Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT \bigodot by Topology Proceedings. All rights reserved.

Pages 299-305

A NOTE ON AWAY-ALMOST CONTINUOUS FUNCTIONS

PIOTR SZUCA

ABSTRACT. We prove that an AAC_0 function is AAC iff its graph is bilaterally c-dense in itself.

1. Introduction

Let $\mathbb{I} = [0,1]$. Let $B_x = \{y \in \mathbb{R} \mid \langle x,y \rangle \in B\}$ for every set $B \subset \mathbb{I} \times \mathbb{R}$. A closed set $B \subset \mathbb{I} \times \mathbb{R}$ is blocking if $B_x \neq \mathbb{R}$ for every $x \in \mathbb{I}$ and $g \cap B \neq \emptyset$ for every continuous function $g \colon \mathbb{I} \to \mathbb{R}$.

Given a family \mathcal{F} of real functions, we denote by $\overline{\mathcal{F}}$ the uniform closure of \mathcal{F} , i.e., the family of all uniform limits of sequences of functions from \mathcal{F} .

We will consider the following properties of functions from \mathbb{I} to \mathbb{R} .

- A function f is bilaterally \mathfrak{c} -dense in itself $(f \in \mathfrak{D}_{\mathfrak{c}})$ if for every $x \in \mathbb{I}$ and every open neighborhood U of $\langle x, f(x) \rangle$ the set $([0, x) \times \mathbb{R}) \cap U \cap f$ has cardinality \mathfrak{c} for every x > 0 and the set $((x, 1] \times \mathbb{R}) \cap U \cap f$ has cardinality \mathfrak{c} for every x < 1, respectively.
- A function f is Darboux $(f \in D)$ if it maps connected sets onto connected sets.
- $f \in \mathcal{U}_0$ if for each interval $J \subset \mathbb{I}$ the set f(J) is dense in the interval $(\inf_{x \in J} f(x), \sup_{x \in J} f(x))$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 26A15.

Key words and phrases. almost continuous functions, away-almost continuous functions, blocking set, Darboux functions, uniform limit.

300 P. SZUCA

- $f \in \mathcal{U}$ if for each interval $J \subset \mathbb{I}$ and each $A \subset \mathbb{I}$ of cardinality less than \mathfrak{c} , the set $f(J \setminus A)$ is dense in the interval $(\inf_{x \in J} f(x), \sup_{x \in J} f(x))$.
- A function f is almost continuous $(f \in AC)$ if each open neighborhood of f contains the graph of a continuous function $g: \mathbb{I} \to \mathbb{R}$. (Recall that $f \in AC$ iff $f \cap B \neq \emptyset$ for every blocking set B [4].)
- A function f is weakly away-almost continuous ($f \in AAC_0$) if for every $\varepsilon > 0$ and blocking set B there exists $x \in \mathbb{I}$ such that $(f(x) \varepsilon, f(x) + \varepsilon) \cap B_x \neq \emptyset$.
- A function $f: \mathbb{I} \to \mathbb{R}$ is away-almost continuous $(f \in AAC)$ if for every blocking set B either $f \cap B \neq \emptyset$ or for every $\varepsilon > 0$ the set $\{x \in \mathbb{I} \mid (f(x) \varepsilon, f(x) + \varepsilon) \cap B_x \neq \emptyset\}$ has cardinality \mathfrak{c} .

Recall that $\overline{D} = \mathcal{U} = \mathcal{U}_0 \cap \mathfrak{D}_c$ [1]. The similar problem of characterization of the class \overline{AC} remains still open and it seems to be one of the most interesting problems concerning Darboux-like functions. (See [2, Question 9.14].) In 1974, K. Kellum proved that $AC \neq \overline{AC}$ [3]. A few years ago, in 1999, during the Miniconference in Real Analysis at Auburn University, he conjectured that $\overline{AC} = AAC_0 \cap \mathcal{U}$. It is easy to see that $\overline{AC} \subset AAC_0 \cap \mathcal{U}$ and $AAC_0 \subset \mathcal{U}_0$, so $AAC_0 \cap \mathcal{U} = AAC_0 \cap \mathfrak{D}_c$. In [5], we define the property AAC and show that $\overline{AC} \subset AAC \subset AAC_0 \cap \mathcal{U}$ and ask whether $AAC = AAC_0 \cap \mathcal{U}$ (Problem 1). In this note we answer this question in the positive. This implies the equality $AAC = AAC_0 \cap \mathfrak{D}_c$, similarly to $\mathcal{U} = \mathcal{U}_0 \cap \mathfrak{D}_c$.

