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THE HYPERSPACES C(p,X)

PATRICIA PELLICER-COVARRUBIAS

Abstract. Let C(X) denote the hyperspace of subcontinua
of a continuum X. For p ∈ X, define the hyperspaces C(p,X)
= {A ∈ C(X) : p ∈ A} and K(X) = {C(p,X) : p ∈ X}.
Let I denote the unit interval. The class of continua X for
which K(X) coincides with K(I) (the class of the so-called
arc-similar continua) is characterized as the class of continua
having two end-points and arcs as proper nondegenerate sub-
continua. Other classes of continua are characterized as well,
in terms of the hyperspaces K(X).

1. Introduction

Throughout this paper C(X) will denote the hyperspace of sub-
continua of a continuum X equipped with the Hausdorff metric
(see definitions 1.6 and 2.1 in [5]). Also, for D ∈ C(X) define the
hyperspace C(D,X) = {A ∈ C(X) : D ⊂ A}. For convenience,
we shall denote C({p}, X) simply by C(p,X). Finally, we define
K(X) = {C(p,X) : p ∈ X}.

The hyperspace C(X) has been largely studied and now we know
that it is extremely useful in the study of continuum theory; more
precisely, several properties of a continuum X can be determined
in terms of the topological properties of C(X), and vice versa. For
more information on this subject we refer the reader to [5]. Fol-
lowing this idea, the aim of this paper is to investigate and present
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260 P. PELLICER-COVARRUBIAS

some relations between topological properties of a continuum X
and those of its hyperspaces C(p,X).

The hyperspaces C(p,X) have not been largely investigated.
Nevertheless, there are some known results about them; among the
most important is that they are absolute retracts (see [3, Theorem
2]).

One can also find in the literature conditions under which C(p,X)
is a Hilbert cube (see [1] and [3, theorems 4, 6, 8]).

In this paper we study relations between some particular con-
tinua X and their hyperspaces K(X). Several examples and coun-
terexamples are also given.

First, we give a characterization of the class of continua X for
which K(X) coincides with K(I), where I denotes the unit interval.
We call it the class of arc-similar continua, and we characterize it
as the class of continua having two end-points and arcs as proper
nondegenerate subcontinua.

Next, we describe the class of continua X for which K(X) co-
incides with K(S), where S is a simple closed curve. This class
is determined as the class of continua having arcs as proper non-
degenerate subcontinua and no end-points. Finally, a particular
class of continua (class P) is characterized as well, in terms of the
hyperspaces K(X).

2. Preliminaries

In this paper, a continuum means a compact, connected metric
space, and a mapping means a continuous function. We denote by
I the unit interval, by N the set of all positive integers, by C the
set of all complex numbers (equipped with the natural topology),
and by S1 the unit circle, i.e., S1 = {z ∈ C : |z| = 1}.

Further, for a continuum X, and A ⊂ B ⊂ X, we denote by
clB(A), intB(A), extB(A), and bdB(A) the closure, the interior, the
exterior, and the boundary of A with respect to B. In case B = X,
we shall simply omit the subindex. Also, dim(X) will denote the
dimension of the continuum X, and diam(X), its diameter. Finally,
if the continuum X has a metric d, x ∈ X, and A is a closed subset
of X, let d(x,A) = inf{d(x, a) : a ∈ A}. Moreover, N(ε,A) denotes
the set {x ∈ X : d(x,A) < ε}.



THE HYPERSPACES C(p,X) 261

Let A,B ∈ C(X). An order arc from A to B is a continuous
function α : I → C(X) such that α(0) = A, α(1) = B, and α(r) (
α(s) whenever r < s (see [12, 1.2–1.8]).

We also say that an order arc α, from A to B is unique, if for
any order arc β, from A to B, we have that α(I) = β(I).

A Whitney map for C(X) is a mapping µ : C(X)→ [0,∞) such
that µ(X) = 1, µ({p}) = 0 for each p ∈ X, and µ(A) < µ(B)
whenever A ( B (see [5, p. 105]).

Similarly, we define a Whitney map for C(p,X) as a mapping
µ : C(p,X)→ [0,∞) such that µ(X) = 1, µ({p}) = 0, and µ(A) <
µ(B) whenever A ( B.

3. General Properties

Definition 3.1. Let X,Y be continua and f : X → Y a map-
ping. The induced mapping C(f) : C(X) → C(Y ) is given by
C(f)(A) = f(A).

To know more about these mappings we refer the reader to the
paper [4].

Definition 3.2. Let X,Y be continua and f : X → Y a mapping.
f is said to be confluent provided that for any B ∈ C(Y ) and any
component A of f−1(B) we have that f(A) = B.

Lemma 3.3. Let X and Y be continua. A mapping f : X → Y is
confluent if and only if for any p ∈ X, C(f)

(
C(p,X)

)
= C(f(p), Y ).

Proof: It is not difficult to see that C(f)
(
C(p,X)

)
⊂ C(f(p), Y ).

Now, if f is confluent, B ∈ C(f(p), Y ), and A is the component of
f−1(B) containing p, then A ∈ C(p,X) and f(A) = B. We there-
fore obtain that C(f(p), Y ) ⊂ f

(
C(p,X)

)
. Hence, C(f)

(
C(p,X)

)
=

C(f(p), Y ).
Conversely, if f is not confluent, there exist B ∈ C(Y ) and a

component A of f−1(B) such that f(A) ( B. Let p ∈ A. If there
exists D ∈ C(p,X) with f(D) = B, then A ∪D ∈ C(p,X), so we
have that A ∪D is a connected set contained in the component A
of f−1(B), and is such that B = f(A ∪ D). This contradicts the
choice of A. Hence, C(f)

(
C(p,X)

)
( C(f(p), Y ). �

Note that C(p,X) is a closed subset of C(X), so it is compact.
Also, C(p,X) is arcwise connected, so the hyperspace C(p,X) is a
continuum too.
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The following is a natural result.

Lemma 3.4. Let X and Y be continua and let h : X → Y be a
homeomorphism. Then C(p,X) ≈ C

(
h(p), Y

)
.

Recall that a cut point of a topological space X is a point p ∈ X
such that X \ {p} is not connected. The following result is related
to the main theorem in [6].

Lemma 3.5. Let X be a continuum and let p ∈ X. Then neither
{p} nor X is a cut point of C(p,X).

Proof: Let A,B ∈ C(p,X) \
{
X, {p}

}
. Taking order arcs from

{p} to A and {p} to B, it is easy to see that C(p,X)\{X} is arcwise
connected. Similarly, C(p,X) \

{
{p}
}

is arcwise connected. �

Definition 3.6. Let X be a continuum, let p ∈ X, and let A ∈
C(p,X). We say that A is terminal at p if for each B ∈ C(p,X)
we have that either A ⊂ B or B ⊂ A. We say that A is terminal
provided it is terminal at a for every a ∈ A.

Lemma 3.7. Let X be a continuum and let p ∈ X. Suppose A ∈
C(p,X) is such that {p} ( A ( X. Then A is terminal at p if and
only if A is a cut point of C(p,X).

Proof: Suppose A is terminal at p and consider the following sets:
A = {B ∈ C(p,X) : B ⊂ A} and B = {B ∈ C(p,X) : A ⊂ B}.
Then both A and B are closed, A ∩ B = {A}, and A \ {A} 6= ∅ 6=
B\{A}. Moreover, since A is terminal at p, we get A∪B = C(p,X).
Therefore, A is a cut point of C(p,X).

Conversely, if A is not terminal at p, then there exists K ∈
C(p,X) such thatK\A 6= ∅ and A\K 6= ∅. LetA = {B ∈ C(p,X) :
A * B}. Thus, K ∈ A. Moreover, A is arcwise connected: each
element of A can be connected by an order arc with {p} in A.

