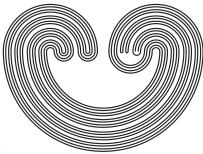
Topology Proceedings



Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

SUBMETACOMPACTNESS IN COUNTABLE PRODUCTS

HIDENORI TANAKA

ABSTRACT. In this paper, we prove the following: If $\{X_n : n \in \omega\}$ is a countable collection of C-scattered submetacompact spaces, then the product $\prod_{n \in \omega} X_n$ is submetacompact.

1. INTRODUCTION

A space X is said to be *metacompact* if every open cover of X has a point finite open refinement, and X is said to be *submetacompact* if for every open cover \mathcal{U} of X, there is a sequence $(\mathcal{V}_n)_{n\in\omega}$ of open refinements of \mathcal{U} such that for each $x \in X$, there is an $n \in \omega$ with $\operatorname{Ord}(x, \mathcal{V}_n) < \omega$. For $x \in X$ and $n \in \omega$, let $\mathcal{V}_{n_x} = \{V \in \mathcal{V}_n : x \in V\}$ and $\operatorname{Ord}(x, \mathcal{V}_n) = |\mathcal{V}_{n_x}|$. We call this sequence $(\mathcal{V}_n)_{n\in\omega}$ a θ -sequence of open refinements of \mathcal{U} . Clearly, every paracompact space is metacompact and every metacompact space is submetacompact. It is well known that if X is countably compact and submetacompact, then X is compact.

Since the notion of C-scattered spaces was introduced by R. Telgársky [8], C-scattered spaces play the fundamental role in the study of covering properties of products. A space X is said to be *scattered* if every nonempty subset A of X has an isolated point in A, and X is said to be *C-scattered* if for every nonempty closed subset A of X, there is a point $x \in A$ which has a compact neighborhood in A. Scattered spaces and locally compact spaces are

²⁰⁰⁰ Mathematics Subject Classification. Primary 54B10, 54G12.

Key words and phrases. C-scattered, scattered, submetacompact.

C-scattered. Telgársky proved that if X is a C-scattered paracompact (Lindelöf) space, then $X \times Y$ is paracompact (Lindelöf) for every paracompact (Lindelöf) space Y.

Telgársky [9] also introduced the notion of \mathcal{DC} -like spaces, using topological games. The class of \mathcal{DC} -like spaces includes all spaces with a σ -closure-preserving closed cover by compact subsets and all C-scattered paracompact spaces. Telgársky proved that if X is a paracompact (Lindelöf) \mathcal{DC} -like space, then $X \times Y$ is paracompact (Lindelöf) for every paracompact (Lindelöf) space Y. Furthermore, G. Gruenhage and Y. Yajima [3] proved that if X is a metacompact (submetacompact) \mathcal{DC} -like space, then $X \times Y$ is metacompact (submetacompact) for every metacompact (submetacompact) space Y, and that if X is a C-scattered metacompact (submetacompact) space, then $X \times Y$ is metacompact (submetacompact) for every metacompact (submetacompact) space Y. For covering properties of countable products, the author proved the following.

(A) ([5]) If Y is a perfect paracompact (hereditarily Lindelöf) space and $\{X_n : n \in \omega\}$ is a countable collection of paracompact (Lindelöf) \mathcal{DC} -like spaces, then the product $Y \times \prod_{n \in \omega} X_n$ is paracompact (Lindelöf).

(B) ([6, 7]) If $\{X_n : n \in \omega\}$ is a countable collection of metacompact (submetacompact) \mathcal{DC} -like spaces, then the product $\prod_{n \in \omega} X_n$ is metacompact (submetacompact).

(C) ([6]) If $\{X_n : n \in \omega\}$ is a countable collection of C-scattered metacompact spaces, then the product $\prod_{n \in \omega} X_n$ is metacompact.

The author asked whether the product $\prod_{n \in \omega} X_n$ is submetacompact whenever X_n is a C-scattered submetacompact space for each $n \in \omega$.

Our purpose in this paper is to give an affirmative answer to this question.

All spaces are assumed to be regular T_1 spaces. Let ω denote the set of natural numbers and |A| denote the cardinality of a set A. Undefined terminology can be found in R. Engelking [2].