2. The result

We start with the following easy remark.

Remark 2.1. A function $f \in AAC_0$ iff for every $\varepsilon > 0$ and every open set $G \subset \mathbb{I} \times \mathbb{R}$ such that $\bigcup_{x \in \mathbb{I}} (\{x\} \times (f(x) - \varepsilon, f(x) + \varepsilon)) \subset G$ there exists a continuous function $g \colon \mathbb{I} \to \mathbb{R}$ such that $g \subset G$.

We will use also operators $\mathcal{E}(\cdot)$, $\mathcal{N}(\cdot)$, $A_{EE}(\cdot)$, $A_{NN}(\cdot)$, and $A_{NE}(\cdot)$ introduced in [5].

Definition 2.2. For a blocking set $B \subset \mathbb{I} \times \mathbb{R}$ let

• $\mathcal{E}(B) = \{ \langle a, b \rangle \in \mathbb{I} \times \mathbb{R} \mid (\exists h : [0, a] \to \mathbb{R}) \ (h(a) = b \& h \cap B = \emptyset \& h \text{ is continuous} \} \}$

• $\mathcal{N}(B) = (\mathbb{I} \times \mathbb{R}) \setminus (B \cup \mathcal{E}(B)).$

It is easy to see that $\mathbb{I} \times \mathbb{R}$ is the union of pairwise disjoint sets B, $\mathcal{E}(B)$, and $\mathcal{N}(B)$.

Definition 2.3. Define also:

- $A_{EE}(B) = \{\langle a, b \rangle \in \mathbb{I} \times \mathbb{R} \mid \text{ there exists an open set } G \text{ such that } \langle a, b \rangle \in G \& G \subset \mathcal{E}(B)\};$
- $A_{NN}(B) = \{ \langle a, b \rangle \in \mathbb{I} \times \mathbb{R} \mid \text{ there exists an open set } G \text{ such that } \langle a, b \rangle \in G \& G \subset \mathcal{N}(B) \};$
- $A_{NE}(B) = \{\langle a, b \rangle \in \mathbb{I} \times \mathbb{R} \mid \text{ there exists an open set } G \text{ such that } \langle a, b \rangle \in G \& ([0, a] \times \mathbb{R}) \cap G \subset \mathcal{N}(B) \& ((a, 1] \times \mathbb{R}) \cap G \subset \mathcal{E}(B) \}.$

Remark 2.4 [5]. Let $B \subset \mathbb{I} \times \mathbb{R}$ be a blocking set. Then

- (1) $\{0\} \times \mathbb{R} \subset B \cup \mathcal{E}(B)$.
- (2) $\{1\} \times \mathbb{R} \subset B \cup \mathcal{N}(B)$.
- (3) $\mathcal{E}(B)$ is open.
- (4) $\mathcal{N}(B)$ is left-open (i. e., for every $\langle x, y \rangle \in \mathcal{N}(B)$ there exists an open neighborhood U of $\langle x, y \rangle$ such that $([0, x] \times \mathbb{R}) \cap U \subset \mathcal{N}(B)$).
- (5) If $\langle x, y_1 \rangle \in \mathcal{E}(B)$ and $\langle x, y_2 \rangle \in \mathcal{N}(B)$, then there exists $y \in (y_1, y_2)$ such that $\langle x, y \rangle \in B$.
- (6) $\mathbb{I} \times \mathbb{R}$ is the union of pairwise disjoint sets B, $A_{EE}(B)$, $A_{NN}(B)$, and $A_{NE}(B)$.

Lemma 2.5. Assume that $f \in AAC_0$ and f is bilaterally dense in itself. Then for every blocking set B at least one of the following two conditions holds:

- (1) $f \cap B \neq \emptyset$,
- (2) for every $\varepsilon > 0$ there exist $a \in \mathbb{I}$ and open set $U \ni \langle a, f(a) \rangle$ such that $|f(b) B_b| < \varepsilon$ for every $\langle b, f(b) \rangle \in U$.

