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A NOTE ON AWAY-ALMOST CONTINUOUS
FUNCTIONS

PIOTR SZUCA

Abstract. We prove that an AAC0 function is AAC iff its
graph is bilaterally c-dense in itself.

1. Introduction

Let I = [0, 1]. Let Bx = {y ∈ R | 〈x, y〉 ∈ B} for every set B ⊂
I×R. A closed set B ⊂ I×R is blocking if Bx 6= R for every x ∈ I
and g ∩B 6= ∅ for every continuous function g : I→ R.

Given a family F of real functions, we denote by F the uniform
closure of F , i.e., the family of all uniform limits of sequences of
functions from F .

We will consider the following properties of functions from I to
R.

• A function f is bilaterally c-dense in itself (f ∈ Dc) if for
every x ∈ I and every open neighborhood U of 〈x, f(x)〉 the
set ([0, x)×R)∩U ∩ f has cardinality c for every x > 0 and
the set ((x, 1]×R)∩U ∩f has cardinality c for every x < 1,
respectively.
• A function f is Darboux (f ∈ D) if it maps connected sets

onto connected sets.
• f ∈ U0 if for each interval J ⊂ I the set f(J) is dense in the

interval (infx∈J f(x), supx∈J f(x)).
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• f ∈ U if for each interval J ⊂ I and each A ⊂ I of cardi-
nality less than c, the set f(J \ A) is dense in the interval
(infx∈J f(x), supx∈J f(x)).
• A function f is almost continuous (f ∈ AC) if each open

neighborhood of f contains the graph of a continuous func-
tion g : I→ R. (Recall that f ∈ AC iff f ∩B 6= ∅ for every
blocking set B [4].)
• A function f is weakly away-almost continuous (f ∈ AAC0)

if for every ε > 0 and blocking set B there exists x ∈ I such
that (f(x)− ε, f(x) + ε) ∩Bx 6= ∅.
• A function f : I→ R is away-almost continuous (f ∈ AAC)

if for every blocking set B either f ∩ B 6= ∅ or for every
ε > 0 the set {x ∈ I | (f(x)− ε, f(x) + ε) ∩Bx 6= ∅} has
cardinality c.

Recall that D = U = U0 ∩Dc [1]. The similar problem of char-
acterization of the class AC remains still open and it seems to be
one of the most interesting problems concerning Darboux-like func-
tions. (See [2, Question 9.14].) In 1974, K. Kellum proved that
AC 6= AC [3]. A few years ago, in 1999, during the Miniconfer-
ence in Real Analysis at Auburn University, he conjectured that
AC = AAC0 ∩ U . It is easy to see that AC ⊂ AAC0 ∩ U and
AAC0 ⊂ U0, so AAC0∩U = AAC0∩Dc. In [5], we define the prop-
erty AAC and show that AC ⊂ AAC ⊂ AAC0∩U and ask whether
AAC = AAC0 ∩ U (Problem 1). In this note we answer this ques-
tion in the positive. This implies the equality AAC = AAC0 ∩Dc,
similarly to U = U0 ∩Dc.

2. The result

We start with the following easy remark.

Remark 2.1. A function f ∈ AAC0 iff for every ε > 0 and every
open set G ⊂ I×R such that

⋃
x∈I ({x} × (f(x)− ε, f(x) + ε)) ⊂ G

there exists a continuous function g : I→ R such that g ⊂ G.
We will use also operators E(·), N (·), AEE(·), ANN(·), and ANE(·)

introduced in [5].

Definition 2.2. For a blocking set B ⊂ I× R let
• E(B) = {〈a, b〉 ∈ I×R | (∃h : [0, a]→ R) (h(a) = b & h∩B =
∅ & h is continuous)};
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• N (B) = (I× R)\(B ∪ E(B)).
It is easy to see that I × R is the union of pairwise disjoint sets

B, E(B), and N (B).

Definition 2.3. Define also:

• AEE(B) ={〈a, b〉 ∈ I× R | there exists an open set G

such that 〈a, b〉 ∈ G & G ⊂ E(B)};
• ANN(B) ={〈a, b〉 ∈ I× R | there exists an open set G

such that 〈a, b〉 ∈ G & G ⊂ N (B)};
• ANE(B) ={〈a, b〉 ∈ I× R | there exists an open set G

such that 〈a, b〉 ∈ G & ([0, a]× R) ∩G ⊂ N (B) &

((a, 1]× R) ∩G ⊂ E(B)}.

