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A NOTE ON AWAY-ALMOST CONTINUOUS
FUNCTIONS

PIOTR SZUCA

ABSTRACT. We prove that an AAC, function is AAC iff its
graph is bilaterally c-dense in itself.

1. INTRODUCTION

Let I = [0,1]. Let B, = {y € R| (x,y) € B} for every set B C
IxR. A closed set B C I x R is blocking if B, # R for every z € I
and g N B # () for every continuous function g: T — R.

Given a family F of real functions, we denote by F the uniform
closure of F, i.e., the family of all uniform limits of sequences of
functions from F.

We will consider the following properties of functions from I to

R.

e A function f is bilaterally c¢-dense in itself (f € @) if for
every = € I and every open neighborhood U of (z, f(x)) the
set ([0,2) x R)NU N f has cardinality ¢ for every > 0 and
the set ((x, 1] x R)NU N f has cardinality ¢ for every x < 1,
respectively.

e A function f is Darboux (f € D) if it maps connected sets
onto connected sets.

o f €Uy if for each interval J C I the set f(.J) is dense in the

interval (inf,cs f(x),sup,es f(x)).
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e f € U if for each interval J C I and each A C I of cardi-
nality less than ¢, the set f(J \ A) is dense in the interval
(infer f(x)7 SUPgc g f(x))

e A function f is almost continuous (f € AC) if each open
neighborhood of f contains the graph of a continuous func-
tion g: T — R. (Recall that f € AC iff f N B # ) for every
blocking set B [4].)

e A function f is weakly away-almost continuous (f € AACy)
if for every € > 0 and blocking set B there exists x € I such
that (f(z) —e, f(x) +e) N By # 0.

e A function f: I — R is away-almost continuous (f € AAC)
if for every blocking set B either f N B # () or for every
e > 0 the set {xel| (f(z)—¢,f(x)+e)N By #0} has
cardinality c.

Recall that D = U = Uy N D, [1]. The similar problem of char-
acterization of the class AC remains still open and it seems to be
one of the most interesting problems concerning Darboux-like func-
tions. (See [2, Question 9.14].) In 1974, K. Kellum proved that
AC # AC [3]. A few years ago, in 1999, during the Miniconfer-
ence in Real Analysis at Auburn University, he conjectured that
AC = AACoNU. Tt is easy to see that AC C AACy NU and
AACy C Uy, so AAConNU = AACy ND,. In [5], we define the prop-
erty AAC and show that AC € AAC ¢ AACyNU and ask whether
AAC = AACyNU (Problem 1). In this note we answer this ques-
tion in the positive. This implies the equality AAC = AACy N D,
similarly to U = Uy N D ..

2. THE RESULT
We start with the following easy remark.

Remark 2.1. A function f € AAC, iff for every € > 0 and every
open set G C IxR such that J ; ({x} x (f(z) —¢, f(z) +¢)) C G
there exists a continuous function g: I — R such that g C G.

We will use also operators £(+), N(+), Agg(+), Ann(+), and ANg(+)
introduced in [5].
Definition 2.2. For a blocking set B C I x R let

e £(B) ={(a,b) € IxR | (3h: [0,a] — R) (h(a) =b& hNB =
() & h is continuous)};
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e N(B) = (I xR)\(BUE&(B)).
It is easy to see that I x R is the union of pairwise disjoint sets
B, £(B), and N (B).

Definition 2.3. Define also:

o Agpp(B)={(a,b) e I xR | there exists an open set G
such that (a,b) € G & G C £(B)};
o AnN(B) ={(a,b) e I xR | there exists an open set G
such that (a,b) € G & G C N(B)};
o Anp(B) ={(a,b) e I x R| there exists an open set G
such that (a,b) € G & ([0,a] x R)NG C N(B) &
((a, 1] x R)NG C E(B)}.

Remark 2.4 [5]. Let B C I x R be a blocking set. Then

(1) {0} x Rc BUE&(B).

(2) {1} x RCc BUN(B).

(3) £(B) is open.

(4) N(B) is left-open (i. e., for every (z,y) € N(B) there exists
an open neighborhood U of (x,y) such that ([0, 2] xR)NU C

(5) If (z,y1) € E(B) and (x,y2) € N(B), then there exists
y € (y1,y2) such that (z,y) € B.

(6) I x R is the union of pairwise disjoint sets B, Agg(B),
Ann(B), and Ang(B).

Lemma 2.5. Assume that f € AACy and f is bilaterally dense in
itself. Then for every blocking set B at least one of the following
two conditions holds:
(1) fnB#40,
(2) for every e > 0 there exist a € I and open set U > (a, f(a))
such that |f(b) — By| < & for every (b, f(b)) € U.

