family A of non-empty closed subsets of X with |A| = κ,
and the supremum of the neighborhood filters of the elements of A,

(1.1)
∨
A∈A
N (A)

is non-degenerate (that is, O0 ∩ O1 ∩ . . . ∩ On 6= ∅ for every fi-
nite subset {A0, A1, . . . , An} of A and each choice of open sets
O0 ⊃ A0, O1 ⊃ A1, . . . , On ⊃ An). The strong non-normality
(number) sν(X) is the supremum of cardinals κ such that there
exists a disjoint family A of non-empty closed subsets of X with
|A| = κ, and

⋂
A∈AOA 6= ∅ for every choice OA ∈ N (A) with

A ∈ A. If the supremum in the definitions above is attained, then
we say that the (strong) non-normality is attained. In these terms,
a (non-empty) space X is normal if and only if ν(X) = 1 if and
only if sν(X) = 1. In general, sν(X) ≤ ν(X) ≤ |X|, and if ν(X) is
finite or non-attained ℵ0, then both the non-normalities coincide.
We shall also consider intermediate non-normality numbers: if ζ is
a cardinal, then the ζ-non-normality (number) νζ(X) is the supre-
mum of cardinals κ such that there exists a disjoint family A of
non-empty closed subsets of X with |A| = κ such that for every
A0 ⊂ A with |A0| < ζ, one has

⋂
A∈A0

OA 6= ∅ for every choice
OA ∈ N (A). Of course, νζ(X) ≤ νℵ0(X) = ν(X) for ℵ0 ≤ ζ, and
sν(X) = κ whenever νκ+(X) = κ, where κ+ is the least among the
cardinals greater than κ.

It is immediate that for every ζ, if X is a closed subspace of Y,
then νζ(X) ≤ νζ(Y ) (and the inequality can be strict), and if f is a

1The neighborhood filter of a non-empty set A is generated by all the open
sets that include A; in particular, N (x) stands for the neighborhood filter of x.

2In this paper space means a topological Hausdorff space.
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closed continuous map, then νζ(X) ≥ νζ(f(X)), but this need not
hold for a (continuous) open map. It follows again from the known
facts about normality that in general neither ν(f−(Y )) ≤ ν(Y ) for
open perfect maps, nor ν(X × Y ) ≤ ν(X) × ν(Y ). Actually, there
exists a normal space X such that ν(X2) = |X| = 2ℵ0 .

In this paper we prove that for every pair of cardinals κ ≤ λ
there exist a completely regular space of non-normality and strong
non-normality κ, and a completely regular space of strong non-
normality κ and non-normality greater than λ. Also, if ζ < κ are
infinite regular cardinals, then there exists a completely regular
space of ζ-non-normality and cardinality equal to κ; in particular,
for every regular uncountable cardinal κ there exists a Moore space
of non-normality and cardinality κ. On the other hand, if a space
of density δ admits a closed discrete subset of cardinality 2δ, then
its non-normality is at least 2δ.

2. Each cardinal is a non-normality number

Example 2.1. Let (ξα)α<κ be uncountable regular cardinals
(equipped with the order topology) such that κ < ξ0 and for every
0 < β < κ

(2.1)
∏
α<β

ξα < ξβ.

Consider Xκ =
∏
α<κ[0, ξα] and let

Zα =
∏
β<α

{ξβ} × [0, ξα[×
∏

α<β<κ

{ξβ}.

For every α and each x ∈ Zα, the neighborhood filter of x is that of
the box topology of Xκ, and all the other elements of Xκ are isolated.
As every element of Xκ admits a neighborhood base consisting of
clopen sets, the topology is completely regular.

Example 2.2. We shall modify the topology of Xκ of Example 2.1
so that for each α and every element (ζβ)β<κ of Zα (hence, ζα < ξα
and ζβ = ξβ for each β 6= α) basic neighborhoods are of the form∏
β<α[γβ , ξβ]× {ζα} ×

∏
α<β<κ[γβ, ξβ]. This topology is completely

regular, because all the neighborhood filters admit bases of clopen
sets.
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Lemma 2.3. In the space of Example 2.2, if Fα is an unbounded
subset of Zα, and Oα is an open set that includes Fα for each α < κ,
then

⋂
α<κOα 6= ∅.

Proof: Indeed, for every α, β < κ such that α 6= β, and for each
x = (xγ)γ<κ ∈ Fα, there is hαβ(x) < ξβ for which∏

α<β

[hαβ(x), ξβ ]× {xα} ×
∏

α<β<κ

[hαβ(x), ξβ] ⊂ Oα.