Remark 2.4 [5]. Let B ⊂ I× R be a blocking set. Then
(1) {0} × R ⊂ B ∪ E(B).
(2) {1} × R ⊂ B ∪N (B).
(3) E(B) is open.
(4) N (B) is left-open (i. e., for every 〈x, y〉 ∈ N (B) there exists

an open neighborhood U of 〈x, y〉 such that ([0, x]×R)∩U ⊂
N (B)).

(5) If 〈x, y1〉 ∈ E(B) and 〈x, y2〉 ∈ N (B), then there exists
y ∈ (y1, y2) such that 〈x, y〉 ∈ B.

(6) I × R is the union of pairwise disjoint sets B, AEE(B),
ANN(B), and ANE(B).

Lemma 2.5. Assume that f ∈ AAC0 and f is bilaterally dense in
itself. Then for every blocking set B at least one of the following
two conditions holds:

(1) f ∩B 6= ∅,
(2) for every ε > 0 there exist a ∈ I and open set U 3 〈a, f(a)〉

such that |f(b)−Bb| < ε for every 〈b, f(b)〉 ∈ U .
Proof: Suppose f is bilaterally dense in itself, f is weakly away-

almost continuous and neither (1) nor (2) hold. Then there exist a
blocking set B ⊂ I× R and ε > 0, such that:

(1) B ∩ f = ∅ and
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(2) for every a ∈ I and open set U 3 〈a, f(a)〉 there exists
〈b, f(b)〉 ∈ U such that |f(b)−Bb| ≥ ε.

Since B ∩ f = ∅, f ⊂ AEE(B) ∪ANN(B) ∪ANE(B) (see Remark
2.4 (6)). For every 〈x, f(x)〉 we will construct a rectangular open
neighborhood S〈x,f(x)〉 = (x− τx, x+ τx)× (f(x)− ε, f(x) + ε) such
that:

• S〈x,f(x)〉 ∩ f ⊂ E(B) if 〈x, f(x)〉 ∈ AEE(B);
• S〈x,f(x)〉 ∩ f ⊂ N (B) if 〈x, f(x)〉 ∈ ANN(B);
• S〈x,f(x)〉 ∩ f ∩ ([0, x]× R) ⊂ N (B) and
S〈x,f(x)〉 ∩ f ∩ ((x, 1]× R) ⊂ E(B) if 〈x, f(x)〉 ∈ ANE(B).

To show that such a neighborhood exists take 〈x, f(x)〉 ∈
ANE(B). (The cases 〈x, f(x)〉 ∈ AEE(B) and 〈x, f(x)〉 ∈ ANN(B)
are analogous.)

There exists an open rectangle (x−τx, x+τx)×(f(x)−τx, f(x)+
τx) such that (x−τx, x]× (f(x)−τx, f(x)+τx) ⊂ N (B) and (x, x+
τx)×(f(x)−τx, f(x)+τx) ⊂ E(B). Set S〈x,f(x)〉 = (x−τx, x+τx)×
(f(x)− ε, f(x) + ε). Suppose there exists x1 ∈ (x− τx, x] such that
〈x1, f(x1)〉 ∈ E(B) ∩ S〈x,f(x)〉 or there exists x2 ∈ (x, x + τx) such
that 〈x2, f(x2)〉 ∈ N (B) ∩ S〈x,f(x)〉.

In the first case, since f is left side dense at 〈x1, f(x1)〉 and E(B)
is open, the set

P1 =
{
p ∈ (x− τx, x) | 〈p, f(p)〉 ∈ E(B) ∩ S〈x,f(x)〉

}
is non-empty. Now, if we take any 〈a, f(a)〉 ∈ P1 × R and its open
neighborhood U ⊂ E(B)∩ S〈x,f(x)〉, for every 〈b, f(b)〉 ∈ U we have
〈b, f(b)〉 ∈ E(B), and 〈b, f(x)〉 ∈ N (B), and |f(x)− f(b)| < ε.
According to Remark 2.4 (5), there exists yb such that 〈b, yb〉 ∈ B
and |f(b)− yb| < ε, contrary to Lemma 2.5 (2).

The second case is analogous if we take into consideration left
side neighborhood of 〈x2, f(x2)〉 and the set

P2 =
{
p ∈ (x, x+ τx) | 〈p, f(p)〉 ∈ N (B) ∩ S〈x,f(x)〉

}
.