Take now B ∈ C(p,X) \ {A}, then it is enough to connect B
with K by a path contained in C(p,X) \ {A}. Since A is arcwise
connected, we may assume that B /∈ A; thus, A ( B. Consider
order arcs α and β, from K to X and from B to X, respectively.
Then α ∪ β is a path in C(p,X) \ {A} joining B and K. �

Lemma 3.8. Let X be a continuum and let A ∈ C(X) \ {X}.
Suppose α1 : I → C(X) and α2 : I → C(X) are two order arcs
from A to X such that α1(I) 6= α2(I). Then there exist s, t ∈ I in
such a way that α1(s) \ α2(t) 6= ∅ and α2(t) \ α1(s) 6= ∅.
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Proof: Let µ : C(X) → I be a Whitney map. Take s ∈ I such
that α1(s) /∈ α2(I) and let r′ = µ

(
α1(s)

)
. Consider also t ∈ I such

that µ
(
α2(t)

)
= r′. Then, according to the definition of a Whitney

map, neither of the continua α1(s) nor α2(t) is contained in the
other. �

Lemma 3.9. Let A′ be a subcontinuum of a continuum X. Then
C(A′, X) is an arc if and only if any two elements of C(A′, X) are
comparable.

Proof: If C(A′, X) is an arc, then there exists a unique order arc
α, from A to X, such that α(I) = C(A′, X). Because of the mono-
toneity of order arcs, we obtain that any two elements of C(A′, X)
are comparable.

Conversely, let α1 be an order arc from A′ to X. If C(A′, X)
is not an arc, then there exists K ∈ C(A′, X) \ α1(I). Take now
an order arc α2 from A′ to X containing K. Then α1(I) 6= α2(I),
whence by Lemma 3.8 we can find s, t ∈ I such that α1(s)\α2(t) 6= ∅
and α2(t) \α1(s) 6= ∅, i.e., α1(s) and α2(t) are not comparable. �

Lemma 3.10. Let X be a continuum and let A′ ∈ C(X) be such
that C(A′, X) is an arc. If A,B ∈ C(A′, X), then B \ A is con-
nected.

Proof: Suppose B \ A is not connected, and consider two com-
ponents K and K ′ of B \A. Then A∪K and A∪K ′ are connected
(see [13, Corollary 5.9]). Moreover, A∪K and A∪K ′ are two non-
comparable elements of C(A′, X) This contradicts Lemma 3.9. �

The following is an easy result and the proof is left to the reader.

Lemma 3.11. Let n ∈ N. Suppose there exist two families of sub-
continua {K1,K2, . . . ,Kn} and {C1, C2, . . . , Cn}, such that K1,K2,
. . . ,Kn are pairwise disjoint and Ki ⊂ Ci for every i ∈ {1, 2, . . . }.
For each i take an order arc αi : I → C(X) from Ki to Ci.
Then there exists δ > 0 such that if |s| ≤ δ and j 6= i, then
αi(s) ∩ αj(s) = ∅.
Lemma 3.12. Let X be a continuum and let A′ ∈ C(X) be such
that C(A′, X) is an arc. If A ∈ C(A′, X)\{X}, then bd(A) ∈ C(X).

Proof: It is enough to prove that bd(A) is connected.
Suppose that H1 and H2 are two distinct components of bd(A).

By Lemma 3.10, cl(X \ A) ∈ C(X), so for each i ∈ {1, 2} we can
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take an order arc αi, from Hi to cl(X \ A). In particular, for each
s ∈ (0, 1], A ∪ αi(s) ∈ C(X) and αi(s) \ A 6= ∅. Moreover, by
Lemma 3.11, there exists δ > 0 such that α1(δ) ∩ α2(δ) = ∅. We
therefore obtain that A∪α1(δ) and A∪α2(δ) are two noncomparable
elements of C(A′, X). However, this leads to a contradiction with
Lemma 3.9. Hence, bd(A) is connected. �

Definition 3.13. Let n ∈ N. A continuum Y is an n-od if there
exists K ∈ C(Y ) such that Y \ K has at least n components.
Further, we will say that K is a core of the n-od. If n = 3, Y
is called a triod.

Definition 3.14. Let n ∈ N. A continuumX is an n-cell provided
that X is homeomorphic to In.

It is known that if the continuum X contains n-ods, then C(X)
contains n-cells (see [14, Theorem 1]). Proceeding in a similar way
to that of [14, Theorem 1], it is not difficult to prove the following
result.

Lemma 3.15. Let X be a continuum, let p ∈ X, and let n ∈ N.
If p is contained in the core of an n-od, then C(p,X) contains an
n-cell.

A continuum X is said to be decomposable if it can be written
as the union of two of its proper subcontinua; otherwise, X is said
to be indecomposable. X is hereditarily decomposable (indecom-
posable) provided each of its proper, nondegenerate subcontinua is
decomposable (indecomposable). Further, the composant of p in
X is defined by Σp =

⋃
{A ∈ C(X) \ {X} : p ∈ A}.

Theorem 3.16. Let X be a continuum and let N ∈ N be such
that the set {p ∈ X : C(p,X) has cut points } is at most countable
and for each p ∈ X, dim

(
C(p,X)

)
< N . Then every proper and

nondegenerate subcontinuum of X is decomposable.

Proof: Suppose that X has a proper, nondegenerate, indecom-
posable subcontinuum Y . Then Y has uncountably many com-
posants (see [13, Theorem 11.15]). Let x1, . . . , xN be N points in Y
chosen in such a way that they lie in different composants of Y and
C(xi, X) does not have cut points for any i ∈ {1, . . . , N}. Then Y
is not a cut point of C(xi, X) and thus, by Lemma 3.7, for each i
we can choose a subcontinuum Ki ∈ C(xi, X) such that Y \Ki 6= ∅
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and Ki \ Y 6= ∅. For each i let Li be the component of Ki ∩ Y
containing xi; in particular, Li ∩ Lj = ∅ whenever i 6= j.

For each i let αi be an order arc from Li to Ki. Then by Lemma
3.11, there exists δ > 0 such that αi(δ)∩αj(δ) = ∅ whenever i 6= j.

Let Z = Y ∪
⋃N
i=1 αi(δ). It is easy to see that Z ∈ C(X) and

αi(δ) \ Y 6= ∅, for each i. On the other hand, by construction
Z \Y has at least N components; therefore, Z is an N-od with core
Y . However, by Lemma 3.15, C(p,X) contains an N -cell for each
p ∈ Y , a contradiction with our hypotheses. �

Remark. A well-known theorem by Mazurkiewicz states that any
compact metric space of dimension ≥ 2 contains a nondegenerate
indecomposable continuum (see [13, 13.57]). According to this, the
continuum X in the previous theorem must be 1-dimensional.

We shall now present some examples which illustrate the struc-
ture of some basic hyperspaces C(p,X).

Theorem 3.17. Let X be an arc with end points a and b. Then
C(p,X) is an arc if p ∈ {a, b}; otherwise, C(p,X) is a 2-cell.

Proof: It suffices to prove the case X = I. Let p ∈ I.
Case 1. Suppose that p = 0 and consider the function g : I →

C(0, I) given by g(t) = [0, t]. Then it is not difficult to see that g is
a homeomorphism. Therefore, C(0, I) is an arc. Similarly, C(1, I)
is an arc.

Case 2. Let p ∈ I \{0, 1} and let a function g : [0, p]× [0, 1−p]→
C(p, I) be given by g(r, s) = [p−r, p+s]. Again, it is not difficult to
see that g is a continuous bijection. Hence, C(p, I) is a 2-cell. �

Proceeding in a way similar to that in Theorem 3.17, one can
prove the following result.

Theorem 3.18. If X is a simple closed curve, then C(p,X) is a
2-cell for each p ∈ X.

Lemma 3.19. The following conditions are equivalent for a continu-
um X:

i) X is hereditarily indecomposable.
ii) C(p,X) is an arc for each p ∈ X.

Proof: Suppose that there exists p ∈ X such that C(p,X) is
not an arc. Then, according to Lemma 3.9, one can find K1,K2 ∈
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C(p,X), such that K1 \ K2 6= ∅ and K2 \ K1 6= ∅. However,
K1∪K2(t) ∈ C(X), and it is decomposable, so X is not hereditarily
indecomposable.

Conversely, suppose that C(p,X) is an arc for each p ∈ X. Let
K ∈ C(X) and assume that K = A ∪ B for some A,B ∈ C(X).
Take p ∈ A∩B. By Lemma 3.9, A and B are comparable; thus, K
is indecomposable and, therefore, X is hereditarily indecomposable.