Proof: Suppose f is bilaterally dense in itself, f is weakly away-
almost continuous and neither (1) nor (2) hold. Then there exist a
blocking set B C I x R and € > 0, such that:

(1) BN f =0 and
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(2) for every a € I and open set U > (a, f(a)) there exists
(b, f(b)) € U such that |f(b) — By| > e.

Since BN f =10, f C Agr(B) U Axn(B) U Ang(B) (see Remark
2.4 (6)). For every (z, f(x)) we will construct a rectangular open
neighborhood S, ¢(z)) = ( — 7z, @ + 72) X (f(7) — ¢, f(x) +¢) such
that:

(@) N f CEB)if (x f(x)) € Ap(B);
ef@) Nf CN(B) if (z, f(z)) € Ann(B);

2, f(z)) N fn(0,z] xR) C N( ) and

(z,f () ﬁ fn ((l’, 1] X R) C 5(B) if <£L',f(£(})> S ANE<B)

To show that such a neighborhood exists take (x,f(x)) €
ANg(B). (The cases (z, f(x)) € Agr(B) and (z, f(z)) € Axn(B)
are analogous.)

There exists an open rectangle (v —7,, 4+ 75) X (f(z) — 7z, f(z)+
7;) such that (z — 7, 2] X (f(x) — 7, f(x) +72) C N(B) and (z, 2+
7)) X (f(%) = 7o, f(7) +72) T E(B). Set Sy @)y = (T —Ta, T+75) ¥
(f(x) —e, f(z) +¢€). Suppose there exists z; € (x — 7, x] such that
(z1, f(z1)) € E(B) N Stz f(a)) Or there exists x2 € (v,2 + 7,;) such
that (w2, f(x2)) € N(B) N Stz ja)-

In the first case, since f is left side dense at (z1, f(x1)) and £(B)
is open, the set

={pe@—72)| b, f(p)) € EB)N Sy p(ay }

is non-empty. Now, if we take any (a, f(a)) € P; x R and its open
neighborhood U C £(B) N Sy f(x )> for every (b, f(b)) € U we have
(b, f(5)) € E(B), and (b, f(z)) € N(B), and [f(z) — f(B)] < =
According to Remark 2.4 (5), there exists y;, such that (b,y,) € B
and |f(b) — yp| < €, contrary to Lemma 2.5 (2).

The second case is analogous if we take into consideration left
side neighborhood of (xs, f(x2)) and the set

sz{pe(x,x—l-n;)Hp,f(p»EN( meEf(JU }
For every x € I, let R, r(z)y = (21, 2,) x (f(2) — )+35)C

flz
Sz, f(z)) be an open rectangular neighborhood of (z, f(x)) such
that:

3
(x

f € ( + %) for every x > 0,
f(zr) € (f(z) — 5, f(z) + 5) for every z < 1.
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Note that for z > 0, the rectangle R, r(,) does not contain
points with abscissa 0. Respectively, the R, r(,)) does not contain
points with abscissa 1 for x < 1. Moreover, for every x < 1, the
distance between R, f(;)y and {1} x R is positive.

Note also that if Ry, 5 N Reqy # 0, then Ry C Sieq) if 7o < 70
or Ry C Siapy if 7e < 74, respectively.

For every x € [, the set R, r(,) fulfills the following conditions:

(01) if (r, f(r)) € E(B) N Sy (z) for a m < z, then (z, f(7)) €
Agg(B), and for every t > z; there exists z < t such that
<Za f(Z)> € R(:v,f(:v)) N g(B)a

(02) if (r, f(r)) € E(B) NStz f(z)) for an r > 2, then (z, f(x)) €
Apgp(B)UANE(B), and for every ¢t > x there exists z € (z,t
such that (z, f(2)) € Rz f(z)) N E(B);

(01) if Rizfzyy N ((rz) x R)N f C E(B) for a r € (z,2),
then (z, f(z)) € Agr(B), and there exists z < r such that
<Za f(Z)> € R(w,f(w)) N g(B)a

(82) if Rip sz N ((r, ) x R)N f C E(B) for ar € (z,,), then
(x, f(z)) € Agg(B) U ANg(B), and there exists z < r such
that (z, f(z)) € R(:c,f(:c)) NE(B).

Let H = U,¢1 Rz f(2))- H is an open set and f C H, so by
Remark 2.1, there exists a continuous function g: I — R such that
g C H. Let R be a finite subfamily of {R<x7f(x)> | z € ]I} such that
gCUR.

Since only the R (g)) contains points with abscissa 0 and only
the R ¢1)) contains points with abscissa 1, Rty € R and
R1,r1)) € R. Moreover, since R is finite and the distance between
Rz f() and {1} x R is positive for every z < 1,

swp {z el | (z,y) e JR\{RusapP} <1 )

Let C ={z €Tl| (R e R) ({x,g9(x)) € R& (3x1 < x) (1, f(x1))
€ EB)NR)} and let s = supC. Since (0, f(0)) € £(B) and
(0,9(0)) € Ry, t0)), there exist x > 0 and x; € (0,7) such that
<a:,g(x)> € R(O,f(0)>7 <:1:1,f(x1)) S E(B) N R(O,f(0)>7 sos>x > 0.
Analogously, the condition (%) implies s < 1.