For every x ∈ I, let R〈x,f(x)〉 = (xl, xr)× (f(x)− ε
3 , f(x) + ε

3) ⊂
S〈x,f(x)〉 be an open rectangular neighborhood of 〈x, f(x)〉 such
that:

• (xl, xr) ⊂ (x− τx
3 , x+ τx

3 ),
• f(xl) ∈ (f(x)− ε

3 , f(x) + ε
3) for every x > 0,

• f(xr) ∈ (f(x)− ε
3 , f(x) + ε

3) for every x < 1.



A NOTE ON AWAY-ALMOST CONTINUOUS FUNCTIONS 303

Note that for x > 0, the rectangle R〈x,f(x)〉 does not contain
points with abscissa 0. Respectively, the R〈x,f(x)〉 does not contain
points with abscissa 1 for x < 1. Moreover, for every x < 1, the
distance between R〈x,f(x)〉 and {1} × R is positive.

Note also that if R〈a,b〉 ∩R〈c,d〉 6= ∅, then R〈a,b〉 ⊂ S〈c,d〉 if τa ≤ τc
or R〈c,d〉 ⊂ S〈a,b〉 if τc ≤ τa, respectively.

For every x ∈ I, the set R〈x,f(x)〉 fulfills the following conditions:

(◦1) if 〈r, f(r)〉 ∈ E(B) ∩ S〈x,f(x) for a r ≤ x, then 〈x, f(x)〉 ∈
AEE(B), and for every t > xl there exists z < t such that
〈z, f(z)〉 ∈ R〈x,f(x)〉 ∩ E(B);

(◦2) if 〈r, f(r)〉 ∈ E(B) ∩ S〈x,f(x)〉 for an r > x, then 〈x, f(x)〉 ∈
AEE(B)∪ANE(B), and for every t > x there exists z ∈ (x, t)
such that 〈z, f(z)〉 ∈ R〈x,f(x)〉 ∩ E(B);

(•1) if R〈x,f(x)〉 ∩ ((r, x) × R) ∩ f ⊂ E(B) for a r ∈ (xl, x),
then 〈x, f(x)〉 ∈ AEE(B), and there exists z < r such that
〈z, f(z)〉 ∈ R〈x,f(x)〉 ∩ E(B);

(•2) if R〈x,f(x)〉 ∩ ((r, xr)×R)∩ f ⊂ E(B) for a r ∈ (x, xr), then
〈x, f(x)〉 ∈ AEE(B) ∪ ANE(B), and there exists z < r such
that 〈z, f(z)〉 ∈ R〈x,f(x)〉 ∩ E(B).

Let H =
⋃
x∈IR〈x,f(x)〉. H is an open set and f ⊂ H, so by

Remark 2.1, there exists a continuous function g : I→ R such that
g ⊂ H. Let R be a finite subfamily of

{
R〈x,f(x)〉 | x ∈ I

}
such that

g ⊂
⋃
R.

Since only the R〈0,f(0)〉 contains points with abscissa 0 and only
the R〈1,f(1)〉 contains points with abscissa 1, R〈0,f(0)〉 ∈ R and
R〈1,f(1)〉 ∈ R. Moreover, since R is finite and the distance between
R〈x,f(x)〉 and {1} × R is positive for every x < 1,

sup
{
x ∈ I | 〈x, y〉 ∈

⋃
(R \

{
R〈1,f(1)〉

}
)
}
< 1. (?)

Let C = {x ∈ I | (∃R ∈ R) (〈x, g(x)〉 ∈ R & (∃x1 ≤ x) 〈x1, f(x1)〉
∈ E(B) ∩ R)} and let s = supC. Since 〈0, f(0)〉 ∈ E(B) and
〈0, g(0)〉 ∈ R〈0,f(0)〉, there exist x > 0 and x1 ∈ (0, x) such that
〈x, g(x)〉 ∈ R〈0,f(0)〉, 〈x1, f(x1)〉 ∈ E(B) ∩ R〈0,f(0)〉, so s ≥ x > 0.
Analogously, the condition (?) implies s < 1.
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Since R is finite and g is continuous, there exist R〈p,f(p)〉 ∈ R
and p1 ≤ s such that 〈s, g(s)〉 ∈ R〈p,f(p)〉 and 〈p1, f(p1)〉 ∈ E(B) ∩
R〈p,f(p)〉.

