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SUBMETACOMPACTNESS IN COUNTABLE
PRODUCTS

HIDENORI TANAKA

ABSTRACT. In this paper, we prove the following: If {X, :
n € w} is a countable collection of C-scattered submetacom-
pact spaces, then the product HnEW X, is submetacompact.

1. INTRODUCTION

A space X is said to be metacompact if every open cover of X has
a point finite open refinement, and X is said to be submetacompact
if for every open cover U of X, there is a sequence (Vy,),,c,, of open
refinements of U such that for each x € X, there is an n € w with
Ord(z,V,) <w. Forz € X andn € w,let V,,, ={V eV, :x eV}
and Ord(x, Vy,) = |V, |. We call this sequence (V,,),,c,, a 0-sequence
of open refinemenets of U. Clearly, every paracompact space is
metacompact and every metacompact space is submetacompact. It
is well known that if X is countably compact and submetacompact,
then X is compact.

Since the notion of C-scattered spaces was introduced by R.
Telgarsky [8], C-scattered spaces play the fundamental role in the
study of covering properties of products. A space X is said to be
scattered if every nonempty subset A of X has an isolated point
in A, and X is said to be C-scattered if for every nonempty closed
subset A of X, there is a point x € A which has a compact neigh-
borhood in A. Scattered spaces and locally compact spaces are
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C-scattered. Telgarsky proved that if X is a C-scattered paracom-
pact (Lindelof) space, then X x Y is paracompact (Lindel6f) for
every paracompact (Lindelof) space Y.

Telgarsky [9] also introduced the notion of DC-like spaces, using
topological games. The class of DC-like spaces includes all spaces
with a o-closure-preserving closed cover by compact subsets and all
C-scattered paracompact spaces. Telgarsky proved that if X is a
paracompact (Lindel6f) DC-like space, then X x Y is paracompact
(Lindelof) for every paracompact (Lindel6f) space Y. Furthermore,
G. Gruenhage and Y. Yajima [3] proved that if X is a metacom-
pact (submetacompact) DC-like space, then X X Y is metacompact
(submetacompact) for every metacompact (submetacompact) space
Y, and that if X is a C-scattered metacompact (submetacompact)
space, then X x Y is metacompact (submetacompact) for every
metacompact (submetacompact) space Y. For covering properties
of countable products, the author proved the following.

(A) ([5]) If Y is a perfect paracompact (hereditarily Lindelof)
space and {X,, : n € w} is a countable collection of paracompact
(Lindelof) DC-like spaces, then the product Y x [],.. X, is para-
compact (Lindelof).

(B) ([6, 7]) If {X,, : n € w} is a countable collection of metacom-
pact (submetacompact) DC-like spaces, then the product [], .., Xn
is metacompact (submetacompact).

(C) ([6]) If {X,, : n € w} is a countable collection of C-scattered
metacompact spaces, then the product [] X, is metacompact.

new

new

The author asked whether the product [], ., X, is submetacom-
pact whenever X, is a C-scattered submetacompact space for each
n e w.

Our purpose in this paper is to give an affirmative answer to this
question.

All spaces are assumed to be regular 77 spaces. Let w denote
the set of natural numbers and |A| denote the cardinality of a set
A. Undefined terminology can be found in R. Engelking [2].

2. SUBMETACOMPACTNESS

Let X be a space. For a closed subset A of X, let
A* = {x € Az has no compact neighborhood in A}.
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Let A© = A A+ — (A(@)" and A@) = Ng<a AP for a limit
ordinal . Note that every A is a closed subset of X and if A
and B are closed subsets of X such that A C B, then A® ¢ B(®
for each ordinal «. Furthermore, X is C-scattered if and only if
X(@ — § for some ordinal o. Let X be a C-scattered space and
AC X. Put

MX) = inf{a: X® =@} and
MA) = inf{a: AN X©@ =0} < \(X).