If β > α, then
hαβ = sup

x∈Fα
hαβ(x) < ξβ.

If β < α, then there is ϕ(β) < ξβ such that the set

Aϕ =
⋂
β<α

{x ∈ Fα : hαβ(x) ≤ ϕ(β)}

is unbounded; otherwise, σϕ = supAϕ < ξα for every ϕ ∈
∏
β<α ξβ,

and thus sup{σϕ : ϕ ∈
∏
β<α ξβ} < ξα by the regularity of ξα and

by (2.1). On the other hand, Fα is the union of Aϕ with ϕ running
over

∏
β<α ξβ, which yields a contradiction. Therefore, there exists

an unbounded subset Cα of Fα such that for every β < α,

hαβ = sup
x∈Cα

hαβ(x) < ξβ .

Because for every β < κ, the cardinal ξβ is regular and greater
than κ,

hβ = sup
κ>α 6=β

hαβ < ξβ.

As a result,
∏
β<α[hβ , ξβ] × Cα ×

∏
α<β<κ[hβ, ξβ ] ⊂ Oα for every

α < κ. It follows that if ζα ∈ Cα is such that hα < ζα < ξα, then
(ζα)α<κ ∈

⋂
α<κOα. �

Theorem 2.4. For every cardinal κ, there exists a completely reg-
ular space Xκ such that sν(Xκ) = ν(Xκ) = κ and both non-
normalities are attained.

Proof: Consider the space Xκ of Example 2.1. Because the sets
Zα are closed and the topology is coarser than that of Example
2.2, by Lemma 2.3, the strong non-normality of Xκ is at least κ.
We will prove that if A is a disjoint family of closed subsets of Xκ

such that (1.1) is non-degenerate, then its cardinality is not greater
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than κ. Because no regular cardinal greater than ℵ0 includes two
disjoint unbounded closed subsets, there are at most κ elements A
of A such that there exists α for which A ∩ Zα is unbounded in
Zα. Hence, if |A| > κ, then there exists A0 ∈ A such that for every
α < κ there is a non-limit ordinal ζα < ξα with

A0 ∩ (
∏
β<α

{ξβ} × [ζα, ξα[×
∏

α<β<κ

{ξβ}) = ∅.

Let A1 be another element of A. Because each Zα is normal, there
exist disjoint open subsets Pα0 and Pα1 of Zα such that A0∩Zα ⊂ Pα0
and A1 ∩Zα ⊂ Pα1 , and moreover, Pα0 is disjoint from

∏
β<α{ξβ}×

[ζα, ξα[×
∏
α<β<κ{ξβ}. Then let O0 be the union of A0 \

⋃
α<κ Zα

and of open boxes

Oα0 =
⋃
y∈Pα0

∏
β<κ

[γαβ (y), δαβ (y)]

disjoint from A1 such that δαα(y) = yα (the α-component of y),
[γαα(y), δαα(y)] ⊂ Pα0 and ζβ < γαβ (y) < δαβ (y) = ξβ for β 6= α.
Similarly, let O1 be the union of A1 \

⋃
α<κ Zα and of open boxes

Oα1 =
⋃
z∈Pα1

∏
β<κ

[εαβ(z), ηαβ (z)]

disjoint from A0 and such that ηαα(z) = zα (the α-component
of z), [εαα(z), ηαα(z)] ⊂ Pα1 , and ζβ < εαβ(z) < ηαβ (z) = ξβ for
β 6= α. The sets O0, O1 are open, because Xκ \

⋃
α<κ Zα is dis-

crete. We claim they are disjoint. Suppose x ∈ Oα0
0 ∩ O

α1
1 . If

α0 = α1 = α, then there exist y ∈ A0 ∩ Zα and z ∈ A1 ∩ Zα
such that [γαα(y), δαα(y)] ∩ [εαα(z), ηαα(z)] 6= ∅; hence, Pα0 ∩ Pα1 6= ∅

contrary to the hypothesis. On the other hand, if α0 6= α1, then
[γα0
α0

(y), δα0
α0

(y)] ∩ [εα1
α0

(z), ηα1
α0

(z)] = ∅ because δα0
α0

(y) < ζα0 and
ζα0 < εα1

α0
(z) for each y ∈ A0 ∩ Zα and z ∈ A1 ∩ Zα. �

Theorem 2.5. For every infinite cardinal κ there exists a com-
pletely regular space Xκ of density κ such that sν(Xκ) ≤ κ and
ν(Xκ) = 2κ.