Let R〈q,f(q)〉 ∈ R be an open rectangle such that 〈s, g(s)〉 ∈
R〈q,f(q)〉. Since 〈s, g(s)〉 ∈ R〈p,f(p)〉∩R〈q,f(q)〉, R〈p,f(p)〉∩R〈q,f(q)〉 6= ∅.

We have two cases:
(1) R〈p,f(p)〉 ⊂ S〈q,f(q)〉, if τp ≤ τq;
(2) R〈q,f(q)〉 ⊂ S〈p,f(p)〉, otherwise.

Case 1. Then 〈p1, f(p1)〉 ∈ E(B) ∩ S〈q,f(q)〉. There exists q1 ≤ s
such that 〈q1, f(q1)〉 ∈ R〈q,f(q)〉 ∩ E(B). Indeed, if p1 ≤ q then
〈p1, f(p1)〉 ∈ ([0, q] × R) ∩ E(B) ∩ S〈q,f(q)〉, so 〈q, f(q)〉 ∈ AEE(B)
and there exists q1 ≤ s such that 〈q1, f(q1)〉 ∈ E(B) ∩R〈q,f(q)〉 (see
the condition (◦1)). If p1 > q, then 〈p1, f(p1)〉 ∈ ((q, 1] × R) ∩
E(B) ∩ S〈q,f(q)〉 and s > q, so 〈q, f(q)〉 ∈ AEE(B) ∪ ANE(B) and
there exists q1 ≤ s such that 〈q1, f(q1)〉 ∈ E(B) ∩ R〈q,f(q)〉 (see the
condition (◦2)).

Now, since g is continuous and s < 1, there exists s1 > s such
that 〈s1, g(s1)〉 ∈ R〈q,f(q)〉, so s1 ∈ C, a contradiction.

Case 2. There exists q1 > s such that 〈q1, f(q1)〉 ∈ N (B) ∩
R〈q,f(q)〉. Indeed, suppose by contradiction that no q1 > s fulfills
the claim. Since g is continuous and s < 1, there exists s1 > s such
that 〈s1, g(s1)〉 ∈ R〈q,f(q)〉 and s1 6= q. By supposition, ((s1, 1] ×
R)∩R〈q,f(q)〉∩N (B)∩f = ∅, so ((s1, 1]×R)∩R〈q,f(q)〉∩f ⊂ E(B). If
s1 < q then there exists z ≤ s1 such that 〈z, f(z)〉 ∈ E(B)∩R〈q,f(q)〉
(see the condition (•1)). If s1 > q then there exists z ≤ s1 such
that 〈z, f(z)〉 ∈ E(B) ∩ R〈q,f(q)〉 (see the condition (•2)). In any
case, s1 ∈ C. Since this is a contradiction, there exists q1 > s such
that 〈q1, f(q1)〉 ∈ N (B) ∩R〈q,f(q)〉.

Since 〈q1, f(q1)〉 ∈ N (B)∩R〈q,f(q)〉, 〈q1, f(q1)〉 ∈ N (B)∩S〈p,f(p)〉.
But 〈p1, f(p1)〉 ∈ E(B) ∩ S〈p,f(p)〉 and p1 < q1 which is impossible
because 〈p, f(p)〉 ∈ AEE(B) ∪ANN(B) ∪ANE(B). �

Theorem 2.6. The following equalities hold.

AAC = AAC0 ∩ U = AAC0 ∩Dc

Proof: The inclusion “AAC ⊂ AAC0 ∩U” is proved in [5]. Since
U ⊂ Dc [1], we have AAC0 ∩ U ⊂ AAC0 ∩ Dc. To prove the
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inclusion “AAC0 ∩ Dc ⊂ AAC,” take a bilaterally c-dense in it-
self weakly-away almost continuous function f and fix a block-
ing set B. By Lemma 2, either f ∩ B 6= ∅, or for every ε >
0 there exist a ∈ I and an open set U 3 〈a, f(a)〉 such that
U ∩ f ⊂ {〈x, f(x)〉 | (f(x)− ε, f(x) + ε) ∩Bx 6= ∅}. In the second
case, since f ∈ Dc, the set U ∩ f has cardinality continuum, and
therefore, the set {x ∈ I | (f(x) − ε, f(x) + ε) ∩ Bx 6= ∅} also has
cardinality continuum. Thus, in both cases, f ∈ AAC. �
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