2. Submetacompactness

Let X be a space. For a closed subset A of X, let

 $A^* = \{x \in A : x \text{ has no compact neighborhood in } A\}.$

Let $A^{(0)} = A, A^{(\alpha+1)} = (A^{(\alpha)})^*$ and $A^{(\alpha)} = \bigcap_{\beta < \alpha} A^{(\beta)}$ for a limit ordinal α . Note that every $A^{(\alpha)}$ is a closed subset of X and if Aand B are closed subsets of X such that $A \subset B$, then $A^{(\alpha)} \subset B^{(\alpha)}$ for each ordinal α . Furthermore, X is C-scattered if and only if $X^{(\alpha)} = \emptyset$ for some ordinal α . Let X be a C-scattered space and $A \subset X$. Put

$$\lambda(X) = \inf\{\alpha : X^{(\alpha)} = \emptyset\} \text{ and} \\ \lambda(A) = \inf\{\alpha : A \cap X^{(\alpha)} = \emptyset\} \le \lambda(X).$$

It is clear that if A, B are subsets of X such that $A \subset B$, then $\lambda(A) \leq \lambda(B)$. A subset A of X is said to be *topped* if there is an ordinal $\alpha(A)$ such that $A \cap X^{(\alpha(A))}$ is a nonempty compact subset of X and $A \cap X^{(\alpha(A)+1)} = \emptyset$. Thus, $\lambda(A) = \alpha(A) + 1$. For each $x \in X$, there is a unique ordinal α such that $x \in X^{(\alpha)} - X^{(\alpha+1)}$, which is denoted by rank $(x) = \alpha$. There is a neighborhood base \mathcal{B}_x of x in X, consisting of open subsets of X, such that for each $B \in \mathcal{B}_x$, clB is topped in X and $\alpha(clB) = \operatorname{rank}(x)$. If A is a topped subset of X and B is a subset of A such that $B \cap (A \cap X^{(\alpha(A))}) = B \cap X^{(\alpha(A))} = \emptyset$, then $\lambda(B) \leq \alpha(A) < \lambda(A) = \alpha(A) + 1$.

The following plays the fundamental role in the study of submetacompactness.

Lemma 2.1 (Gruenhage and Yajima [3]). There is a filter \mathcal{F} on ω satisfying: For every submetacompact space X and every open cover \mathcal{U} of X, there is a sequence $(\mathcal{V}_n)_{n\in\omega}$ of open refinements of \mathcal{U} such that for each $x \in X$,

$$\{n \in \omega : Ord(x, \mathcal{V}_n) < \omega\} \in \mathcal{F}.$$

By Lemma 2.1, let \mathcal{F}^{n+1} denote the filter on ω^{n+1} generated by sets of the form

$$\prod_{i \leq n} F_i$$
, where $F_i \in \mathcal{F}$ for each $i \leq n$.

Put

$$\Phi_n = \prod_{i < n} \omega^{i+1} \text{ for each } n \in \omega \text{ and } \Phi = \bigcup \{\Phi_n : n \in \omega\}.$$

For $\mu = (\tau_0, \tau_1, \cdots, \tau_n) \in \Phi_n, n \in \omega$ with $n \geq 1$, let $\mu_- = (\tau_0, \tau_1, \cdots, \tau_{n-1}) \in \Phi_{n-1}$. If $\tau \in \Phi_0$, let $\tau_- = \emptyset$. For each $\tau \in \omega^{n+2}$, let $\mu \oplus \tau = (\tau_0, \tau_1, \cdots, \tau_n, \tau) \in \Phi_{n+1}$. Let \mathcal{U}, \mathcal{V} be collections of subsets of a space X. Put $\mathcal{U} \wedge \mathcal{V} = \{U \cap V : U \in \mathcal{U} \text{ and } V \in \mathcal{V}\}.$

Theorem 2.2. If $\{X_n : n \in \omega\}$ is a countable collection of *C*-scattered submetacompact spaces, then the product $\prod_{n \in \omega} X_n$ is submetacompact.

Proof: : By the method used in the proof of [1, Theorem], we may assume the following:

- (1) X is a C-scattered submetacompact space and for each $n \in \omega, X_n = X$,
- (2) X is topped and there is a point $a \in X$ such that $X^{(\alpha(X))} = \{a\}$.