Proof: By the Hewitt-Marczewski-Pondiczery theorem there is
a dense subset S of cardinality κ of {0, 1}2κ (endowed with the
product topology); on the other hand, there is a discrete subspaceD
of cardinality 2κ of {0, 1}2κ disjoint from S. We consider X = S∪D
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with the topology in which all the elements of S are isolated, while
those of D have the neighborhoods inherited from {0, 1}2κ . By
Theorem 3.5, ν(X) = 2κ, because |X| = 2κ (hence, the cardinality
of each disjoint family of subsets of X is at most 2κ). On the
other hand, if A is a disjoint collection of closed sets such that⋂
A∈AOA 6= ∅ for every choice of open sets OA ⊃ A, then |A| < κ.

Indeed, it is not restrictive to assume that A ⊂ D for every A ∈ A,
because S is open and discrete. Furthermore, since D is closed and
discrete, it is enough to consider the case where OA \ S = A, and
thus

⋂
A∈AOA ⊂ S. If now |A| ≥ κ and f : S → A is an injective

map, then {Of(x) \ {x} : x ∈ S} is a family of open sets such that
f(x) ⊂ Of(x) for every x ∈ S, and

⋂
x∈S(Of(x)\{x}) = ∅. �

Theorem 2.6. For infinite cardinals κ < λ there exists a com-
pletely regular space Xκ such that sν(Xκ) = κ and is attained, and
ν(Xκ) ≥ λ.

Proof: Consider the space of Example 2.2 and add the assump-
tion that λ ≤ ξ0. By Lemma 2.3, sν(Xκ) ≥ κ. Conversely, if A is
a disjoint family of closed sets and

⋂
A∈AOA 6= ∅ for every choice

of open sets OA ⊃ A with A ∈ A, then |A| ≤ κ. Indeed, if for each
A ∈ A and every α < κ, we consider OαA = π−1

α (A∩Zα) (where πα is
the projection on the α-th component) and OκA = A\

⋃
α<κ Zα, then

OA =
⋃
α≤κO

α
A is an open set that includes A; if now x ∈

⋂
A∈AOA,

then for every A there is ψ(A) ≤ κ with x ∈ Oψ(A)
A . Since for each

α ≤ κ, the sets OαA0
∩ OαA1

= ∅ whenever A0 and A1 are distinct
elements of A, we infer that ψ : A → κ + 1 is injective, so that
|A| ≤ κ.

We will find a disjoint family A of closed sets with |A| = λ
and such that (1.1) is non-degenerate. Since λ ≤ ξα for every α
we can find a disjoint family {Eαβ : β < λ} of subsets of ξα such
that |Eαβ | = ξα. It follows that every Eαβ is unbounded in ξα. Let
Aαβ =

∏
γ<α{ξγ} × Eαβ ×

∏
α<γ<κ{ξγ} and define

Aβ =
⋃
α<κ

Aαβ .

Each Aβ is closed as the union of a locally finite family of closed
sets, and the family {Aβ : β < λ} is disjoint. If β1 < β2 < . . . <
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βn and Oi ⊃ Aβi are open sets, then a fortiori Oi ⊃ Aiβi ; hence,⋂n
i=1Oi 6= ∅ by Lemma 2.3. �

3. When non-normality is equal to cardinality

Theorem 2.4 establishes the existence, for each cardinal κ, of a
completely regular space of non-normality and strong non-normality
equal κ. However, the construction used in the proof yields a space
of very big cardinality. If we reconsider the problem for regular
(uncountable) cardinals, then it is possible to construct a space of
prescribed non-normality equal to its cardinality.

We shall generalize a construction of G. M. Reed [6] and apply
it to subsets of predecessors of fixed cofinality of a given regular
cardinal. Let us remind the reader that if κ is a regular uncountable
cardinal, then the family Dκ of closed unbounded subsets of κ is a
filter base, and that a subset S is stationary if it meshes with every
element of Dκ. It is known by [4, Lemma 7.4] that if L ⊂ Dκ is of
cardinality less than κ, then

⋂
L ∈ Dκ. Dually,

Lemma 3.1. [5, p. 78] If 0 < ζ < κ and
⋃
β<ζ Eβ is stationary in

κ, then there is β < ζ such that Eβ is stationary.

We shall also use the fact that if ζ is an infinite regular cardinal
smaller than κ, then the set {α < κ : cf(α) = ζ} is stationary in κ
[5].