It is clear that if A, B are subsets of X such that A C B, then
A(A) < A(B). A subset A of X is said to be topped if there is an
ordinal a(A) such that ANX(@4) is a nonempty compact subset of
X and ANX @A+ = ¢, Thus, A(4) = a(A) +1. For each z € X,
there is a unique ordinal o such that z € X(@ — X (@D which is
denoted by rank(x) = a. There is a neighborhood base B, of z in
X, consisting of open subsets of X, such that for each B € B, clB
is topped in X and a(clB) = rank(z). If A is a topped subset of X
and B is a subset of A such that BN(ANX (@A) = BnXx (@A) = ¢,
then A\(B) < a(A4) < A(4) = a(A4) + 1.

The following plays the fundamental role in the study of sub-
metacompactness.

Lemma 2.1 (Gruenhage and Yajima [3]). There is a filter F on
w satisfying: For every submetacompact space X and every open
cover U of X, there is a sequence (V) of open refinements of
U such that for each x € X,

{new:0Ord(z,V,) <w}eF.

new

By Lemma 2.1, let F**! denote the filter on w"™*! generated by
sets of the form

i<, Fi, where F; € F for each i < n.
Put

@, = [[;c, W't for each n € w and & = U{®,, : n € w}.

For u = (10,71, ,7n) € Pp,n € w with n > 1, let pu_ =
(10,71, ,Tno1) € ®p_1. If 7 € B, let 7_ = . For each 7 € w2
let p®7 = (10,71, ,Tn,7) € Ppi1. Let U,V be collections of

subsets of a space X. Put U AV ={UNV :U el and V € V}.
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Theorem 2.2. If {X,, : n € w} is a countable collection of C-
scattered submetacompact spaces, then the product [ ], .., Xy is sub-
metacompact.

Proof: : By the method used in the proof of [1, Theorem|, we
may assume the following:

(1) X is a C-scattered submetacompact space and for each n €
w, Xp, =X,

(2) X is topped and there is a point @ € X such that X (*(X)) =
{a}.

We shall show that X% is submetacompact. Let B be the base of
X“, consisting of all basic open subsets of X“, i.e., B =], ., Bn €
B if there is an n € w such that for i < n, B; is an open subset of
X and for ¢ > n,B; = X. Let

n(B) =inf{i: B; = X for j >i}.

We call n(B) the length of B. Let O be an open cover of X%,
which is closed under finite unions and O' = {B € B : B C
O for some O € O}.

Take B = [[;c,Bi € B and let N(B) = {i < n(B) : clB;
is topped in X}. Take i < n(B) with ¢ ¢ N(B). If A(clB;) is an
isolated ordinal, then there is an ordinal 7 such that A\(clB;) = v+1
and clB; N X is nonempty and locally compact. For each z €
clB; N X there is an open neighborhood B, of  in X such that
clB, is topped in X, cl(B; N X('Y)) is compact, and « (clB;) =
rank(z). For each x € clB; — X, take an open neighborhood B,
of z in X such that clB, is topped in X, clB;N(clB; N X(W)) =0,
and « (clBy) = rank(x). Then every clB;N clB; is topped in X and
a(clB;N clB,) = a (clB,). Next, let i = n(B). Since X (X)) =
{a}, take a proper open neighborhood B, of a in X, and for each
x € X —{a}, take an open neighborhood B, of = in X such that a ¢
clB,, clB, is topped in X, and a(clB,) = rank(x). If A(clB;) is a
limit ordinal, then for each x € clB;, there is an open neighborhood
B, of z in X such that clB, is topped in X and «(clB,) = rank(x).

Since B;(B) = {B, : « € clB;} is an open cover of clB; and X
is submetacompact, there is a f-sequence (Véﬂ')jau of open (in X)
refinements of Bi(B),VfRi ={Ve:¢€ Egi},j € w, such that for
each j € w, UV%M = B; and for each x € B;,{j € w: Ord(z, Vfgﬂ-) <
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w} € F, where F is the filter on w described in Lemma 2.1. For
cach j € w and ¢ € 2, take an z(§) € clB; such that Ve C

By¢)- For each i € N(B) and j € w, let E]Bz = {gél} and Vé,i =
{Ve } = {Bi}. For each i = (jo,j1, . ju(m)) € " PF1, put

