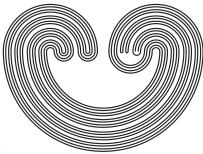
Topology Proceedings



Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

FANS WHOSE HYPERSPACES ARE CONES

SERGIO MACÍAS

ABSTRACT. Answering a question by S. B. Nadler, Jr. and the author, it is proved that if F is a fan, which is homeomorphic to the cone over a compactum, then each of its hyperspaces is homeomorphic to the cone over a compactum.

1. INTRODUCTION

Let $\mathcal{C}(X)$ denote a hyperspace of subcontinua of a continuum X with the Hausdorff metric [6]. Let us note that there are some similarities between the hyperspace $\mathcal{C}(X)$ and the cone over X (the similarities are discussed in [6, p. 59–60]). Thus, the study of when $\mathcal{C}(X)$ is actually homeomorphic to its cone is natural. It is also natural to ask if given a continuum X, is $\mathcal{C}(X)$ homeomorphic to the cone over a continuum Y [15, (8.25)]? Recently, it has been an interest to study the n-fold symmetric products and n-fold hyperspaces of continua ([7], [8], [3], [9], [10], [11]–[13]). R. Schori showed that the 2-fold hyperspace of [0,1] is homeomorphic to $[0,1]^4$ [5, Lemma 1]. Hence, geometric models for these hyperspaces would be nice to have. Having this in mind, S. B. Nadler, Jr. and the author asked [13, 3.8], "Does there exist a hereditarily decomposable continuum X that is not an arc such that $\mathcal{C}_n(X)$ is homeomorphic to the cone over a finite-dimensional continuum for some integer $n \geq 2$?" We give an affirmative answer to this question (see 3.2). In fact, we show that if F is a fan, which is homeomorphic to the cone

²⁰⁰⁰ Mathematics Subject Classification. Primary 54B20, 54F15.

 $Key\ words\ and\ phrases.$ Cone, continuum, dendroid, fan, hyperspace, $n\text{-}{\rm fold}$ hyperspace, smooth fan.

SERGIO MACÍAS

over a compactum, then all its hyperspaces are homeomorphic to the cone over a compactum. In this way, we present geometric models for the n-fold symmetric products and the n-fold hyperspaces of fans which are cones.

2. NOTATION AND TERMINOLOGY

If Z is a metric space, then given $A \subset Z$ and $\varepsilon > 0$, the open ball about A of radius ε is denoted by $\mathcal{V}_{\varepsilon}(A)$.

We denote the unit interval [0, 1] by I. The set of positive integers is denoted by \mathbb{N} .

A *continuum* is a nonempty compact connected metric space.

Hyperspaces. Given a continuum X, we define its *hyperspaces* as the following sets:

 $2^{X} = \{A \subset X \mid A \text{ is closed and nonempty}\}$ $\mathcal{C}_{n}(X) = \{A \in 2^{X} \mid A \text{ has at most } n \text{ components}\}, n \in \mathbb{N}$ $\mathcal{F}_{n}(X) = \{A \in 2^{X} \mid A \text{ has at most } n \text{ points}\}, n \in \mathbb{N}.$

It is known that 2^X is a metric space with the Hausdorff metric, \mathcal{H} , defined as follows:

$$\mathcal{H}(A,B) = \inf\{\varepsilon > 0 \mid A \subset \mathcal{V}_{\varepsilon}(B) \text{ and } B \subset \mathcal{V}_{\varepsilon}(A)\},\$$

(see [16, (0.1)]). In fact, 2^X is an arcwise connected continuum [16, (1.13)]; for each $n \in \mathbb{N}$, $\mathcal{C}_n(X)$ is an arcwise connected continuum [7, 3.1], and $\mathcal{F}_n(X)$ is a continuum [1, p. 877].