Theorem 3.2. If κ is an uncountable regular cardinal, then there
exists a completely regular space X of cardinality κ such that
νζ(X) = κ for every regular cardinal ζ < κ.

Proof: Consider X = κ × (κ + 1), and for every non-zero limit
ordinal σ < κ, let {βσγ < σ : γ < cf(σ)} be a set of ordinals such
that σ = supγ<cf(σ) β

σ
γ . For γ < cf(σ),

(3.1) Gγ(σ) = {(σ, κ)} ∪
⋃

γ≤η<cf(σ)

([βση , σ]× {η}),

is declared to be a neighborhood base of (σ, κ). All other elements
are isolated. This is a completely regular space of cardinality κ
and thus νζ(X) ≤ κ for each infinite regular cardinal ζ less than κ.
We claim that νζ(X) = κ. Then the subset S(ζ) of κ, of elements
of cofinality ζ, is stationary. By the Solovay theorem [4, Theorem
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85] S(ζ) =
⋃
α<κ Sα, where {Sα : α < κ} is a disjoint collection of

stationary sets. On the other hand, {Sα×{κ} : α < κ} is a disjoint
collection of closed subsets of X. If α < κ and Oα is an open set that
includes Sα × {κ}, then there is a map fα : Sα → ζ such that the
neighborhood Gfα(σ)(σ) of (σ, κ) is a subset of Oα and βσfα(σ) < σ

for every σ ∈ Sα. By Lemma 3.1, there exists γ(α) < ζ such that
Wα = {σ ∈ Sα : fα(σ) = γ(α)} is stationary. For every subset
A of κ with |A| < ζ, let γA = sup{γ(α) : α ∈ A}. Then γA < ζ
and

⋃
σ∈Wα

([βσγA , σ] × {γA}) ⊂ Oα for each α ∈ A. Because Wα is
stationary and βσγA < σ for every σ ∈ Wα, hence, by virtue of the
Fodor theorem [4, Theorem 22], there exist δα < κ and a stationary
(hence, unbounded) subset Yα of Wα such that βσγA = δα for every
σ ∈ Yα. Because Yα is unbounded,

⋃
σ∈Yα [δα, σ] = [δα, κ[ and thus

[δα, κ[× {γA} ⊂
⋃
σ∈Sα

Gfα(σ)(σ) ⊂ Oα

for each α ∈ A and supα∈A δα < κ. Therefore, ∅ 6= {γ : supα∈A δα <
γ < κ} × {γA} ⊂

⋂
α∈AOα. �

If we simplify the construction in the proof above by taking X =
κ × ω0, by declaring isolated all the elements except for those of
the form (σ, ω0) with σ of countable cofinality, and for which the
neighborhood is given by (3.1), then we get a (completely) regular
topology that admits a development, that is, a Moore space.

Corollary 3.3. For each uncountable regular cardinal κ, there ex-
ists a completely regular Moore space which attained non-normality
and cardinality are both κ.

Let κ be weakly inaccessible, that is, regular uncountable limit
cardinal. Then κ = supα<κ ζα, where cf(ζα) = ζα for every α < κ.
It follows from Theorem 3.2 that there exists a completely regular
space X such that supcf(ζ)=ζ<κ νζ(X) = κ = |X|. This does not
imply that νκ(X) = κ or the existence of a completely regular
space X for which sν(X) = |X| = κ. The existence of weakly
inaccessible cardinals is not provable in ZFC. Does there exist in
ZFC (for each regular κ) a completely regular space X such that
sν(X) = |X| = κ?

One of the classical examples of a non-normal completely regular
space is the Niemytzki plane [2, Example 1.5.10].
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Example 3.4. The Niemytzki plane is the upper half plane X in
which the elements with non-zero ordinate have Euclidean neighbor-
hoods, while for every r ∈ R, a neighborhood base of (r, 0) consists
of closed discs V (r, ε) of radius ε > 0 that are tangent to L =
{(s, 0) : s ∈ R} at (r, 0). It was proved in [1] that its non-normality
is continuum. Let us show that the strong non-normality is (non-
attained) ℵ0. As the non-normality is infinite, the strong normality
is at least ℵ0. Notice that because {(s, t) : s ∈ R, t > 0} is normal,
if A is a disjoint family of closed subsets of X and there is a family
{QA : A ∈ A} of open sets such that A ∩ L ⊂ QA for each A ∈ A
and

⋂
QA∈AQA = ∅, then there is a family {OA : A ∈ A} of open

sets such that A ⊂ OA for each A ∈ A and
⋂
QA∈AOA = ∅. There-

fore, in order to get an upper bound of the strong non-normality of
X, it suffices to consider disjoint families of subsets of L (neces-
sarily closed, because L is closed and discrete). If (An) is a disjoint
sequence of subsets of L, then Bn =

⋃
(r,0)∈An V (r, 1

n) is a neigh-
borhood of An for each n < ω, and

⋂
n<ω Bn = ∅.