Epy = [licus) EB, For each & = (£(i)) € Epy, let V(§) =
[licnm) Ve x X x -+ and Vy(B) = {V(¢) : £ € Epy}. Then
every V,(B) is an open cover of B. Take a { = (£(i)) € Ep,; and let
M(&) = {i < n(B) : clV is topped in X}. Then N(B) C M(¢).
Put K (€) = [Tic ey (Ve N X (@elVem )y Licn(B)igme) Ve X
{a} x -+ = [licy, Kei and K(B,n) = {K(&) : £ € Epy}t. We
consider the following condition for K (£).

(*) There is an open set B’ € O’ such that K(§) C B’.

If K(§) satisfies (*), define n(¢) = inf{n(0O) : K(§) C O and
O € O0'}. Put

r(§) = max{n(B),n(&)}-
There is an O(§) = [[;c,, O¢.i € O such that:

(3) K(&) c O(8),
(4) n(&) = n(O(E))-
Take an H(§) = [[;c,, He;i € O such that:

(5) () Tlicn(e) Hei x X x--- C O(E);

(b) for ¢ with n(&) <i < n(B) ori < n(B) with i ¢ M(£),
let H,gﬂ' = O&,i;

(c) for i < n(§) with i € M(&), let He; be an open subset
of X such that K¢; = clVe;) N X (alelVe@)) He; C
C]Héyi C Ogyi;

(d) for i with n(B) < i < n(£), let He; be an open subset
of X such that K¢; = {a} C He; C clHe; C Og¢;

(e) if (&) = n(B), let He; = X for each i > n(B), and if
(&) =n(§) > n(B) let He; = X for i > n(&).

Then we have K(§) C H(§). Let P(B) ={P: P C{0,1,--- ,n(B)}}
and P € P(B). Define

G (&) = [liey, Gei and B(E, P) = [1,c,, Be,pi
as follows:
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(6) (a) Suppose r(§) = n(B). For each i < n(B), let G¢; =
Vi) N Og,; and for each i > n(B), let G¢; = X.
(b) Suppose 7(§) = n(§) > n(B). For each i € w, let
Gei = 0
(c) In either case, for each i < n(B), if i € P, let Be p; =
Vé(z)_ Cng’i, and if i ¢ P, let Bg’pﬂ' = Vf(z) N O&Z’. For
each i > n(B), let Bg p; = X.
Clearly, if 7(§) = n(B), then B(£,0) = G(§). Notice that for each
i € w,Be p; C B; and if B(&, P) # 0, then n(B(§, P)) = n(B) + 1.
Let i <n(B). If i € P and i ¢ M(), then Be p; = 0.
Let

By ¢(B) ={B(¢, P) : P € P(B) = {0}} if r(§) = n(B),
Bye(B) ={B(, P): P eP(B)}if r(§) = n(¢) > n(B),

Cram 1. Let K (&) satisfy the condition (*), P € P(B) and
B(&, P) € B, ¢(B) with B(&, P) # 0. If 7(§) = n(B), then there is
an ¢ < n(§) with ¢ € P.

Proof: of Claim 1: Since K (&) satisfies the condition (*) and
r(¢) = n(B), by the definition, P # (). Take i € P. By (5) (b) and
(6) (c), we have i < n(&).

Now, assume that K(£) does not satisfy the condition (*). Let
G(&) = 0. Take P € P(B) and define B(&, P) as follows: If P =
let B(¢,P) = V(€). If P # 0, let B(¢,P) = 0. Put B,e(B) =
{B(E,P): PeP(B)} = {V(6)).

Then, in each case, we have V(§) = G(§) U (UB,¢(B)).

CrAam 2. Let i < n(B), { = (£(9)) € Eyy K(&) = [licw, Ke,
Pe P(B), and B((E,P) = HtEw B&,P,t with B&PJ' 75 0.
(a) If i € P, then K (§) satisfies (*), i € M(&) and A(clBg p,;) <
(b) Let i ¢ P.