�

A question which arises naturally is whether the structure of
the hyperspaces C(p,X) characterizes the continuum X. In order
to answer this question, we introduce the concept of arc-similar
continua.

Definition 3.20. Let X be a continuum and let a, b be two distinct
points in X. We say that (X, a, b) is arc-similar if C(a,X) and
C(b,X) are arcs and C(p,X) is a 2-cell, whenever p /∈ {a, b}.

We have seen in Theorem 3.17 that arcs are arc-similar continua;
however, the converse is not true, as the following example shows.

Example 3.21. Consider the Knaster continuum X with two end
points a and b (see [8, p. 205]). Then, by Lemma 3.9, C(a,X) and
C(b,X) are arcs. Proceeding in a similar way as we did in the proof
of Theorem 3.17, it is not difficult to see that C(p,X) is a 2-cell if
a 6= p 6= b. However, for a formal proof of this, see Theorem 5.21.

Nevertheless, the example presented above is a rather compli-
cated continuum. Therefore, a question that arises naturally is
whether there exists a decomposable, arc-similar continuum which
is not an arc. A natural candidate could be the following:

Example 3.22. Let X be the continuum in Example 3.21, and
suppose a and b are the end points of X. Take also an arc A with
endpoints c and d. Let Y be the continuum obtained by identifying
a and c. It might seem that Y is arc-similar, but it is not, which
we show as follows. Observe that the subcontinuum X is terminal
at any point p which does not belong to the composant of a in X.
Therefore, applying Lemma 3.7, we obtain that C(p, Y ) has cut
points for uncountably many p ∈ Y . Since 2-cells do not have cut
points, we can conclude that Y is not arc-similar.
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In Theorem 5.15, we shall actually prove that the arc is the only
decomposable arc-similar continuum.

4. Main tools

Lemma 4.1. Let X be a continuum and suppose n ∈ N is such
that dim(C(p,X)) < n for each p ∈ X. If A,B ∈ C(X), then both
B \A and A ∩B have at most n− 1 components.

Proof: If B \A has at least n components, then A∪B is an n-od
with core A. Thus, by Lemma 3.15, C(p,X) contains an n-cell for
each p ∈ A, which contradicts our hypotheses. The fact that A∩B
has at most n− 1 components follows from [11, Theorem 4] �

The following are easy lemmas, and we omit the proofs.

Lemma 4.2. Let X be a decomposable continuum, say X = A∪B
where A and B are proper subcontinua of X. If K is a component
of A ∩B, then K ∩ bd(A) 6= ∅ and K ∩ bd(B) 6= ∅.

Lemma 4.3. Let X be a continuum and let K ∈ C(X) be such that
K = cl(U) for some open subset U of X. Then K = cl

(
int(K)

)
.

Recall that a continuum X is unicoherent provided that when-
ever A and B are subcontinua of X, satisfying A ∪ B = X, then
A ∩B is connected.

Lemma 4.4. Let X be a non-unicoherent continuum satisfying the
condition dim(C(p,X)) < 3 for each p ∈ X. Then there exist two
proper subcontinua A and B of X such that i)A∪B = X, ii)A∩B
is not connected, iii)A = cl

(
int(A)

)
, B = cl

(
int(B)

)
, and iv)

int(A) = A \B, int(B) = B \A.

Proof: Since X is not unicoherent, we can take two proper sub-
continua A′ and B′ of X, such that A′∪B′ = X, and A′∩B′ is not
connected.

Define B = cl(X \ A′) and A = cl(X \ B). Note that A and B
are proper subsets of X and that A ∪ B = X. Moreover, applying
Lemma 4.1, we have that A′ ∩ B′ has exactly two components H1

and H2.
Claim. A,B ∈ C(X).
We will first prove that B ∈ C(X), for which it is enough to

show that X \A′ is connected.
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Suppose X\A′ is not connected. Then, by Lemma 4.1, X\A′ has
exactly two components, one of which–say W– is such that cl(W )
intersects both H1 and H2 (see [13, 11.52 (a)]).

Let L1 and L2 be components of cl(W ) ∩ H1 and cl(W ) ∩ H2,
respectively, and note that L1 ∩ L2 = ∅. Take now, for each i ∈
{1, 2}, an order arc αi from Li to cl(W ), and δ > 0 such that
α1(δ) ∩ α2(δ) = ∅. Let Z be the component of X \ A′ which is
not W ; we may assume that Z * α1(δ) ∪ α2(δ). Consider T =

A′ ∪
(⋃2

i=1 αi(δ)
)
∪ Z. Then T is a triod with core A′; thus,

by Lemma 3.15, C(p,X) contains a 3-cell for every p ∈ A′, which
contradicts our hypotheses. Hence, B is connected. In a similar
way it can be shown that A is connected, and the claim is proved.

Observe now that A = cl
(
X \ cl(X \ A′)

)
= cl

(
int(A′)

)
, and

therefore, bd(A) = A ∩ cl(X \ A) = A ∩ cl
(
X \ cl

(
int(A′)

))
=

A ∩ cl
(
ext(A′)

)
= A ∩ cl(X \ A′). Hence, bd(A) = A ∩ B =

cl(X \B) ∩B = bd(B).
As a consequence of this we obtain that B \A = B \ (B∩A) =

B\bd(B) = int(B). And, similarly, A \B = int(A). Also note that
B = cl

(
int(B)

)
and A = cl

(
int(A)

)
, by means of Lemma 4.3.

Finally, it remains to show that A ∩B is not connected.
Let i ∈ {1, 2}. By Lemma 4.2, we have that ∅ 6= Hi∩bd(A′) ⊂

Hi ∩ B, and that Hi∩bd(B′) 6= ∅. Now, it is easy to see that
B ⊂ B′. Therefore, we can conclude that Hi∩bd(B) 6= ∅; thus,
Hi ∩ (A∩B) 6= ∅. Since A∩B ⊂ H1 ∪H2, we deduce that A∩B
is not connected. �

Definition 4.5. Let X be a continuum and let A1, A2, A3 ∈ C(X).
We will say that A1, A2 and A3 form a weak triod if A1∩A2∩A3 6= ∅
and Ai \ (Aj ∪Ak) 6= ∅ whenever {i, j, k} = {1, 2, 3}.

Recall that a noose is the one-point union of an arc and a simple
closed curve in such a way that the arc intersects the simple closed
curve in one of its end points. It is easy to see that a noose is a
weak triod which is not a triod. Also, a continuum with the shape
of the Greek letter θ is a weak triod which is not a triod. Moreover,
one can easily prove that a triod is always a weak triod.

For more information on triods and weak triods, we refer the
reader to [15].
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Theorem 4.6. [15, Theorem 1.8] Let X be a continuum and let
A,B,C ∈ C(X) be such that they form a weak triod. Then X
contains a triod.

Theorem 4.7. Let X be a continuum such that dim(C(p,X)) < 3
for each p ∈ X. Then X contains neither triods nor weak triods.

Proof: This is a direct consequence of Theorem 4.6 and Lemma
3.15. �

Lemma 4.8. Let X be a continuum and let W,Y,Z ∈ C(X) be
such that Y ∩ Z is not connected, W ( Y , and W ∩ Z = Y ∩ Z.
Then X contains a triod.

Proof: Let L1 and L2 be two distinct components of Y ∩Z. For
i ∈ {1, 2} take an order arc αi from Li to Z, and δ > 0 in such a
way that α1(δ) ∩ α2(δ) = ∅. Let T = Y ∪ α1(δ) ∪ α2(δ). Then one
can prove that T is a triod with core W . �

Theorem 4.9. Let X be a continuum such that dim
(
C(p,X)

)
< 3

for each p ∈ X and the set {p ∈ X : C(p,X) has cut points} is at
most countable. If Y ∈ C(X) \ {X}, then Y is unicoherent.

Proof: Suppose that Y is not unicoherent. Then by Lemma 4.4,
we can take two proper subcontinua A and B of Y in such a way
that i) A ∪B = Y , ii) intY (A) = A\B, intY (B) = B\A, iii) A =
cl
(
intY (A)

)
, B = cl

(
intY (B)

)
, and iv) A ∩B is not connected.