We shall show that X^{ω} is submetacompact. Let \mathcal{B} be the base of X^{ω} , consisting of all basic open subsets of X^{ω} , i.e., $B = \prod_{n \in \omega} B_n \in \mathcal{B}$ if there is an $n \in \omega$ such that for $i < n, B_i$ is an open subset of X and for $i \geq n, B_i = X$. Let

$$n(B) = \inf\{i : B_j = X \text{ for } j \ge i\}.$$

We call n(B) the *length* of B. Let \mathcal{O} be an open cover of X^{ω} , which is closed under finite unions and $\mathcal{O}' = \{B \in \mathcal{B} : B \subset O \text{ for some } O \in \mathcal{O}\}.$

Take $B = \prod_{i \in \omega} B_i \in \mathcal{B}$ and let $\mathcal{N}(B) = \{i < n(B) : clB_i \text{ is topped in } X\}$. Take i < n(B) with $i \notin \mathcal{N}(B)$. If $\lambda(clB_i)$ is an isolated ordinal, then there is an ordinal γ such that $\lambda(clB_i) = \gamma + 1$ and $clB_i \cap X^{(\gamma)}$ is nonempty and locally compact. For each $x \in clB_i \cap X^{(\gamma)}$, there is an open neighborhood B_x of x in X such that clB_x is topped in X, $cl(B_x \cap X^{(\gamma)})$ is compact, and α $(clB_x) = rank(x)$. For each $x \in clB_i - X^{(\gamma)}$, take an open neighborhood B_x of x in X such that clB_x is topped in X, $cl(B_i \cap X^{(\gamma)}) = \emptyset$, and α $(clB_x) = rank(x)$. Then every $clB_i \cap clB_x$ is topped in X and $\alpha(clB_x) = rank(x)$. Next, let i = n(B). Since $X^{(\alpha(X))} = \{a\}$, take a proper open neighborhood B_a of x in X such that $a \notin clB_x$, clB_x is topped in X, and $\alpha(clB_x) = rank(x)$. If $\lambda(clB_i)$ is a limit ordinal, then for each $x \in clB_i$, there is an open neighborhood B_x of x in X such that clB_x is topped in X, and $\alpha(clB_x) = rank(x)$. If $\lambda(clB_i)$ is a limit ordinal, then for each $x \in clB_i$, there is an open neighborhood B_x of x in X such that clB_x is topped in X, and $\alpha(clB_x) = rank(x)$. If $\lambda(clB_i)$ is a limit ordinal, then for each $x \in clB_i$, there is an open neighborhood B_x of x in X such that clB_x is topped in X and $\alpha(clB_x) = rank(x)$.

Since $\mathcal{B}_i(B) = \{B_x : x \in clB_i\}$ is an open cover of clB_i and X is submetacompact, there is a θ -sequence $(\mathcal{V}_{B,i}^j)_{j\in\omega}$ of open (in X) refinements of $\mathcal{B}_i(B), \mathcal{V}_{B,i}^j = \{V_{\xi} : \xi \in \Xi_{B,i}^j\}, j \in \omega$, such that for each $j \in \omega, \cup \mathcal{V}_{B,i}^j = B_i$ and for each $x \in B_i, \{j \in \omega : Ord(x, \mathcal{V}_{B,i}^j) < v\}$