(i) If i € M(&), then clBg p; is topped in X such that
A(clBe p;) = MclVe(p)) and Ke; = clVi(py) N X @@Ve@))
= clB¢ p; N X(@(clBe,pi)) - Furthermore, if i € N(B),
then clBg p; is topped in X such that A(clBg p;)
= A (CIBZ) and Kg’i = clB; N X (e(clBi)) — ClB&pﬂ‘ N

X (a(clBe,pi))



SUBMETACOMPACTNESS 313
(ii) If i ¢ M(E), then A(clBe p;) < A(clB;).

Proof: of Claim 2: (a) Since P # () and B¢ p; # (), we have that
K (&) satisfies (*) and i € M(§). Assume that i ¢ N (B). Then
)\(ClVg(Z)) < A (Cle(g(i))ﬂ clB;) < A(clB;). Since i € P, Be pi =
Vi) — clHe,. So, by (5) (c), clVuy N X@@Vew) < He,;. Then
A (clBe p;) < alclVegy) < AM(clVey)). Tt follows that A(clBe p;) <
A(clB;). Assume that i € N(B). Then A(clB;) = a(clB;)+1. Since
i € P, as before, we have A (clB¢ p;) < af(clB;) < A(clBy).

(b) (i) Assume that K () satisfies (*). Sincei ¢ P, B¢ p; = VeiyN
O¢i- By i € M(E), clVegi N X (@(Ve)) is nonempty and compact.
It follows from clVg(;y N Og; C clBe p; that clVey N X @EVe)) ¢
clBe p;. Hence, clBg p; is topped in X such that a(clBg p;) =
Oé(ClVg(i)) and K{,i = Clvf(i) N X (aledVew)) = CIB&RZ' N X (a(elBe,p.i))
Next, assume that K(£) does not satisfy (*). Then P = () and
Be pi = Ve()- So, this follows easily. Furthermore, if i € N(¢),
since Vg(;) = Bi, we also obtain it.

(b) (ii) Since i ¢ M(f),l g N(B) Then Vg(z) C Bx({(z))
By way of taking B,(;)), clBy¢@i)) N clB; is topped in X and
a(clByesy) N clB;) = a(clBygy)) = rank(z(£(7))). So it follows
that Oé(Cle(é(l)) N CIBZ) < A(CIBZ) and K(f)z = Vf(z) By’L §é M(f),
we have clVzy N (clB; N clByqy N X@@Be)) = 0. So,
)\(ClVg(z)) < OZ(CIBQ;(E(Z-))). Since 1 ¢ P, B&pﬂ' = Vf(z) N Ogﬂ'. Hence,
we obtain that A(clBg p;) < A(clB;).

For each n € w™B)+1 put
Gn(B) ={G¢ : £ € Epy} and
Bn(B) = U{Bmg(B) (€€ EB,W}-
Then we have

a) every element o is contained in some member
(7) (a) every element of G,(B) is contained i b
of O
(b) G,(B) U By(B) is a cover of B;
(c) the length of nonempty element of B, (B) is n(B) + 1.
(8) For each x € B,{n € w™B*!: Ord(x,V,) < w} € FrBFL

Take x = (z;) € B and for each i < n(B), let F; = {j € w :
Ord(z;,Vp,;) <w} € F and F = [Li<nin) Fi € FMB)+1 For each
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n € F,O0rd(z,V,(B)) < w. So, {n € w™B*! : Ord(z,V,(B)) <
w} e FrB)+L
(9) For each 2 € B, {n € w"B)*! : Ord(z,G,(B) UB,(B)) <
w} e FUB)+L

For each m € w and 7 € ®,,,, let us define G, and B, of elements
of B. For each m € &g = w, let G, = G, (X*) and B,,, = B, (X¥).
Assume that for m € w and pu € ®,,, we have already obtained G,
and By,. Let 7 € ®,,41 and 7 = p @1, where p=7_ € ®,, and n €
w™t2. Let B € B,,. If B # (), then we denote G, (B) and B,(B) by
G,(B) and B;(B), respectively. If B =0, let G, (B) = B-(B) = {0}.
Let G = G, U (U{G-(B) : B € B,}) and B, = U{B-(B) : B € B,}.
Then every nonempty element of I3, has the length m + 2.