The Niemytzki plane is separable and includes a closed discrete
subset of cardinality continuum. Umberto Marconi (University of
Padua) conjectured that the non-normality of each separable space
that includes a closed discrete subset of cardinality continuum is
at least continuum. This conjecture is confirmed below for regular
spaces.

By β(F) we denote the Stone transform of a filter F on a discrete
space X, that is, the set of all ultrafilters that are finer than F . In
particular, if A ⊂ X then β(A) stands for the set of all ultrafilters
that contain A.

Theorem 3.5. The non-normality of a regular infinite space of
density κ that admits a closed discrete subset of cardinality 2κ, is
at least the attained 2κ.

Proof: Let X be a regular space, S a dense subset of cardinality
κ, and D a closed, discrete subset of cardinality 2κ. The generality
is not lost if we assume that S ∩ D = ∅. It is enough to show
that there exists a disjoint family A of subsets of D (as D is closed
and discrete, these subsets are necessarily closed), such that the
cardinality of A is 2κ, and (1.1) is non-degenerate in S ∪ D with
the induced topology. For every x ∈ D, let U(x) be an ultrafilter on
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S such that U(x) ⊃ N (x). Define on S∪D the following space: the
elements of S are isolated and, for every x ∈ D, the only free filter
that converges to x is U(x). The new topology is finer than the
topology originally induced from X; hence, D is closed, discrete
in the new topology. It follows that S ∪ D is regular, and thus
the natural embedding into βS is homeomorphic (hence, S ∪D is
completely regular).

There exists p ∈ βS \ S such that |U ∩ D| = 2κ for every U ∈
N (p). In fact, if for every p ∈ clβSD \ S, there existed Up ∈ N (p)
with |Up ∩D| < 2κ, then by the compactness of clβSD, the set D
would be covered by a finite union of sets of cardinality less than
2κ, which contradicts |D| = 2κ.

Let {Vζ : ζ < λ} be a neighborhood base of p (λ ≤ 2κ because
the weight of βS is 2κ) and let ϕ : 2κ × λ → 2κ be a one-to-one
map. Let Wϕ(α,ζ) = Vζ for every α < 2κ. Then there exists a set
{pξ : ξ < 2κ} of distinct elements such that pξ ∈ D ∩Wξ for every
ξ < 2κ. Indeed, let p0 ∈ W0 ∩ D be arbitrary, and suppose that
we have already constructed {pξ : ξ < δ}. As the set Wδ ∩ D is
of cardinality 2κ, and the set {pξ : ξ < δ} is of cardinality less
than 2κ, there exists pδ ∈ Wδ ∩ D \ {pξ : ξ < δ}. Therefore, if
Dα = {pξ : ξ = ϕ(α, ζ), ζ < λ}, then p ∈

⋂
α<2κ clDα.

Consequently, if Oα is an open subset of S ∪ D that includes
Dα, then β(Oα ∩ S) is a clopen set that includes Dα, that is, p ∈
β(Oα ∩ S). For each finite choice α1, α2, . . . αm, the intersection⋂

1≤k≤m β(Oαk ∩ S) is a neighborhood of p; hence,
⋂

1≤k≤mOαk ⊃⋂
1≤k≤m β(Oαk ∩S)∩S 6= ∅. It follows that A = {Dα : α < 2κ} is a

family of closed subsets S ∪D of such that (1.1) is non-degenerate;
thus, a fortiori, it is non-degenerate with respect to the original
topology. �

By Theorem 2.5, for every cardinal κ there exists a completely
regular topology fulfilling the assumptions of Theorem 3.5.

Corollary 3.6. The non-normality of every regular separable space
with a closed discrete subset of cardinality continuum is at least (the
attained) continuum.