304 P. SZUCA

Since R is finite and g is continuous, there exist Ry, r,)) € R
and p; < s such that (s, g(s)) € R<p7f(p)> and (p1, f(p1)) € E(B)N

Rip.sv))-
Let Ry () € R be an open rectangle such that (s,g(s)) €

Rig 1(q))- Since (s, 9(s)) € Ry, 1)) Rig,1(0))> Bip, 1)) g, 1)) 7 V-

We have two cases:

(1) Rippo)) € Staptan: 1 7 < 75
(2) R(q,f(q)) C 5’<p7f(p)>, otherwise.

Case 1. Then (p1, f(p1)) € E(B) N Sig(q)- There exists g1 < s
such that (q1, f(q1)) € Rg gy N E(B). Indeed, if p1 < ¢ then
(p1, f(p1)) € ([0,q] x R) NE(B) N Sy f(q))» 50 (a,f(q)) € Ape(B)
and there exists ¢; < s such that (g1, f(q )> E(B) N Rg.5(q)) (see
the condition (o1)). If p1 > ¢, then (p1, f(p1)) € ((¢,1] x R) N
E(B) N Si.5(q) and s > q, so (q, f(q)) € Age(B) U Axe(B) and
there exists g1 < s such that (g1, f(q1)) € E(B) N Ryg 5(g) (see the
condition (03)).

Now, since g is continuous and s < 1, there exists s; > s such
that (s1,9(s1)) € R(g f(q)), 80 51 € C, a contradiction.

Case 2. There exists ¢1 > s such that (q1, f(¢1)) € N(B) N
R4 1(q))- Indeed, suppose by contradiction that no ¢1 > s fulfills
the claim. Since g is continuous and s < 1, there exists s; > s such
that (s1,9(s1)) € Ry, f(q) and s1 # ¢. By supposition, ((s1,1] X
R)QR@J(Q))QN(B)QJC =0, so ((s1,1] XR)OR@J(Q))ﬂf C &(B). If
51 < q then there exists z < s1 such that (z, f(2)) € E(B)N R f(q))
(see the condition (e1)). If s > ¢ then there exists z < s; such
that (z, f(2)) € E(B) N Ry, f(q) (see the condition (e2)). In any
case, s1 € C. Since this is a contradiction, there exists g1 > s such
that (g1, f(q1)) € N(B) N Ry s(g))-

Since (g1, f(q1)) € N(B)N Ry f(q))- (a1, f(@1)) € N(B)NSp 1(p))-
But (p1, f(p1)) € E(B) N Sy f(p)) and p1 < g1 which is impossible
because <p, f(p)> S AEE(B) @] ANN(B) U ANE(B) ]

Theorem 2.6. The following equalities hold.
AAC = AACoNnU = AAC N D,

Proof: The inclusion “AAC C AACyNU” is proved in [5]. Since
U C D, [1], we have AACoNnU C AACy) N D.. To prove the

S
S
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inclusion “AACy N D, C AAC,” take a bilaterally c-dense in it-
self weakly-away almost continuous function f and fix a block-
ing set B. By Lemma 2, either f N B # (), or for every ¢ >
0 there exist a € I and an open set U > (a, f(a)) such that
Unyfc{{z f(x)| (f(x)—e, f(x)+¢e)N By #0}. In the second
case, since f € D, the set U N f has cardinality continuum, and
therefore, the set {z € I | (f(z) —¢, f(z) +¢) N B, # 0} also has
cardinality continuum. Thus, in both cases, f € AAC. g

REFERENCES

[1] A. M. Bruckner, J. G. Ceder, and M. Weiss, Uniform limits of Darboux
functions, Colloq. Math. 15 (1966), 65-77.

[2] R. G. Gibson and T. Natkaniec, Darbouz like functions. Old problems and
new results, Real Anal. Exchange 24 (1998/99) no. 2, 487-496.

3] K. R. Kellum, Sums and limits of almost continuous functions, Collog.
Math. 31 (1974), 125-128.

[4] K. R. Kellum and B. D. Garrett, Almost continuous real functions, Proc.
Amer. Math. Soc. 33 (1972), 181-184.

[5] P. Szuca, On some properties of sets blocking almost continuous functions,
Real Anal. Exchange 27 (2001/02) no. 1, 373-388.

DEPARTMENT OF MATHEMATICS, GDANSK UNIVERSITY, WITA STWOSZA 57,
80-952 GDANSK, POLAND
FE-mail address: pszuca@radix.com.pl