$$\begin{split} \omega &\} \in \mathcal{F}, \text{ where } \mathcal{F} \text{ is the filter on } \omega \text{ described in Lemma 2.1. For each } j \in \omega \text{ and } \xi \in \Xi_{B,i}^{j}, \text{ take an } x(\xi) \in \mathrm{cl}B_{i} \text{ such that } V_{\xi} \subset B_{x(\xi)}. \text{ For each } i \in \mathcal{N}(B) \text{ and } j \in \omega, \text{ let } \Xi_{B,i}^{j} = \{\xi_{B,i}^{j}\} \text{ and } \mathcal{V}_{B,i}^{j} = \{V_{\xi_{B,i}^{j}}\} = \{B_{i}\}. \text{ For each } \eta = (j_{0}, j_{1}, \cdots, j_{n(B)}) \in \omega^{n(B)+1}, \text{ put } \Xi_{B,\eta} = \prod_{i \leq n(B)} \Xi_{B,i}^{j_{i}}. \text{ For each } \xi = (\xi(i)) \in \Xi_{B,\eta}, \text{ let } V(\xi) = \prod_{i \leq n(B)} V_{\xi(i)} \times X \times \cdots \text{ and } \mathcal{V}_{\eta}(B) = \{V(\xi) : \xi \in \Xi_{B,\eta}\}. \text{ Then every } \mathcal{V}_{\eta}(B) \text{ is an open cover of } B. \text{ Take a } \xi = (\xi(i)) \in \Xi_{B,\eta} \text{ and let } \mathcal{M}(\xi) = \{i \leq n(B) : \mathrm{cl}V_{\xi(i)} \text{ is topped in } X\}. \text{ Then } \mathcal{N}(B) \subset \mathcal{M}(\xi). \text{ Put } K(\xi) = \prod_{i \in \mathcal{M}(\xi)} (\mathrm{cl}V_{\xi(i)} \cap X^{(\alpha(clV_{\xi(i)}))}) \times \prod_{i \leq n(B), i \notin \mathcal{M}(\xi)} V_{\xi(i)} \times \{a\} \times \cdots = \prod_{i \in \omega} K_{\xi,i} \text{ and } \mathcal{K}(B,\eta) = \{K(\xi) : \xi \in \Xi_{B,\eta}\}. \text{ We consider the following condition for } K(\xi). \end{split}$$

(*) There is an open set $B' \in \mathcal{O}'$ such that $K(\xi) \subset B'$.

If $K(\xi)$ satisfies (*), define $n(\xi) = \inf\{n(O) : K(\xi) \subset O \text{ and } O \in O'\}$. Put

$$r(\xi) = \max\{n(B), n(\xi)\}.$$

There is an $O(\xi) = \prod_{i \in \omega} O_{\xi,i} \in \mathcal{O}'$ such that:

- (3) $K(\xi) \subset O(\xi)$,
- (4) $n(\xi) = n(O(\xi)).$

Take an $H(\xi) = \prod_{i \in \omega} H_{\xi,i} \in \mathcal{O}'$ such that:

- (5) (a) $\prod_{i < n(\xi)} H_{\xi,i} \times X \times \cdots \subset O(\xi);$
 - (b) for *i* with $n(\xi) \le i \le n(B)$ or $i \le n(B)$ with $i \notin \mathcal{M}(\xi)$, let $H_{\xi,i} = O_{\xi,i}$;
 - (c) for $i < n(\xi)$ with $i \in \mathcal{M}(\xi)$, let $H_{\xi,i}$ be an open subset of X such that $K_{\xi,i} = \operatorname{cl} V_{\xi(i)} \cap X^{(\alpha(\operatorname{cl} V_{\xi(i)}))} \subset H_{\xi,i} \subset$ $\operatorname{cl} H_{\xi,i} \subset O_{\xi,i};$
 - (d) for i with $n(B) < i < n(\xi)$, let $H_{\xi,i}$ be an open subset of X such that $K_{\xi,i} = \{a\} \subset H_{\xi,i} \subset \operatorname{cl} H_{\xi,i} \subset O_{\xi,i};$
 - (e) if $r(\xi) = n(B)$, let $H_{\xi,i} = X$ for each i > n(B), and if $r(\xi) = n(\xi) > n(B)$ let $H_{\xi,i} = X$ for $i \ge n(\xi)$.

Then we have $K(\xi) \subset H(\xi)$. Let $\mathcal{P}(B) = \{P : P \subset \{0, 1, \cdots, n(B)\}\}$ and $P \in \mathcal{P}(B)$. Define

$$G(\xi) = \prod_{i \in \omega} G_{\xi,i}$$
 and $B(\xi, P) = \prod_{i \in \omega} B_{\xi,P,i}$

as follows:

- (6) (a) Suppose $r(\xi) = n(B)$. For each $i \le n(B)$, let $G_{\xi,i} = V_{\xi(i)} \cap O_{\xi,i}$ and for each i > n(B), let $G_{\xi,i} = X$.
 - (b) Suppose $r(\xi) = n(\xi) > n(B)$. For each $i \in \omega$, let $G_{\xi,i} = \emptyset$.
 - (c) In either case, for each $i \leq n(B)$, if $i \in P$, let $B_{\xi,P,i} = V_{\xi(i)} \operatorname{cl} H_{\xi,i}$, and if $i \notin P$, let $B_{\xi,P,i} = V_{\xi(i)} \cap O_{\xi,i}$. For each i > n(B), let $B_{\xi,P,i} = X$.