Proof: Suppose f is bilaterally dense in itself, f is weakly away-almost continuous and neither (1) nor (2) hold. Then there exist a blocking set $B \subset \mathbb{I} \times \mathbb{R}$ and $\varepsilon > 0$, such that:

(1) $B \cap f = \emptyset$ and

302 P. SZUCA

> (2) for every $a \in \mathbb{I}$ and open set $U \ni \langle a, f(a) \rangle$ there exists $\langle b, f(b) \rangle \in U$ such that $|f(b) - B_b| \geq \varepsilon$.

Since $B \cap f = \emptyset$, $f \subset A_{EE}(B) \cup A_{NN}(B) \cup A_{NE}(B)$ (see Remark 2.4 (6)). For every $\langle x, f(x) \rangle$ we will construct a rectangular open neighborhood $S_{\langle x, f(x) \rangle} = (x - \tau_x, x + \tau_x) \times (f(x) - \varepsilon, f(x) + \varepsilon)$ such that:

- $S_{\langle x, f(x) \rangle} \cap f \subset \mathcal{E}(B)$ if $\langle x, f(x) \rangle \in A_{EE}(B)$;
- $S_{\langle x, f(x) \rangle} \cap f \subset \mathcal{N}(B)$ if $\langle x, f(x) \rangle \in A_{\mathrm{NN}}(B)$;
- $S_{\langle x, f(x) \rangle} \cap f \cap ([0, x] \times \mathbb{R}) \subset \mathcal{N}(B)$ and $S_{\langle x, f(x) \rangle} \cap f \cap ((x, 1] \times \mathbb{R}) \subset \mathcal{E}(B) \text{ if } \langle x, f(x) \rangle \in A_{NE}(B).$

To show that such a neighborhood exists take $\langle x, f(x) \rangle \in$ $A_{NE}(B)$. (The cases $\langle x, f(x) \rangle \in A_{EE}(B)$ and $\langle x, f(x) \rangle \in A_{NN}(B)$ are analogous.)

There exists an open rectangle $(x-\tau_x,x+\tau_x)\times (f(x)-\tau_x,f(x)+\tau_x)$ (τ_x) such that $(x - \tau_x, x] \times (f(x) - \tau_x, f(x) + \tau_x) \subset \mathcal{N}(B)$ and $(x, x + \tau_x)$ τ_x) × $(f(x) - \tau_x, f(x) + \tau_x) \subset \mathcal{E}(B)$. Set $S_{\langle x, f(x) \rangle} = (x - \tau_x, x + \tau_x)$ × $(f(x) - \varepsilon, f(x) + \varepsilon)$. Suppose there exists $x_1 \in (x - \tau_x, x]$ such that $\langle x_1, f(x_1) \rangle \in \mathcal{E}(B) \cap S_{\langle x, f(x) \rangle}$ or there exists $x_2 \in (x, x + \tau_x)$ such that $\langle x_2, f(x_2) \rangle \in \mathcal{N}(B) \cap S_{\langle x, f(x) \rangle}$.

In the first case, since f is left side dense at $\langle x_1, f(x_1) \rangle$ and $\mathcal{E}(B)$ is open, the set

$$P_1 = \left\{ p \in (x - \tau_x, x) \mid \langle p, f(p) \rangle \in \mathcal{E}(B) \cap S_{\langle x, f(x) \rangle} \right\}$$

is non-empty. Now, if we take any $\langle a, f(a) \rangle \in P_1 \times \mathbb{R}$ and its open neighborhood $U \subset \mathcal{E}(B) \cap S_{\langle x, f(x) \rangle}$, for every $\langle b, f(b) \rangle \in U$ we have $\langle b, f(b) \rangle \in \mathcal{E}(B)$, and $\langle b, f(x) \rangle \in \mathcal{N}(B)$, and $|f(x) - f(b)| < \varepsilon$. According to Remark 2.4 (5), there exists y_b such that $\langle b, y_b \rangle \in B$ and $|f(b) - y_b| < \varepsilon$, contrary to Lemma 2.5 (2).