Let p ∈ Y be such that C(p,X) has no cut points. Then, accord-
ing to Lemma 3.7, there exists K ∈ C(p,X) such that Y \K 6= ∅
and K \ Y 6= ∅. We shall suppose that B \ K 6= ∅ and define
C = A ∪K. Note from iii), that B \ C 6= ∅.

Claim 1. A ∩K 6= ∅. In particular, C ∈ C(X).
Suppose that A ∩K = ∅. Since p ∈ Y ∩K, we obtain that p ∈

B∩K. Hence, B∪K ∈ C(X). Note that the set (B∪K)∩A = B∩A
is not connected. Thus, applying Lemma 4.8 to the subcontinua
B ∪K,B and A, we obtain that X contains a triod. This yields a
contradiction with Theorem 4.7

Claim 2. If A ∩ B is contained in a component of B ∩ C, then
Y contains a triod.

Let W be the component of B ∩ C containing A ∩ B. Since
B \ C 6= ∅, we have W ( B. On the other hand, it is not difficult
to see that W ∩ A = B ∩ A. Therefore, applying Lemma 4.8, we
obtain that Y contains a triod.
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Claim 3. If A∩B intersects more than one component of B∩C,
then X contains a triod.

Let C1 and C2 be the two components of B∩C (see Lemma 4.1).
Note that A∪C1∪C2 ∈ C(X) andK\(A∪C1∪C2) ⊃ K\Y 6= ∅,

whence A ∪ C1 ∪ C2 ( A ∪K = C. Finally, it is not difficult to
see that (A∪C1 ∪C2)∩B = B ∩C, so we can apply Lemma 4.8 to
the subcontinua A∪C1 ∪C2, C, and B, to obtain that X contains
a triod.

As a result of the claims above, we obtain a contradiction with
Theorem 4.7. �

Lemma 4.10. Let X be a continuum such that dim
(
C(p,X)

)
< 3

for each p ∈ X, and the set {p ∈ X : C(p,X) has cut points} is
at most countable. Take Y ∈ C(X) \ {X}. If A1 and A2 are two
proper subcontinua of Y such that A1 ∪ A2 = Y , then A1 ∩ A2 ∈
C(Y ) and there exists a unique order arc from A1 ∩ A2 to Ai, for
each i ∈ {1, 2}.

Proof: By means of Theorem 4.9, A1 ∩ A2 ∈ C(Y ); thus, there
exists an order arc α1 from A1 ∩A2 to A1.

Suppose that we have an order arc α2 from A1 ∩A2 to A1, such
that α1(I) 6= α2(I). Then, applying Lemma 3.8, we can choose
s, t ∈ I satisfying α1(s) \ α2(t) 6= ∅ and α2(t) \ α1(s) 6= ∅.

Consider the set Z = A2∪α1(s)∪α2(t). Then it is easy to see that
Z is a weak triod, but this contradicts Theorem 4.7. Proceeding
similarly, one can prove the result for A2. �

Recall that a continuum X is irreducible between the points
a, b ∈ X provided that, for any A ∈ C(X) containing a and b,
we have that A = X.

Definition 4.11. Let X be a continuum and let A,B ⊂ X. We
say that X is irreducible between A and B provided that

(*) X is irreducible between the points a and b if and only if
a ∈ A and b ∈ B.

Definition 4.12. For a continuum X, irreducible between two
points a and b, define the family D(X,a) = {A ∈ C(a,X) : A =
cl
(

int(A)
)
}.

Lemma 4.13. Let Y be a continuum irreducible between the sub-
continua A′ and B′. Let A ∈ C(Y ) be such that A′ ∩ A 6= ∅ and
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A \ A′ 6= ∅. Then A′ ⊂ int(A). In particular, A′ is a terminal
subcontinuum of Y .

Proof: Let p ∈ A \ A′. Then there exists B ∈ C(p,X) \ {X}
such that B ∩B′ 6= ∅. Since Y is irreducible between A′ and B′ we
have that B ∩ A′ = ∅ and A ∪ B = X, whence A′ ⊂ X \ B ⊂ A.
Therefore, A′ ⊂ int(A). �

Theorem 4.14. Let X be a continuum such that dim
(
C(p,X)

)
< 3

for each p ∈ X and the set {p ∈ X : C(p,X) has cut points} is at
most countable.

Let Y ∈ C(X) \ {X} and let A′, B′ ∈ C(Y ) be such that Y
is irreducible between A′ and B′. If A1, A2 ∈ C(Y ) satisfy that
A′ ⊂ A1 ∩A2, then either A1 ⊂ A2 or A2 ⊂ A1.

Proof: Assume A′ ( Ai for each i ∈ {1, 2}, and let a ∈ A′. As a
consequence of Lemma 4.3 and [8, §48, II, Theorem 5], cl

(
intY (A1)

)
,

cl
(
intY (A2)

)
∈ D(Y,a). Thus, by [8, §48, III, Theorem 2], we may

assume that cl
(
intY (A1)

)
⊂ cl

(
intY (A2)

)
. Let K = cl

(
intY (A1)

)
.

If A1 and A2 are not comparable, then K ( A1 and K ( A2.
Choose w ∈ K \ A′ (Lemma 4.13) and let b ∈ B′. Since Y is

irreducible between A′ and B′, there exists B ∈ C(Y ) \ {Y } such
that w, b ∈ B. Hence, A′ ⊂ Y \B. Applying now Theorem 4.9, we
get that Ai∩B ∈ C(Y ), for i ∈ {1, 2}. Using again the irreducibility
of Y , we have that Ai ∪B = Y and K ∪ B = Y . In particular,
Y \Ai ⊂ B.

Now, observe that A′ ⊂ K \
(

(A1 ∩ B) ∪ (A2 ∩ B)
)

and that
w ∈ (A1 ∩B) ∩ (A2 ∩B) ∩K.

On the other hand, one can prove that (Ai∩B)\
(
(Aj∩B)∪K

)
=

Ai\Aj 6= ∅, for i 6= j. As a consequence of the statements above, we
get that A1∩B, A2∩B, and K form a weak triod. This contradicts
Theorem 4.7. �

Lemma 4.15. Let X be a continuum such that dim(C(p,X)) < 3
for each p ∈ X and let Y ∈ C(X). Suppose that Y is irreducible
between A′ and B′, where A′, B′ ∈ C(Y ).

Let w ∈ Y \(A′∪B′) and let Z ∈ C(w,X) be such that Z \Y 6= ∅.
Denote by Z0 the component of Z∩Y that contains w. Then either
A′ ⊂ Z0 or B′ ⊂ Z0.

Proof: Claim 1. A′ ∩ Z 6= ∅ or B′ ∩ Z 6= ∅.
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Choose a ∈ A′ and A ∈ C(Y ) \ {Y } such that a,w ∈ A. Then
A ∩ B′ = ∅. Similarly, let b ∈ B′ and let B ∈ C(Y ) \ {Y } be
such that b, w ∈ B and B ∩ A′ = ∅. Hence, A ∪ B = Y ; thus,
Z \ (A ∪B) 6= ∅.

If we suppose that Z ∩ A′ = ∅ and Z ∩ B′ = ∅, we get that
a ∈ A′ ∩A ⊂ A \ (Z ∪B). Similarly, b ∈ B\(Z∪A). According to

this, we can conclude that A,B, and Z form a weak triod. However,
this contradicts Theorem 4.7. The claim is proved.

Claim 2. A′ ⊂ Z0 or B′ ⊂ Z0.
Let α be an order arc from Z0 to Z. By Lemma 4.1, we know that

Z ∩ Y has at most two components, so there exists δ > 0 which
satisfies α(δ) ∩ Y = Z0. Applying Claim 1 to the subcontinuum
α(δ), we may suppose that A′ ∩ α(δ) 6= ∅. Then clearly ∅ 6= A′ ∩
α(δ) = A′ ∩ Z0. Finally, by Lemma 4.13, and the fact that w ∈
Z0 \A′, we conclude that A′ ⊂ Z0. �

5. On class P

Definition 5.1. Let P be the class of continua X such that
C(p,X) is an arc or a 2-cell for each p ∈ X, and the set {p ∈
X : C(p,X) is arc} is at most countable.