Clearly, if $r(\xi) = n(B)$, then $B(\xi, \emptyset) = G(\xi)$. Notice that for each $i \in \omega, B_{\xi,P,i} \subset B_i$ and if $B(\xi, P) \neq \emptyset$, then $n(B(\xi, P)) = n(B) + 1$. Let $i \leq n(B)$. If $i \in P$ and $i \notin \mathcal{M}(\xi)$, then $B_{\xi,P,i} = \emptyset$. Let

$$\mathcal{B}_{\eta,\xi}(B) = \{ B(\xi, P) : P \in \mathcal{P}(B) - \{ \emptyset \} \} \text{ if } r(\xi) = n(B), \\ \mathcal{B}_{\eta,\xi}(B) = \{ B(\xi, P) : P \in \mathcal{P}(B) \} \text{ if } r(\xi) = n(\xi) > n(B), \end{cases}$$

CLAIM 1. Let $K(\xi)$ satisfy the condition (*), $P \in \mathcal{P}(B)$ and $B(\xi, P) \in \mathcal{B}_{\eta,\xi}(B)$ with $B(\xi, P) \neq \emptyset$. If $r(\xi) = n(B)$, then there is an $i < n(\xi)$ with $i \in P$.

Proof: of Claim 1: Since $K(\xi)$ satisfies the condition (*) and $r(\xi) = n(B)$, by the definition, $P \neq \emptyset$. Take $i \in P$. By (5) (b) and (6) (c), we have $i < n(\xi)$.

Now, assume that $K(\xi)$ does not satisfy the condition (*). Let $G(\xi) = \emptyset$. Take $P \in \mathcal{P}(B)$ and define $B(\xi, P)$ as follows: If $P = \emptyset$, let $B(\xi, P) = V(\xi)$. If $P \neq \emptyset$, let $B(\xi, P) = \emptyset$. Put $\mathcal{B}_{\eta,\xi}(B) = \{B(\xi, P) : P \in \mathcal{P}(B)\} = \{V(\xi)\}.$

Then, in each case, we have $V(\xi) = G(\xi) \cup (\cup \mathcal{B}_{\eta,\xi}(B)).$

CLAIM 2. Let $i \leq n(B)$, $\xi = (\xi(i)) \in \Xi_{B,\eta}$, $K(\xi) = \prod_{t \in \omega} K_{\xi,t}$, $P \in \mathcal{P}(B)$, and $B(\xi, P) = \prod_{t \in \omega} B_{\xi,P,t}$ with $B_{\xi,P,i} \neq \emptyset$.

- (a) If $i \in P$, then $K(\xi)$ satisfies (*), $i \in \mathcal{M}(\xi)$ and $\lambda(\mathrm{cl}B_{\xi,P,i}) < \lambda$ (cl B_i).
- (b) Let $i \notin P$.
 - (i) If $i \in \mathcal{M}(\xi)$, then $\mathrm{cl}B_{\xi,P,i}$ is topped in X such that $\lambda(\mathrm{cl}B_{\xi,P,i}) = \lambda(\mathrm{cl}V_{\xi(i)})$ and $K_{\xi,i} = \mathrm{cl}V_{\xi(i)} \cap X^{(\alpha(clV_{\xi(i)}))}$ $= \mathrm{cl}B_{\xi,P,i} \cap X^{(\alpha(clB_{\xi,P,i}))}$. Furthermore, if $i \in \mathcal{N}(B)$, then $\mathrm{cl}B_{\xi,P,i}$ is topped in X such that $\lambda(\mathrm{cl}B_{\xi,P,i})$ $= \lambda \ (\mathrm{cl}B_i)$ and $K_{\xi,i} = \mathrm{cl}B_i \cap X^{(\alpha(clB_i))} = \mathrm{cl}B_{\xi,P,i} \cap X^{(\alpha(clB_{\xi,P,i}))}$.

(ii) If $i \notin \mathcal{M}(\xi)$, then $\lambda(\mathrm{cl}B_{\xi,P,i}) < \lambda(\mathrm{cl}B_i)$.