The second case is analogous if we take into consideration left side neighborhood of $\langle x_2, f(x_2) \rangle$ and the set

$$P_2 = \left\{ p \in (x, x + \tau_x) \mid \langle p, f(p) \rangle \in \mathcal{N}(B) \cap S_{\langle x, f(x) \rangle} \right\}.$$

For every $x \in \mathbb{I}$, let $R_{\langle x, f(x) \rangle} = (x_l, x_r) \times (f(x) - \frac{\varepsilon}{3}, f(x) + \frac{\varepsilon}{3}) \subset$ $S_{\langle x,f(x)\rangle}$ be an open rectangular neighborhood of $\langle x,f(x)\rangle$ such that:

- $(x_l, x_r) \subset (x \frac{\tau_x}{3}, x + \frac{\tau_x}{3}),$
- $f(x_l) \in (f(x) \frac{\varepsilon}{3}, f(x) + \frac{\varepsilon}{3})$ for every x > 0, $f(x_r) \in (f(x) \frac{\varepsilon}{3}, f(x) + \frac{\varepsilon}{3})$ for every x < 1.

Note that for x > 0, the rectangle $R_{\langle x, f(x) \rangle}$ does not contain points with abscissa 0. Respectively, the $R_{\langle x, f(x) \rangle}$ does not contain points with abscissa 1 for x < 1. Moreover, for every x < 1, the distance between $R_{\langle x, f(x) \rangle}$ and $\{1\} \times \mathbb{R}$ is positive.

Note also that if $R_{\langle a,b\rangle} \cap R_{\langle c,d\rangle} \neq \emptyset$, then $R_{\langle a,b\rangle} \subset S_{\langle c,d\rangle}$ if $\tau_a \leq \tau_c$ or $R_{\langle c,d\rangle} \subset S_{\langle a,b\rangle}$ if $\tau_c \leq \tau_a$, respectively.

For every $x \in \mathbb{I}$, the set $R_{\langle x, f(x) \rangle}$ fulfills the following conditions:

- (o₁) if $\langle r, f(r) \rangle \in \mathcal{E}(B) \cap S_{\langle x, f(x) \rangle}$ for a $r \leq x$, then $\langle x, f(x) \rangle \in A_{\text{EE}}(B)$, and for every $t > x_l$ there exists z < t such that $\langle z, f(z) \rangle \in R_{\langle x, f(x) \rangle} \cap \mathcal{E}(B)$;
- (o₂) if $\langle r, f(r) \rangle \in \mathcal{E}(B) \cap S_{\langle x, f(x) \rangle}$ for an r > x, then $\langle x, f(x) \rangle \in A_{\text{EE}}(B) \cup A_{\text{NE}}(B)$, and for every t > x there exists $z \in (x, t)$ such that $\langle z, f(z) \rangle \in R_{\langle x, f(x) \rangle} \cap \mathcal{E}(B)$;
- (•1) if $R_{\langle x, f(x) \rangle} \cap ((r, x) \times \mathbb{R}) \cap f \subset \mathcal{E}(B)$ for a $r \in (x_l, x)$, then $\langle x, f(x) \rangle \in A_{\text{EE}}(B)$, and there exists z < r such that $\langle z, f(z) \rangle \in R_{\langle x, f(x) \rangle} \cap \mathcal{E}(B)$;
- (•2) if $R_{\langle x, f(x) \rangle} \cap ((r, x_r) \times \mathbb{R}) \cap f \subset \mathcal{E}(B)$ for a $r \in (x, x_r)$, then $\langle x, f(x) \rangle \in A_{\text{EE}}(B) \cup A_{\text{NE}}(B)$, and there exists z < r such that $\langle z, f(z) \rangle \in R_{\langle x, f(x) \rangle} \cap \mathcal{E}(B)$.

Let $H = \bigcup_{x \in \mathbb{I}} R_{\langle x, f(x) \rangle}$. H is an open set and $f \subset H$, so by Remark 2.1, there exists a continuous function $g \colon \mathbb{I} \to \mathbb{R}$ such that $g \subset H$. Let \mathcal{R} be a finite subfamily of $\{R_{\langle x, f(x) \rangle} \mid x \in \mathbb{I}\}$ such that $g \subset \bigcup \mathcal{R}$.