Fans. A *dendroid* is an arcwise connected and hereditarily unicoherent continuum. A *fan* is a dendroid with exactly one ramification point (i.e., with only one point which is the common part of three otherwise disjoint arcs) [2]. The unique ramification point of a fan F is called the *top of* F; τ always denotes the top of a fan. By an *end point of a fan* F, we mean an end point in the classical sense, which means a point e of F that is a nonseparating point of any arc in F that contains e; E(F) denotes the set of all end points of a fan F. A *leg of a fan* F is the unique arc in F from τ to some end point of F. Given two points x and y of a fan F, xy denotes the unique arc in F joining x and y. Given an $m \in \mathbb{N}$, an m - od is a fan for which E(F) has exactly m elements.

A fan F is said to be *smooth* provided that whenever $\{x_i\}_{i=1}^{\infty}$ is a sequence in F converging to a point x of F, then the sequence of arcs $\{\tau x_i\}_{i=1}^{\infty}$ converges to the arc τx .

Cones. The cone over a compactum Y, denoted by $\operatorname{Cone}(Y)$, is the quotient space $(Y \times I)/(Y \times \{1\})$ obtained from the Cartesian product $Y \times I$ by shrinking $Y \times \{1\}$ to a point v called the vertex of the cone [16, p. 41]; v always denotes the vertex of a cone. The base of $\operatorname{Cone}(Y)$ is $\{(y, 0) \mid y \in Y\}$, which we denote by $\mathcal{B}(Y)$.

3. Main Theorem

Given a fan F, let $\mathcal{G}(F)$ denote either of the hyperspaces 2^F , or $\mathcal{C}_n(F)$, or $\mathcal{F}_n(F)$, for $n \geq 2$. Let us note that the following result is already known for $\mathcal{C}_1(F)$ [12, 4.3].

Theorem 3.1. If F is a fan which is homeomorphic to the cone over a compact metric space, then $\mathcal{G}(F)$ is homeomorphic to the cone over a continuum.

Proof: Let F be a fan which is a cone. Then, F is smooth. We assume by ([4, Corollary 4, p. 90] and [2, Theorem 9, p. 27]) that F is embedded in \mathbb{R}^2 , $\tau = (0,0)$ is the top of F, and the legs of F are convex arcs of length one [12, 4.2]. Given two points a and b of \mathbb{R}^2 , [a, b] denotes the convex arc in \mathbb{R}^2 whose end points are a and b, and ||a|| denotes the norm of a in \mathbb{R}^2 . Given an element A of $\mathcal{G}(F)$ and $r \geq 0$, $rA = \{ra \mid a \in A\}$. Note that for r = 0, $rA = \{(0,0)\} = \{\tau\}$.

Let $E(F) = \{e_{\lambda}\}_{\lambda \in \Lambda}$. Then, F = Cone(E(F)) by [12, 4.2]. Note that this equality implies that E(F) is closed in F; hence, E(F) is a compactum.

Let $\mathcal{B} = \bigcup \{ \{ A \in \mathcal{G}(F) \mid e_{\lambda} \in A \} \mid \lambda \in \Lambda \}.$ Let $\varphi \colon \mathcal{B} \times I \to \mathcal{G}(F)$ be given by

$$\varphi((A,t)) = (1-t)A.$$

Clearly, φ is well defined. Observe that if $t \in [0, 1)$ and $A \in \mathcal{B}$, then $\tau \in \varphi((A, t))$ if and only if $\tau \in A$. We show that φ is continuous. Let $\varepsilon > 0$ be given and let $\delta = \frac{\varepsilon}{2}$. Let $A, B \in \mathcal{G}(F)$ and $t, s \in [0, 1]$

SERGIO MACÍAS

be such that $\mathcal{H}(A, B) < \delta$ and $|t - s| < \delta$. Let $a \in A$; then there exists $b \in B$ such that $||a - b|| < \delta$. Note that

$$||(1-t)a - (1-s)b|| \le ||(1-t)a - (1-t)b|| + ||(1-t)b - (1-s)b|| \le (1-t)||a-b|| + |s-t||b|| \le ||a-b|| + |s-t| < 2\delta = \varepsilon.$$

So, $\varphi((A,t)) \subset \mathcal{V}_{\varepsilon}(\varphi((B,s)))$. Similarly, $\varphi((B,s)) \subset \mathcal{V}_{\varepsilon}(\varphi((A,t)))$. Therefore, $\mathcal{H}(\varphi((A,t)), \varphi((B,s))) < \varepsilon$ and φ is continuous.