Note, for example, that an arc is such a continuum (Theorem
3.17), whereas the continuum Y of Example 3.22 is not.

Theorem 5.2. Let X ∈ P and let Y ∈ C(X). Suppose that
A′, B′ ∈ C(Y ) are such that Y is irreducible between A′ and B′.
Let w ∈ Y \ (A′ ∪B′). Then C(w, Y ) has no cut points.

Proof: By Lemma 3.5, neither Y nor {w} are cut points of
C(w, Y ). Let W ∈ C(w, Y ) be such that {w} ( W ( Y . We
shall analyze two cases, in order to see that W is not a terminal
subcontinuum of Y , at w.

Case 1. A′ ⊂W or B′ ⊂W .
Suppose that A′ ⊂ W , then W ∩B′ = ∅. Since w is not a point

of irreducibility of Y , we can take b ∈ B′ and B ∈ C(w, Y ) \ {Y }
such that b ∈ B. Therefore, A′ ⊂ W \B and b ∈ B ∩B′ ⊂ B \W .
Hence, W is not terminal at w in Y .

Case 2. A′ *W and B′ *W .
Notice that w is not a point of irreducibility of Y . Take a ∈ A′,

b ∈ B′, and A,B ∈ C(w, Y ) \ {Y } such that a ∈ A and b ∈ B.
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According to this, b ∈ B \ A and a ∈ A \B. Thus, by Lemma 3.9,
C(w,X) is not an arc. Since X ∈ P, C(w,X) must be a 2-cell, and
therefore, by Lemma 3.7, W is not a subcontinuum of X terminal
at w.

Let Z ∈ C(w,X) be such that Z \W 6= ∅ and W \ Z 6= ∅. If
Z ⊂ Y , we obtain directly that W is not a subcontinuum of Y
terminal at w; thus, we may suppose that Z \Y 6= ∅. We shall also
suppose that Z ∪ Y ( X. Let Z0 = Z ∩ Y . Then, according to
Theorem 4.9, Z0 ∈ C(w, Y ).

On the other hand, by Lemma 4.15, we may assume that
A′ ⊂ Z0. Now, we have that ∅ 6= A′ \ W ⊂ Z0 \ W and that
∅ 6= W \ Z0. Hence, W is not a subcontinuum of Y terminal at w.

As a result of either case, by Lemma 3.7, we get that W is not a
cut point of C(w, Y ). �

The next theorem follows from Theorem 4.14 and Lemma 3.9.

Theorem 5.3. Let X ∈ P and let Y be a proper and nondegenerate
subcontinuum of X. If Y is irreducible between A′ and B′ for some
A′, B′ ∈ C(Y ), then C(A′, Y ) and C(B′, Y ) are arcs.

The main theorem in this section states that proper and non-
degenerate subcontinua of continua in class P are arcs. We shall
proceed to develop auxiliary results to this aim.

Theorem 5.4. Let X ∈ P and let Y be a proper and nondegenerate
subcontinuum of X. Suppose that Y is irreducible between A′ and
B′ for some A′, B′ ∈ C(Y ).

Let a ∈ A′, and let α : I → C(A′, Y ) be an order arc from A′ to
Y . Then the set T = {t ∈ I : α(t) ∈ D(Y,a)} is dense in I.

Proof: Suppose that T is not dense in I, and take r ∈ (0, 1)
and ε ∈ (0, r) in such a way that 0 < r − ε < r + ε < 1 and
(r − ε, r + ε) ∩ T = ∅.

Define s = inf{t ∈ [r + ε, 1] : t ∈ T}, Z = [0, r − ε] ∩ T . Further,
let t0 = supZ, if Z 6= ∅; otherwise, define t0 = 0. As a consequence
of Theorem 5.3 and [9, Theorem 3.1], there exists a point y ∈
α(s) \

⋃
{α(t) : 0 < t < s}. Let b ∈ B′. We shall proceed with the

proof in a series of steps.
Step 1. t0 > 0, t0 ∈ T and cl

(
intY (α(s))

)
= cl

(
intY (α(t0))

)
=

α(t0).
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As a consequence of Lemma 4.13, Lemma 4.3, and [8, §48, II,
Theorem 5], cl

(
intY (α(s))

)
∈ D(Y,a). Now, applying Theorem 5.3

and Lemma 3.9, we obtain that cl
(
intY (α(s))

)
= α(s0) for some

s0 ∈ [0, s]. According to this and to Lemma 4.13, we deduce that
A′ ( α(s0) ⊂ α(s). Therefore, s0 > 0, and from the construction,
it follows that 0 < s0 ≤ t0.

Take now an increasing sequence of elements in T which con-
verges to t0. According to [8, p. 196], α(t0) ∈ D(Y,a); thus,
cl
(
intY (α(s))

)
= α(s0) ⊂ α(t0) = cl

(
intY (α(t0))

)
.

On the other hand, since t0 ≤ s, then cl
(
intY

(
α(t0)

))
⊂ cl

(
intY

(
α(s)

))
. This step is finished.

Step 2. s /∈ T . In particular, s < 1.
By construction we have that{

α(t) ∈ C(A′, Y ) : α(t0) ( α(t) ( α(s)
}
∩ D(Y,a) = ∅.

If we suppose that s ∈ T , applying Lemma 4.13, Step 1, and [8, §48,
VII, Theorem 2] to α(t0) and α(s), we obtain that cl

(
α(s) \ α(t0)

)
is an indecomposable subcontinuum of Y . Since X ∈ P, using
Theorem 3.16, we contradict the statement above. Hence, s /∈ T .

Step 3. Let K ′ = cl
(
α(s) \ α(t0)

)
. Then K ′ ∈ C(y, Y ) and

{y} ( K ′ ( Y .
Applying Theorem 5.3 and Lemma 3.10 to α(s) and α(t0), we

obtain that α(s) \ α(t0) is connected. Moreover, K ′ ∈ C(y, Y ) and
K ′ \ {y} 6= ∅. Finally, since s < 1, it follows that K ′ ⊂ α(s) ( Y .

The aim of the following steps is to show that K ′ is terminal at
the point y, in the subcontinuum Y .

Step 4. Let K ′ be defined as in Step 3, and let K ∈ C(y, Y ) be
such that (K \K ′) ∩ α(t0) 6= ∅. Then K ′ ⊂ K.

We shall prove that α(s) \ α(t0) ⊂ K.
Suppose there is a point w ∈

(
α(s) \ α(t0)

)
\K. We may then

assume that w ∈ α(r′) for some r′ ∈ (t0, s).
Consider now α(t0)∪K and α(r′). According to the hypotheses

of this step, α(t0)∪K ∈ C(A′, X); however, y ∈
(
α(t0)∪K

)
\α(r′)

and w ∈ α(r′) \
(
α(t0) ∪K

)
. Thus, α(t0) ∪K and α(r′) are two

noncomparable elements of C(A′, Y ). According to this and to
Lemma 3.9, we obtain a contradiction with Theorem 5.3. This step
is finished.
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Step 5. Let K ′ be defined as in Step 3, and let K ∈ C(y, Y ) be
such that i) (K \K ′) ∩ (Y \ α(t0)) 6= ∅ and ii) α(s) * α(t0) ∪K.
Then α(t0) ∩K = ∅.

Suppose that α(t0)∩K 6= ∅, then clearly α(t0) ∪K ∈ C(A′, X).
Now, according to our hypotheses, it is not difficult to prove that
∅ 6= (K \K ′)∩(Y \α(t0)) ⊂ (α(t0)∪K)\α(s). Therefore, α(s) and
α(t0) ∪K are two noncomparable elements of C(A′, Y ). Applying
now Lemma 3.9, we have that C(A′, Y ) is not an arc, which yields
a contradiction with Theorem 5.3. The step is complete.

Step 6. Let K ′ be defined as in Step 3, and let K ∈ C(y, Y ) be
such that (K \K ′) ∩ (Y \ α(t0)) 6= ∅. Then α(s) ⊂ α(t0) ∪K.

By construction, we have that α(s) ∪K ∈ C(A′, Y ). As a conse-
quence of Theorem 5.3 and Lemma 3.9, we obtain that α(s)∪K =
α(s1) for some s1 ∈ [s, 1].