Since only the $R_{\langle 0,f(0)\rangle}$ contains points with abscissa 0 and only the $R_{\langle 1,f(1)\rangle}$ contains points with abscissa 1, $R_{\langle 0,f(0)\rangle} \in \mathcal{R}$ and $R_{\langle 1,f(1)\rangle} \in \mathcal{R}$. Moreover, since \mathcal{R} is finite and the distance between $R_{\langle x,f(x)\rangle}$ and $\{1\} \times \mathbb{R}$ is positive for every x < 1,

$$\sup \left\{ x \in \mathbb{I} \mid \langle x, y \rangle \in \bigcup (\mathcal{R} \setminus \left\{ R_{\langle 1, f(1) \rangle} \right\}) \right\} < 1. \tag{\star}$$

Let $C = \{x \in \mathbb{I} \mid (\exists R \in \mathcal{R}) \ (\langle x, g(x) \rangle \in R \ \& \ (\exists x_1 \leq x) \ \langle x_1, f(x_1) \rangle \in \mathcal{E}(B) \cap R) \}$ and let $s = \sup C$. Since $\langle 0, f(0) \rangle \in \mathcal{E}(B)$ and $\langle 0, g(0) \rangle \in R_{\langle 0, f(0) \rangle}$, there exist x > 0 and $x_1 \in (0, x)$ such that $\langle x, g(x) \rangle \in R_{\langle 0, f(0) \rangle}$, $\langle x_1, f(x_1) \rangle \in \mathcal{E}(B) \cap R_{\langle 0, f(0) \rangle}$, so $s \geq x > 0$. Analogously, the condition (\star) implies s < 1.

304 P. SZUCA

Since \mathcal{R} is finite and g is continuous, there exist $R_{\langle p, f(p) \rangle} \in \mathcal{R}$ and $p_1 \leq s$ such that $\langle s, g(s) \rangle \in \overline{R_{\langle p, f(p) \rangle}}$ and $\langle p_1, f(p_1) \rangle \in \mathcal{E}(B) \cap R_{\langle p, f(p) \rangle}$.

Let $R_{\langle q, f(q) \rangle} \in \mathcal{R}$ be an open rectangle such that $\langle s, g(s) \rangle \in R_{\langle q, f(q) \rangle}$. Since $\langle s, g(s) \rangle \in \overline{R_{\langle p, f(p) \rangle}} \cap R_{\langle q, f(q) \rangle}$, $R_{\langle p, f(p) \rangle} \cap R_{\langle q, f(q) \rangle} \neq \emptyset$.

We have two cases:

- (1) $R_{\langle p, f(p) \rangle} \subset S_{\langle q, f(q) \rangle}$, if $\tau_p \leq \tau_q$;
- (2) $R_{\langle q, f(q) \rangle} \subset S_{\langle p, f(p) \rangle}$, otherwise.

Case 1. Then $\langle p_1, f(p_1) \rangle \in \mathcal{E}(B) \cap S_{\langle q, f(q) \rangle}$. There exists $q_1 \leq s$ such that $\langle q_1, f(q_1) \rangle \in R_{\langle q, f(q) \rangle} \cap \mathcal{E}(B)$. Indeed, if $p_1 \leq q$ then $\langle p_1, f(p_1) \rangle \in ([0, q] \times \mathbb{R}) \cap \mathcal{E}(B) \cap S_{\langle q, f(q) \rangle}$, so $\langle q, f(q) \rangle \in A_{\mathrm{EE}}(B)$ and there exists $q_1 \leq s$ such that $\langle q_1, f(q_1) \rangle \in \mathcal{E}(B) \cap R_{\langle q, f(q) \rangle}$ (see the condition (\circ_1)). If $p_1 > q$, then $\langle p_1, f(p_1) \rangle \in ((q, 1] \times \mathbb{R}) \cap \mathcal{E}(B) \cap S_{\langle q, f(q) \rangle}$ and s > q, so $\langle q, f(q) \rangle \in A_{\mathrm{EE}}(B) \cup A_{\mathrm{NE}}(B)$ and there exists $q_1 \leq s$ such that $\langle q_1, f(q_1) \rangle \in \mathcal{E}(B) \cap R_{\langle q, f(q) \rangle}$ (see the condition (\circ_2)).

Now, since g is continuous and s < 1, there exists $s_1 > s$ such that $\langle s_1, g(s_1) \rangle \in R_{\langle q, f(q) \rangle}$, so $s_1 \in C$, a contradiction.