We show that φ is one – to – one on $\mathcal{B} \times [0, 1)$. Let $t, s \in [0, 1)$, and let $A, B \in \mathcal{B}$. Suppose that $\varphi((A, t)) = \varphi((B, s))$. Since $A, B \in \mathcal{B}$, there exist $e_{\lambda}, e_{\lambda'} \in E(F)$ such that $e_{\lambda} \in A$ and $e_{\lambda'} \in B$.

Case (1). $\tau \notin A$. Then $\tau \notin B$. Let $[a, e_{\lambda}]$ be the component of A containing e_{λ} . Let $[b, e_{\lambda'}]$ be the component of B containing $e_{\lambda'}$. Since $\varphi((A, t)) = \varphi((B, s))$, there exist $[b_{\lambda'}, c_{\lambda'}] \subset A$ and $[b_{\lambda}, c_{\lambda}] \subset B$ such that

$$[(1-t)a, (1-t)e_{\lambda}] = [(1-s)b_{\lambda}, (1-s)c_{\lambda}]$$

and

$$[(1-s)b, (1-s)e_{\lambda'}] = [(1-t)b_{\lambda'}, (1-t)c_{\lambda'}].$$

From the first equality we obtain that $(1-t)e_{\lambda} = (1-s)c_{\lambda}$, which implies that $1-t = (1-s)||c_{\lambda}|| \le 1-s$. From the second inequality we obtain that $(1-s)e_{\lambda'} = (1-t)c_{\lambda'}$, which implies that $1-s = (1-t)||c_{\lambda'}|| \le 1-t$. Therefore, t = s. Hence, A = B.

Case (2). $\tau \in A$. Then, $\tau \in B$. Let us observe that either $[\tau, e_{\lambda}] \subset A$ or there exists $a \in A$ such that $[a, e_{\lambda}] \subset A$. In either case, as in Case (1), we conclude that $(1-t)e_{\lambda} = (1-s)c_{\lambda}$, for some $c_{\lambda} \in E(B)$, and that $(1-s)e_{\lambda'} = (1-t)c_{\lambda'}$, for some $c_{\lambda'} \in E(A)$. These two equalities imply that t = s. Hence, A = B.

We show that φ is onto. Let $B \in \mathcal{G}(F)$. If $B = \{\tau\}$, then $\varphi((A, 1)) = \{\tau\}$ for any $A \in \mathcal{B}$. Thus, assume $B \neq \{\tau\}$. If $B \cap E(F) \neq \emptyset$, then $\varphi((B, 0)) = B$.

Suppose $B \cap E(F) = \emptyset$. Let $t = \inf\{||b - e_{\lambda}|| \mid b \in B \text{ and } e_{\lambda} \in E(F)\}$. Since $B \neq \{\tau\}, t \neq 1$. Then there exists $\lambda_0 \in \Lambda$ such that $||b_{\lambda_0} - e_{\lambda_0}|| = t$, where $b_{\lambda_0} \in B \cap [\tau, e_{\lambda_0}]$.

Let $A = \frac{1}{1-t}B$. Note that for λ_0 , $\frac{1}{1-t}b_{\lambda_0} \in A \cap [\tau, e_{\lambda_0}]$. Since $\frac{1}{1-t}b_{\lambda_0} = e_{\lambda_0}$, we have that $e_{\lambda_0} \in A$. Hence, $A \in \mathcal{B}$, and $\varphi((A, t)) = \frac{1-t}{1-t}B = B$.