Cramm 3. {G, U (B ANO') : 7 € ®} is a H-sequence of open
refinements of O'.

Proof: of Claim 3: By (7) (a) and induction, G; U (B, A O’) is
an open refinement of O@'. Take an z = (z;) € X¥. By (9), take
a 7(0) = m(0) € w such that Ord(z,G ) U Br)) < w. Then
7(0) € ®o. If By, = 0, then we are done. So, assume that
By, # 0. By (7) (c), every nonempty element of B ) has the
length 1. By (9) again, we can take an 1(1) € w? such that

n(1) € n{{n € w?: Ord(z,G,(B)UB,(B)) <w}:z € BE€
BT(O)} € F2.

Let 7(1) = (n(0),n(1)) € ®;. Then we have Ord(z,G,1) U
Br1)) < w. Assume also that B,y # 0. Continuing in this
manner, we can choose a 7(t) = (n(0),n(1),---,n(t)) € ®; such
that for each t € w,

Ord(z, Gr1) U Br(1)) <w and By # 0.

Since By, # () and is finite for each t € w, it follows from
Konig’s lemma (cf. K. Kunen [4]) that there are sequences {&; :
t € wh{N@{) : t € wh {M(t) : t € wh{K(¢) : t € w},{P(¢t) :
t € wh{B(t) = B({(t), P(t)) : t € w}, B(E(1), P(t)) = [lic, Bt of
elements of B satisfying: for each t € w,

(10) (a) @ € B(t) = [Ty B(t): € By (B(t—1)) and n(B(t)) =

t+ 1, where B(—1) = X*;
(b) & € Ep—1)m0);
(c) N(t) = N(B(t - 1));
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(d) M(t) = M(&);

(e) K(1) = K(&) = Hzew K(t)i € K(B(t —1),1(1));

(f) P(t) € P({0,1,--- ,n(B(t = 1))});

(g) if K(t) satlsﬁes the condition (*) and (&) = n(B(t —

1)), then there is an i < n(&) with i € P(t);
(h) if i € P(t), then A(clB(t);) < A(clB(t —1););
(i) for i ¢ P(t),
(1) if i € M(t), then K(t); C clB(t — 1);,i € N(t +
1), and furthermore, if i € N(¢), then K(t);
= cB(t — 1); N X@E@BE=D)) — K(t +1); =
clB(t)N X ((cB1:) " and hence, )\(CIB(t —1);) =
A(ClB(t)q);
(2) if i ¢ M(t), then A(clB(t);) < A(clB(t — 1);).
Let i € w. By (10)(a), let # > 1 such that n(B(f)) > i. By
(10)(h), if i € P(m) for m >, \(clB(m);) < A(cIB(m —1);). Since
there does not exist an infinite decreasing sequence of ordinals,
there is a t; € w with ¢; > ¢ such that for each t > t;,i ¢ P(t).
By (10) (i) (2), there is an m; such that m; > t; and for each
t > m;,i € M(t). Then, by (10) (i) (1), for each t > m;, clB(t+1);
is topped and clB(t+1); N X (AABED)) — K (1 41); = K(m;+1);.
Let K = [[;c, K(m; +1);. Then K is a compact subset of X“.
Since O is an open cover of X“, which is closed under finite unions,
there is an O =[], O; € O" such that K C O. By (10) (a), take

(S

an s > 1 such that:

(1) (a) n(0) < n(B(s — 1)),

(b) for each i < n(O),m; +1 < s.

For each i < n(0O), by (11) (b), K(s); = K(m; + 1); C O;.
Then K(s) C O and hence, K (s) satisfies the conditon (*). Since
n(€,) < n(0),1(£,) = n(B(s—1)). By (10)(g), there is an i < n(&,)
with ¢ € P(s), which contradicts the way of taking s.

The proof is complete. O
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