On the other hand, according to the hypotheses, one can prove
that ∅ 6= (K \ K ′) ∩ (Y \ α(t0)) ⊂ K \ α(s). Thus, s1 > s. Let
s2 ∈ [s, s1) ∩ T .

Suppose that α(s) * α(t0)∪K, then, as a consequence of Step 5,
there exists δ > 0 such that α(t0 + δ)∩K = ∅. Since y ∈ α(s)∩K,
we have that t0 + δ < s. Let z ∈ α(t0 + δ) \α(t0). Applying Step 1,
it follows that z /∈ cl

(
intY (α(s))

)
, and we already know that z /∈ K.

Now, since s2 < s1, it is easy to see that cl
(
α(s2) \ α(s)

)
⊂ K.

Thus, we have that z /∈ cl
(
intY

(
α(s)

))
∪ cl

(
α(s2) \ α(s)

)
. Hence,

z ∈ X\ cl
(
intY

(
α(s2)

))
= X \ α(s2) ⊂ X \ α(t0 + δ), which is a

contradiction. The step is complete.
Step 7. If K ′ is defined as in Step 3, then A′ ∩ K ′ = ∅ and

B′ ∩K ′ = ∅. In particular, {a, b} ∩K ′ = ∅ and y /∈ A′ ∪B′.
Since s < 1, we have K ′ = cl

(
α(s)\α(t0)

)
⊂ Y \B′. In particular,

b /∈ K ′. On the other hand, intY
(
α(t0)

)
∩ cl

(
α(s) \ α(t0)

)
= ∅. As

a consequence of this, Step 1, and Lemma 4.13, A′ ∩ K ′ = ∅. In
particular, a /∈ K ′. Finally, in Step 3, we saw that K ′ ∈ C(y, Y ).
Hence, y /∈ A′ ∪B′.

Step 8. If K ′ is defined as in Step 3, then K ′ is a subcontinuum
of Y terminal at y.

LetK ∈ C(y, Y ) be such thatK\K ′ 6= ∅. If (K \K ′) ∩ α(t0) 6= ∅,
by Step 4, we have directly that K ′ ⊂ K. Suppose now that
(K \ K ′) ∩ (Y \ α(t0)) 6= ∅. Then, applying Step 6, it follows
that α(s) ⊂ α(t0) ∪K. Therefore, K ′ = cl

(
α(s) \ α(t0)

)
⊂ K.
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Hence, K ′ is a subcontinuum of Y terminal at y.

Now, using Theorem 5.2 and Step 7, we deduce that C(y, Y )
has no cut points. However, Lemma 3.7 and the statements above
contradict the terminality of K ′ at y proved in Step 8. �

Proposition 5.5. Let X ∈ P and let Y be a proper nondegenerate
subcontinuum of X. If Y is irreducible between A′ and B′, for some
A′, B′ ∈ C(Y ), and a ∈ A′, then C(A′, Y ) \ {A′} ⊂ D(Y,a).

Proof: As a consequence of Theorem 5.3 and Lemma 3.9, there
exists a unique order arc α from A′ to Y . Let D ∈ C(A′, Y ) \ {A′}.
Then D = α(s) for some s > 0. Now, by Theorem 5.4 we can take
an increasing sequence {sn}∞n=1 ⊂ I such that {α(sn)}∞n=1 ⊂ D(Y,a)

and sn → s. According to [8, p. 196], we get that D = α(s) ∈
D(Y,a). Therefore, C(A′, Y ) \ {A′} ⊂ D(Y,a). �

The proof of the following lemma is straightforward and is left
to the reader.

Lemma 5.6. Let X be a continuum and let L and K be two closed
subsets of X. If w ∈ bd(L) \K, then w ∈ bd(L ∪K).

Proposition 5.7. Let X ∈ P and let Y be a proper and nondegen-
erate subcontinuum of X. Suppose that Y is irreducible between A′

and B′ for some A′, B′ ∈ C(Y ).
Then bdY (D) is a one-point set for each D ∈ C(A′, Y )\{A′, Y }.

Proof: Let D ∈ C(A′, Y ) \ {A′, Y }. According to Theorem 5.3
and Lemma 3.9, there exists a unique order arc α from A′ to Y ;
thus, we can choose t ∈ (0, 1) such that D = α(t). Suppose that
the boundary of α(t) in Y has more than one point and let x ∈
bdY

(
α(t)

)
.

As a consequence of Lemma 4.13, x /∈ A′. Since B′∩α(t) = ∅, we
have that x /∈ B′. Thus, using Theorem 5.2, it follows that C(x, Y )
has no cut points. Thus, using Lemma 3.12 and Lemma 3.7, we
obtain that bdY

(
α(t)

)
is not terminal at x. Let K ∈ C(x, Y ) be

such that K\ bdY
(
α(t)

)
6= ∅ and bdY

(
α(t)

)
\K 6= ∅.

Case 1. K \ α(t) 6= ∅.
Let a ∈ A′ and let w ∈ bdY

(
α(t)

)
\ K. Then w ∈ K ∪ α(t) ∈

C(A′, Y ) and, nevertheless, α(t) ∪ K is not irreducible between a
and w. Now, by Proposition 5.5, we know that α(t) ∪K ∈ D(Y,a)
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and according to Lemma 5.6, w ∈ bdY
(
α(t) ∪K

)
. However, this

contradicts [8, §48, III, Theorem 1].
Case 2. K ⊂ α(t).
Let b ∈ B′. In this case, we have that K\ cl

(
Y \ α(t)

)
6= ∅ and,

by Lemma 3.10, we know that cl
(
Y \α(t)

)
is connected. Moreover,

since Y is irreducible and t ∈ (0, 1), B′ ⊂ Y \ α(t). Therefore,
K∪ cl

(
Y \ α(t)

)
∈ C(B′, Y ) \ {B′}. Applying Proposition 5.5, we

get that K∪ cl
(
Y \ α(t)

)
∈ D(Y,b) and that α(t) ∈ D(Y,a). Thence,

it is not difficult to see that bdY
(
α(t)

)
= bdY

(
cl
(
Y \ α(t)

))
. Take

a point w ∈ bdY
(
α(t)

)
\ K = bdY

(
cl
(
Y \ α(t)

))
\ K. Thus, by

Lemma 5.6, w ∈ bdY
(
cl
(
Y \ α(t)

)
∪ K

)
. Finally, since b, w ∈

cl
(
Y \α(t)

)
( K∪ cl

(
Y \α(t)

)
, it is easy to see that K∪ cl

(
Y \α(t)

)
is not irreducible between b and w. However, this contradicts [8,
§48, III, Theorem 1]. �

Lemma 5.8. Let X be a continuum irreducible between the points
a and b. If A,B ∈ C(X) are such that a ∈ A ( B and B ∈ D(X,a),
then cl(X \B) ( cl(X \A).

Proof: Notice that cl(X \ B) ⊂ cl(X \ A). Moreover, accord-
ing to [8, §48, III, Theorem 1], we have that bd(A)∩ bd(B) = ∅.
However, this yields ∅ 6= bd(A) ⊂ cl(X \A)\ cl(X \B). �

Proposition 5.9. Let X ∈ P and let Y be a proper and nondegen-
erate subcontinuum of X. Suppose that Y is irreducible between A′

and B′ for some A′, B′ ∈ C(Y ).
Let α : I → C(A′, Y ) be an order arc from A′ to Y . Then,

for each x ∈ Y \ (A′ ∪ B′), there exists t ∈ (0, 1) such that
x ∈ bdY

(
α(t)

)
.

Proof: Let x ∈ Y \ (A′ ∪ B′), t = min{s ∈ I : x ∈ α(s)}, a ∈ A′,
and b ∈ B′; note that 0 < t < 1. By Lemma 3.10, cl

(
Y \ α(t)

)
∈

C(B′, Y ). Moreover, by Theorem 5.3 and Lemma 3.9, there exists
a unique order arc β from B′ to Y ; hence, cl

(
Y \ α(t)

)
= β(s) for

some s ∈ [0, 1). Since x ∈ α(t), it is enough to show that x ∈
cl
(
Y \ α(t)

)
. Suppose that x /∈ cl

(
Y \ α(t)

)
= β(s).