Case 2. There exists $q_1 > s$ such that $\langle q_1, f(q_1) \rangle \in \mathcal{N}(B) \cap R_{\langle q, f(q) \rangle}$. Indeed, suppose by contradiction that no $q_1 > s$ fulfills the claim. Since g is continuous and s < 1, there exists $s_1 > s$ such that $\langle s_1, g(s_1) \rangle \in R_{\langle q, f(q) \rangle}$ and $s_1 \neq q$. By supposition, $((s_1, 1] \times \mathbb{R}) \cap R_{\langle q, f(q) \rangle} \cap \mathcal{N}(B) \cap f = \emptyset$, so $((s_1, 1] \times \mathbb{R}) \cap R_{\langle q, f(q) \rangle} \cap f \subset \mathcal{E}(B)$. If $s_1 < q$ then there exists $z \leq s_1$ such that $\langle z, f(z) \rangle \in \mathcal{E}(B) \cap R_{\langle q, f(q) \rangle}$ (see the condition (\bullet_1)). If $s_1 > q$ then there exists $z \leq s_1$ such that $\langle z, f(z) \rangle \in \mathcal{E}(B) \cap R_{\langle q, f(q) \rangle}$ (see the condition (\bullet_2)). In any case, $s_1 \in C$. Since this is a contradiction, there exists $q_1 > s$ such that $\langle q_1, f(q_1) \rangle \in \mathcal{N}(B) \cap R_{\langle q, f(q) \rangle}$.

Since $\langle q_1, f(q_1) \rangle \in \mathcal{N}(B) \cap R_{\langle q, f(q) \rangle}$, $\langle q_1, f(q_1) \rangle \in \mathcal{N}(B) \cap S_{\langle p, f(p) \rangle}$. But $\langle p_1, f(p_1) \rangle \in \mathcal{E}(B) \cap S_{\langle p, f(p) \rangle}$ and $p_1 < q_1$ which is impossible because $\langle p, f(p) \rangle \in A_{\text{EE}}(B) \cup A_{\text{NN}}(B) \cup A_{\text{NE}}(B)$.

Theorem 2.6. The following equalities hold.

$$AAC = AAC_0 \cap \mathcal{U} = AAC_0 \cap \mathfrak{D}_{\mathfrak{c}}$$

Proof: The inclusion "AAC \subset AAC₀ \cap \mathcal{U} " is proved in [5]. Since $\mathcal{U} \subset \mathfrak{D}_{\mathfrak{c}}$ [1], we have AAC₀ \cap $\mathcal{U} \subset$ AAC₀ \cap $\mathfrak{D}_{\mathfrak{c}}$. To prove the

inclusion "AAC₀ $\cap \mathfrak{D}_{\mathfrak{c}} \subset \text{AAC}$," take a bilaterally \mathfrak{c} -dense in itself weakly-away almost continuous function f and fix a blocking set B. By Lemma 2, either $f \cap B \neq \emptyset$, or for every $\varepsilon > 0$ there exist $a \in \mathbb{I}$ and an open set $U \ni \langle a, f(a) \rangle$ such that $U \cap f \subset \{\langle x, f(x) \rangle \mid (f(x) - \varepsilon, f(x) + \varepsilon) \cap B_x \neq \emptyset\}$. In the second case, since $f \in \mathfrak{D}_{\mathfrak{c}}$, the set $U \cap f$ has cardinality continuum, and therefore, the set $\{x \in \mathbb{I} \mid (f(x) - \varepsilon, f(x) + \varepsilon) \cap B_x \neq \emptyset\}$ also has cardinality continuum. Thus, in both cases, $f \in \text{AAC}$.

References

- [1] A. M. Bruckner, J. G. Ceder, and M. Weiss, *Uniform limits of Darboux functions*, Colloq. Math. **15** (1966), 65–77.
- [2] R. G. Gibson and T. Natkaniec, Darboux like functions. Old problems and new results, Real Anal. Exchange 24 (1998/99) no. 2, 487–496.
- [3] K. R. Kellum, Sums and limits of almost continuous functions, Colloq. Math. 31 (1974), 125–128.
- [4] K. R. Kellum and B. D. Garrett, Almost continuous real functions, Proc. Amer. Math. Soc. 33 (1972), 181–184.
- [5] P. Szuca, On some properties of sets blocking almost continuous functions, Real Anal. Exchange 27 (2001/02) no. 1, 373–388.

Department of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 Gdańsk, Poland

E-mail address: pszuca@radix.com.pl