It follows that the Sorgenfrey line is a (perfectly) normal space
X such that ν(X2) = 2ℵ0 , because its square is a separable space
whose diagonal is a closed discrete subset of cardinality 2ℵ0 .
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Is the non-normality of a space of density κ and of extent 2κ equal
to 2κ? It is known [7] that if B is a subset of real numbers, then
M(B), the Moore space derived from B 3, is normal if and only if
B is a Q-set, that is, every subset of B is relative Fσ, and that there
is the least cardinal ss such that κ ≥ ss if and only if there exists
a Q-set of cardinality κ [3]. On the other hand, if 2ℵ0 = 2ℵ1 , then
there is a separable normal T1 space with an uncountable closed
discrete subspace [7, Example E] .

The non-normality of a separable space with a closed discrete
subset of cardinality ss ≤ κ < 2ℵ0 need not be κ, because ss = ω1

is compatible with 2ℵ0 = 2ℵ1 4.

4. Topless products of ordinals

A classical example of a non-normal, completely regular space is
[0, ω0] × [0, ω1] \ {(ω0, ω1)} endowed with its natural topology. It
follows from Proposition 4.2 that the non-normality (strong non-
normality) is 2.

Let (ξα)α<κ be regular cardinals fulfilling the condition of Exam-
ple 2.1. Let Y =

∏
α<κ[0, ξα] and X = Y \{∞} where∞ = (ξα)α<κ

endowed with the box topology.

Lemma 4.1. If A is a closed subset of X (in the box topology)
and ∞ ∈ clYA, then there is α0 < κ such that ∞ ∈ clY (A ∩
(
∏
α<α0

{ξα} × [0, ξα0 ]×
∏
α0<α<κ

{ξα})).

Proof: Indeed, let λ be the least cardinal for which there is a
rearrangement of κ such that

∞ ∈ clY (A ∩ (
∏
α<λ

[0, ξα]×
∏

λ≤α<κ
{ξα})).

Therefore, if µ < λ, then because of the closedness of A, for each
α < µ there exist ζα < ξα and a neighborhood W of

∏
α<µ[ζα, ξα]×∏

µ≤α<κ{ξα} such that A ∩ W = ∅. Hence, for every µ < β <

3The subspace of the Niemytzki plane with R× {0} replaced by B × {0}.
4We are grateful to professor Peter Nyikos (University of South Carolina,

Columbia) for this observation that answers a question formulated in a prelim-
inary version.
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κ and ϑ ∈
∏
α<µ[ζα, ξα] there is fβ(ϑ) < ξβ such that {ϑ} ×∏

µ≤β<κ[fβ(ϑ), ξβ] ⊂W . Because

ζβ = sup{fβ(ϑ) : ϑ ∈
∏
α<µ

[ζα, ξα]} < ξβ,

we conclude that A ∩
∏

0≤α<κ[ζα, ξα] = ∅, which means that ∞ /∈
clYA. �

Proposition 4.2. If ω0 < ξ0 and (2.1) holds, then for m ≤ ω0 the
non-normality and the strong non-normality of

∏
0≤n<m[0, ξn]\{∞}

(in the product topology) is m.

Proof: If A is a closed subset of
∏
n<m[0, ξn]\{∞} in the product

topology, then it is closed for the box topology. Hence, by Lemma
4.1, either there exists n0 such that ∞ ∈ clY (A ∩ (

∏
n<n0
{ξn} ×

[0, ξn0 ] ×
∏
n0<n<m

{ξn})) or for each n < m there exist non-limit
ordinals ζn < ξn such that A ∩

∏
n<m[ζn, ξn] = ∅. With respect to

the product topology, the sets Fn = {(xk)k<m : xn < ζn} are closed
(hence, compact) subsets of

∏
n<m[0, ξn], and thus⋃

n<m

Fk =
∏
n<m

[0, ξn] \
∏
n<m

[ζn, ξn]

is Lindelöf and (completely) regular, hence normal. Therefore, if
A is a disjoint family of closed subsets of

∏
n<m[0, ξn] \ {∞}, then

there is at most one A ∈ A which is unbounded in
∏
k<n{ξk} ×

[0, ξn]×
∏
n<k<m{ξk} for 0 ≤ n < m, and if (1.1) is non-degenerate,

then, because of the normality of
∏
n<m[0, ξn]\

∏
n<m[ζn, ξn], every

A in A is unbounded within
∏
k<n{ξk} × [0, ξn]×

∏
n<k<m{ξk} for

some n. It follows that the non-normality of X is not greater than
m. On the other hand, by Lemma 2.3, the strong non-normality of
X is m. �

Even if the cardinals ξn in the construction above are not dis-
tinct, the non-normality of a topless cube can be equal to the cube
dimension. For example, for each n < ω the non-normality of∏

1≤k≤n[0, ω1] \ {∞} is n.
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