Let s′ ∈ (s, 1) be such that x /∈ β(s′). Again, by Lemma 3.10, we
get that cl

(
Y \ β(s′)

)
∈ C(A′, Y ). Hence, cl

(
Y \ β(s′)

)
= α(r)

for some r ∈ I and x ∈ cl
(
Y \ β(s′)

)
= α(r). Now, accord-

ing to Proposition 5.5, β(s′) ∈ D(Y,b), and by Lemma 5.8, α(r) =
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cl
(
Y \ β(s′)

)
( cl

(
Y \β(s)

)
. Therefore, α(r) ( cl

(
Y \cl

(
Y \α(t)

))
= cl

(
intY

(
α(t)

))
⊂ α(t). Thus, r < t, but this is a contradic-

tion. �

Theorem 5.10. Let X ∈ P and let Y ∈ C(X) \ {X}. If Y is
nondegenerate, then Y is irreducible between A′ and B′ for some
A′, B′ ∈ C(Y ).

Proof: By theorems 4.9 and 4.7, we know that Y is unicoherent,
and that it contains no triods. Therefore, according to [13, Theorem
11.34], Y is irreducible. Moreover, by means of Theorem 3.16,
Y is hereditarily decomposable. The conclusion follows from [10,
Lemma A]. �

Theorem 5.11. Let X ∈ P and let Y be a proper and nondegener-
ate subcontinuum of X. If Y is irreducible between the subcontinua
A′ and B′, then |A′| = 1 = |B′|.

Proof: Suppose that |A′| > 1 and take a ∈ A′ such that C(a,X)
has no cut points. Then, by Lemma 3.7, we can take K ′ ∈ C(a,X)
such that K ′ \ A′ 6= ∅ 6= A′ \K ′. However, according to Lemma
4.13, we obtain that K ′ \Y 6= ∅. Let L be the component of A′∩K ′
containing a, and let α be an order arc from L to K ′. By Lemma
4.1, we know that A′ ∩K ′ has at most two components, so we can
choose δ ∈ (0, 1) such that i) α(δ)∩Y = L ⊂ A′, ii) Y ∪α(δ) 6= X,
and iii) α(δ) \ Y is connected.

Let K = α(δ). Then it is not difficult to see that K ∈ C(a,X),
K \A′ 6= ∅, A′ \K 6= ∅, and Y ( Y ∪K ( X. Define Y ′ = Y ∪K.
By Theorem 5.10, Y ′ is irreducible between two subcontinua C ′ and
D′ in C(Y ′). We may assume that C ′ ⊂ K \ Y and D′ ⊂ Y \K.

Suppose that there exists a point d ∈ D′ \ B′. Then there is a
proper subcontinuum H of Y such that d ∈ H and H ∩ A′ 6= ∅.
Therefore, H ∪A′ ∪K is a proper subcontinuum of Y ′, which con-
tains both d and C ′, contradicting the irreducibility of Y . Hence,
D′ ⊂ B′.

Now let γ be an order arc from C ′ to Y ′. Since cl(K \ Y ) and
K ∪ A′ are elements of C(C ′, Y ′), by means of Theorem 5.3 and
Lemma 3.9, we can take s1, s2 ∈ I such that γ(s1) = cl(K \Y ) and
γ(s2) = K ∪A′. Therefore, γ(s1) ⊂ K ( γ(s2), and thus, s1 < s2.

Let z ∈ bdY ′
(
γ(s1)

)
. We shall see next that z ∈ bdY ′

(
γ(s2)

)
.

Take an open subset U of Y ′ such that z ∈ U . We know that
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K∩Y = K∩A′ and that Y ′ = K∪Y = (K\Y )∪(K∩Y )∪(Y \K).
On the other hand, we have that ∅ 6= U \γ(s1) ⊂ U \(K\Y ). Hence,
∅ 6= U ∩

[
(K ∩ Y ) ∪ (Y \K)

]
⊂ U ∩

[
A′ ∪ (Y \K)

]
= U ∩ Y . Now,

it is well known that intY (A′) = ∅ (see [8, §48, VIII, Theorem 5]).
Thus, U ∩Y * A′. Therefore, ∅ 6= (U ∩ Y ) \ (K ∪A′) ⊂ U \ γ(s2).
Hence, z ∈ bdY ′

(
γ(s2)

)
.

As we showed above, bdY ′
(
γ(s1)

)
∩ bdY ′

(
γ(s2)

)
6= ∅. If c ∈ C ′,

applying Proposition 5.5 to X and Y ′, we get that γ(s1), γ(s2) ∈
D(Y ′,c), contradicting [8, §48, III, Theorem 2]. Hence, |A′| = 1.
Similarly, |B′| = 1. �

Theorem 5.12. Let X ∈ P and let Y be a proper and nondegen-
erate subcontinuum of X. Then Y is an arc.

Proof: As a consequence of Theorem 5.10 and Theorem 5.11, we
obtain that Y is irreducible beetween two points a and b. Let α
be an order arc from {a} to Y and let x ∈ Y \ {a, b}. According
to Proposition 5.9, there exists t ∈ (0, 1) such that x ∈ bdY

(
α(t)

)
.

Then, by Proposition 5.5, α(t) ∈ D(Y,a), whence intY
(
α(t)

)
6= ∅.

Now, by Proposition 5.7, Y \{x} = intY
(
α(t)

)
∪ extY

(
α(t)

)
; hence,

x is cut point of Y . The conclusion follows from [13, Theorem
6.17]. �

Theorem 5.13. If X ∈ P is decomposable, then X is an arc or a
simple closed curve.

Proof: Let A,B ∈ C(X) \ {X} be such that X = A ∪ B. Then,
according to Theorem 5.12 and Theorem 4.7, X is the atriodic
union of two arcs. Thus, X is an arc or a simple closed curve. �

Definition 5.14. A continuum X is circle-similar if C(p,X) is a
2-cell for each p ∈ X.

As direct consequences of the previous theorem and theorems
3.17 and 3.18, we have the following results.

Theorem 5.15. A continuum X is an arc if and only if X is a
decomposable arc-similar continuum.

Theorem 5.16. A continuum X is a simple closed curve if and
only if X is a decomposable circle-similar continuum.

Note that the condition of decomposability in the previous the-
orem is essential: A solenoid is a circle-similar continuum which is
not a simple closed curve.
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Example 5.17. Let Y be the continuum presented in Example
3.21, and let X = Y/ ∼, where the relation ∼ identifies the points
a and b. Then X is an example of a circle-similar continuum, which
is neither a simple closed curve nor a solenoid.

Recall that a point p is an end point of a continuum X if for any
A,B ∈ C(p,X), we have that A and B are comparable. The next
observation follows from Lemma 3.9.

Observation 5.18. p is an end point of the continuum X if and
only if C(p,X) is an arc.

A continuum X has the property of Kelley provided that for
each p ∈ X, each A ∈ C(p,X), and each sequence {pn}∞n=1 which
converges to p, there exists a sequence {An}∞n=1 converging to A in
such a way that An ∈ C(pn, X) for every n ∈ N.

In [7], P. Krupski introduces the class K as being the class of
continua satisfying the following criteria: i) X is chainable, ii) X
has the property of Kelley, iii) X has one or two end points, and
iv) the proper and nondegenerate subcontinua of X are arcs.

Consider the class K1 = {X ∈ K : X has two end points}. As
far as we have seen, all our examples of arc-similar continua belong
to the class K1. Therefore, it is natural to ask whether these two
classes coincide. The following examples give a negative answer to
this question.

Example 5.19. An arc-similar continuum that is not chainable.

J. Doucet constructs in [2] a chainable continuum Y , with four
end points {a, b, c, d}, and such that its proper and nondegenerate
subcontinua are arcs. Let X be the space resulting by identifying
the points a and d. Thus, X is a nonchainable continuum, with
two end points, and such that its proper and nondegenerate sub-
continua are arcs. Thence, X is an arc-similar continuum which is
not chainable (this will be a consequence of Theorem 5.21).

Example 5.20. In [5, p. 426], there are presented a buckethandle
continuum and a modification of it which does not have the prop-
erty of Kelley. In a similar way, we can modify the continuum of
Example 3.21 to obtain an arc-similar continuum not having the
property of Kelley.