220

By the Transgression Lemma [16, 3.22], the hyperspace $\mathcal{G}(F)$ is homeomorphic to Cone(\mathcal{B}). Since no point of $\mathcal{G}(F)$ arcwise disconnects $\mathcal{G}(F)$ [15, (11.5)], we have that \mathcal{B} is a continuum.

Since, clearly, an m-od is a fan homeomorphic to the cone over a finite set, the following result answers [13, 3.8].

Corollary 3.2. Let m and n be positive integers. If F is an m-od, then $\mathcal{G}(F) \in \{\mathcal{F}_n(F), \mathcal{C}_n(F)\}$ is homeomorphic to the cone over a finite – dimensional continuum.

Question 3.3. Does there exist a hereditarily decomposable continuum X that is neither an arc nor an m-od such that $C_n(X)$ is homeomorphic to the cone over a finite-dimensional continuum for some integer $n \geq 2$?

Acknowledgments. The author thanks Professor Alejandro Illanes for the useful conversations. The author also wishes to thank the referee for the very valuable suggestions made which improved the paper.

References

- K. Borsuk and S. Ulam, On symmetric products of topological spaces, Bull. Amer. Math. Soc., 37 (1931), 875–882.
- [2] J. J. Charatonik, On fans, Dissertationes Math. (Rozprawy Mat.), 54 (1967), 1–37.
- [3] J. J. Charatonik, A. Illanes and S. Macías, Induced maps on the hyperspaces C_n(X) of a continuum X, Houston J. Math. 28 (2002), 781–805.
- [4] C. A. Eberhart, A note on smooth fans, Colloq. Math. 20 (1969), 89-90.
- [5] A. Illanes, The hyperspace C₂(X) for a finite graph X is unique, Glasnik Mat. (37) 57 (2002), 374–363.
- [6] A. Illanes, and S. B. Nadler, Jr., Hyperspaces: Fundamentals and Recent Advances, in: Monographs and Textbooks in Pure and Applied Math., Vol. 216. New York, Basel: Marcel Dekker, 1999.
- [7] S. Macías, On symmetric products of continua, Topology Appl. 92 (1999), 173–182.
- [8] S. Macías, Aposyndetic properties of symmetric products of continua, Topology Proc. 22 (1997), 281–296.
- [9] S. Macías, On the hyperspaces $C_n(X)$ of a continuum X, Topology Appl. 109 (2001), 237–256.
- [10] S. Macías, On the hyperspaces $C_n(X)$ of a continuum X, II, Topology Proc. **25** (2000), 255–277.

SERGIO MACÍAS

- [11] S. Macías and S. B. Nadler, Jr., Z-sets in hyperspaces, Questions Answers Gen. Topology 19 (2001), 227–241.
- [12] S. Macías and S. B. Nadler, Jr., Fans whose hyperspace of subcontinua are cones, Topology Appl. 126 (2002), 29–36.
- [13] S. Macías and S. B. Nadler, Jr., n-fold hyperspaces, cones and products, Topology Proc. 26 (2001-2002) no. 1, 255–270.
- [14] S. Macías and S. B. Nadler, Jr., Smoothness in n-fold hyperspaces, Glasnik Mat. (37) 57 (2002), 365–373.
- [15] S. B. Nadler, Jr., *Hyperspaces of Sets*, in: Monographs and Textbooks in Pure and Applied Math., Vol. 49. New York, Basel: Marcel Dekker, 1978.
- [16] S. B. Nadler, Jr., Continuum Theory: An Introduction, in: Monographs and Textbooks in Pure and Applied Math., Vol. 158. New York, Basel, Hong Kong: Marcel Dekker, 1992.

INSTITUTO DE MATEMÁTICAS, UNAM, CIRCUITO EXTERIOR, CIUDAD UNI-VERSITARIA, MÉXICO, D.F., C. P. 04510, MÉXICO.

E-mail address: macias@servidor.unam.mx

222