THE HYPERSPACES C(p,X) 281

In what follows, we shall denote the image of a function f by
im(f), and the Hausdorff distance in C(X) by H.

Theorem 5.21. Let X be an indecomposable continuum such that
its proper and nondegenerate subcontinua are arcs. Let p ∈ X. If
p is not an end point of X, then C(p,X) is a 2-cell.

Proof: Since p is not an end point of X, we can take two non-
comparable elements, B and C of C(p,X). Let A = B ∪ C. By
the indecomposability of X, it is not difficult to see that A is an
arc containing p; moreover, p is not an end point of A. Let a and b
be the end points of this arc and give an order < on A, satisfying
a < b. Clearly, this order is unique.

Now, let K ∈ C(p,X) \ {X}. Then, by the indecomposability of
X, we get that K ∪A ( X, so K ∪A is an arc containing a and b.
Give the arc K ∪A the unique order in which a < b, and note that
this order, restricted to A, coincides with the order we already gave
A. Let lK = minK and let rK = maxK. Then we may denote K
as an interval [lK , rK ].

Let µ be a Whitney map for C(p,X) and let f : C(p,X)\{X} →
I × I be given by f(K) =

(
µ
(
[lK , p]

)
, µ
(
[p, rK ]

))
.

Claim 1. f is one-to-one.
Let K,K ′ ∈ C(p,X)\{X}. Then A∪K∪K ′ is an arc containing

a and b, so we can give it the order in which a < b, which, by the
way, coincides with the order defined in K∪A and K ′∪A. Then it is
easy to see that [lK , p] and [lK′ , p] are comparable. Likewise, [p, rK ]
and [p, rK′ ] are comparable. Hence, if we suppose f(K) = f(K ′),
then we get that [lK , p] = [lK′ , p] and [p, rK ] = [p, rK′ ], which means
that f is one-to-one.

Claim 2. f is continuous.
Take a sequence {Kn}∞n=1 ⊂ C(p,X) \ {X} which converges to

K ∈ C(p,X) \ {X}. One can easily prove that under these condi-
tions the set W = K ∪

⋃
{Kn : n ∈ N} is a continuum. On the

other hand, let M,M ′ ∈ N be such that Kn ⊂ cl
(
N( 1

M ′ ,K)
)
( X

whenever n > M . Since int(Kn) = ∅ for every n, clearly
cl
(
N( 1

M ′ ,K)
)
∪
⋃M
n=1Kn ( X; therefore, W ∈ C(p,X) \ {X}, and

thus, we can consider the arc [lW , rW ]. Now, since Kn → K, and
we are working in the arc W , we necessarily have that lKn → lK
and rKn → rK . Hence, f(Kn)→ f(K) and f is continuous.
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Claim 3. f is open.
By Claim 1 we know that f is a bijection onto im(f); thus, it

is enough to show that f−1 is continuous. Let
{

(xn, yn)
}∞
n=1
⊂

im(f) be a sequence converging to (x, y) ∈ im(f). Then (xn, yn) =
f(Kn) and (x, y) = f(K), for some K,Kn ∈ C(p,X) \ {X}, for
each n ∈ N. Suppose that the sequence{Kn}∞n=1 does not converge
to K, then there is a subsequence {Kni}∞i=1 which converges to
some J ∈ C(p,X) \ {K}. If J 6= X, then, by continuity of f ,
lim f(Kni) = f(J). But by construction, we have that lim f(Kn) =
f(K), so according to Claim 1, we conclude that J = K, a contra-
diction. Therefore, we may assume that J = X. Since lim

(
[lKni , p]

∪ [p, rKni ]
)

= limKni = J = X, and X is indecomposable, we may
suppose that lim[lKni , p] = X. But then limxni = limµ

(
[lKni , p]

)
=

µ(X). Thus, µ
(
[lK , p]

)
= x = µ(X), a contradiction with the mono-

toneity of µ. Hence, limKn = K and f−1 is continuous.
Claim 4. If (x, y) ∈ im(f), then [0, x]× [0, y] ⊂ im(f).
Let (z, w) ∈ [0, x]× [0, y], and consider A ∈ C(p,X) \ {X} such

that f(A) = (x, y). Let α and β be order arcs from {p} to [lA, p]
and [p, rA], respectively. Since µ, α, and β are continuous, there
exist s, t ∈ I such that µ

(
α(s)

)
= z and µ

(
β(t)

)
= w. Then it is not

difficult to see that f
(
α(s) ∪ β(t)

)
=
(
µ
(
α(s)

)
, µ
(
β(t)

))
= (z, w).

The claim is proved.
Claim 5. C(p,X) is a 2-cell.
As a consequence of Claim 4, it can be shown that im(f) is home-

omorphic to one of the following spaces: I × I, I × [0, 1), [0, 1)× I
or [0, 1) × [0, 1) (note that the last three are pairwise homeomor-
phic). Moreover, since f is a homeomorphism onto its image, and
C(p,X) \ {X} is not compact, we have that im(f) ≈ I × [0, 1).
Furthermore, C(p,X) is homeomorphic to the one-point compact-
ification of im(f); hence, C(p,X) is a 2-cell. �

Corollary 5.22. A continuum X is arc-similar if and only if it
has exactly two end points and its proper and nondegenerate sub-
continua are arcs.

Proof: The necessity is a direct consequence of Observation 5.18
and Theorem 5.12. Suppose now that X has exactly two end points
and that its proper and nondegenerate subcontinua are arcs. If X
is decomposable, X is an arc or a simple closed curve. Since the
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latter case is impossible, applying Theorem 3.17, we get that X is
arc-similar. On the other hand, if X is indecomposable with two
end points a and b, by Observation 5.18, we know that C(a,X) and
C(b,X) are arcs. The conclusion follows from Theorem 5.21. �

Corollary 5.23. If X belongs to class K1, then X is arc-similar.

Corollary 5.24. A continuum X is circle-similar if and only if
it has no end points and its proper and nondegenerate subcontinua
are arcs.

Proof: The necessity follows from Observation 5.18 and Theorem
5.12.

Suppose now that X has no end points and that its proper and
nondegenerate subcontinua are arcs. If X is decomposable, then
necessarily it is a simple closed curve. Hence, by Theorem 3.18, we
get that X is circle-similar. If X is indecomposable, the conclusion
follows from Theorem 5.21. �

Definition 5.25. Let X ∈ P and let n ∈ N ∪ {0, ω}. We will
say that X is of size n, provided that the cardinality of the set
{p ∈ X : C(p,X) is an arc } is n.

Theorem 5.26. Let n ∈ N∪ {0, ω}. Then a continuum X belongs
to class P and is of size n if and only if its proper and nondegenerate
subcontinua are arcs, and X has exactly n end points.

Proof: The necessity is a direct consequence of Observation 5.18
and Theorem 5.12. To prove the sufficiency, we shall suppose first
that X is decomposable. Then X is an arc or a simple closed curve.
If n = 2, from Corollary 5.22, we deduce that X ∈ P and X is of
size 2. On the other hand, if n = 0, from Corollary 5.24, we con-
clude that X ∈ P and X is of size 0. Now, if we suppose that X is
indecomposable and E is the set of end points of X, then C(p,X) is
an arc, for each p ∈ E. Moreover, for each p ∈ X \E, by Theorem
5.21, we know that C(p,X) is a 2-cell. Therefore, X ∈ P and X is
of size n. �

Finally, in examples 3.21, 5.19, and 5.20, we showed a continuum
X ∈ P of size 2; the arc is such an example too. On the other
hand, S1, a solenoid, and the continuum presented in Example
5.17 are examples of continua belonging to class P with size 0. Let
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n ∈ N ∪ {ω}. In his paper [2], Doucet constructs indecomposable
continua, with n end points, in such a way that its proper and
nondegnerate subcontinua are arcs. Thus, according to Theorem
5.26, such continua are of size n and belong to class P.

Questions
1. Let T be a simple triod. Does there exist a continuum X,

X 6= T , such that K(X) coincides with K(T )? If so, must X be
indecomposable?

2. More generally, if G is a finite graph, does there exist a con-
tinuum X such that K(X) coincides with K(G)? If so, must X be
indecomposable?
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