Proof: of Claim 2: (a) Since $P \neq \emptyset$ and $B_{\xi,P,i} \neq \emptyset$, we have that $K(\xi)$ satisfies (*) and $i \in \mathcal{M}(\xi)$. Assume that $i \notin \mathcal{N}(B)$. Then $\lambda(\mathrm{cl}V_{\xi(i)}) \leq \lambda \ (\mathrm{cl}B_{x(\xi(i))}) \cap \mathrm{cl}B_i) \leq \lambda(\mathrm{cl}B_i)$. Since $i \in P, B_{\xi,P,i} = V_{\xi(i)} - \mathrm{cl}H_{\xi,i}$. So, by (5) (c), $\mathrm{cl}V_{\xi(i)} \cap X^{(\alpha(\mathrm{cl}V_{\xi(i)}))} \subset H_{\xi,i}$. Then $\lambda \ (\mathrm{cl}B_{\xi,P,i}) \leq \alpha(\mathrm{cl}V_{\xi(i)}) < \lambda(\mathrm{cl}V_{\xi(i)})$. It follows that $\lambda(\mathrm{cl}B_{\xi,P,i}) < \lambda(\mathrm{cl}B_i)$. Assume that $i \in \mathcal{N}(B)$. Then $\lambda(\mathrm{cl}B_i) = \alpha(\mathrm{cl}B_i) + 1$. Since $i \in P$, as before, we have $\lambda \ (\mathrm{cl}B_{\xi,P,i}) \leq \alpha(\mathrm{cl}B_i) < \lambda(\mathrm{cl}B_i)$.

(b) (i) Assume that $K(\xi)$ satisfies (*). Since $i \notin P, B_{\xi,P,i} = V_{\xi(i)} \cap O_{\xi,i}$. By $i \in \mathcal{M}(\xi)$, $clV_{\xi(i)} \cap X^{(\alpha(clV_{\xi(i)}))}$ is nonempty and compact. It follows from $clV_{\xi(i)} \cap O_{\xi,i} \subset clB_{\xi,P,i}$ that $clV_{\xi(i)} \cap X^{(\alpha(clV_{\xi(i)}))} \subset clB_{\xi,P,i}$. Hence, $clB_{\xi,P,i}$ is topped in X such that $\alpha(clB_{\xi,P,i}) = \alpha(clV_{\xi(i)})$ and $K_{\xi,i} = clV_{\xi(i)} \cap X^{(\alpha(clV_{\xi(i)}))} = clB_{\xi,P,i} \cap X^{(\alpha(clB_{\xi,P,i}))}$. Next, assume that $K(\xi)$ does not satisfy (*). Then $P = \emptyset$ and $B_{\xi,P,i} = V_{\xi(i)}$. So, this follows easily. Furthermore, if $i \in \mathcal{N}(\xi)$, since $V_{\xi(i)} = B_i$, we also obtain it.

(b) (ii) Since $i \notin \mathcal{M}(\xi), i \notin \mathcal{N}(B)$. Then $V_{\xi(i)} \subset B_{x(\xi(i))}$. By way of taking $B_{x(\xi(i))}$, $clB_{x(\xi(i))} \cap clB_i$ is topped in X and $\alpha(clB_{x(\xi(i))} \cap clB_i) = \alpha(clB_{x(\xi(i))}) = \operatorname{rank}(x(\xi(i)))$. So it follows that $\alpha(clB_{x(\xi(i))} \cap clB_i) < \lambda(clB_i)$ and $K(\xi)_i = V_{\xi(i)}$. By $i \notin \mathcal{M}(\xi)$, we have $clV_{\xi(i)} \cap (clB_i \cap clB_{x(\xi(i))} \cap X^{(\alpha(clB_{x(\xi(i))}))}) = \emptyset$. So, $\lambda(clV_{\xi(i)}) \leq \alpha(clB_{x(\xi(i))})$. Since $i \notin P$, $B_{\xi,P,i} = V_{\xi(i)} \cap O_{\xi,i}$. Hence, we obtain that $\lambda(clB_{\xi,P,i}) < \lambda(clB_i)$.

For each $\eta \in \omega^{n(B)+1}$, put

$$\mathcal{G}_{\eta}(B) = \{G_{\xi} : \xi \in \Xi_{B,\eta}\} \text{ and}$$
$$\mathcal{B}_{\eta}(B) = \bigcup \{\mathcal{B}_{\eta,\xi}(B) : \xi \in \Xi_{B,\eta}\}.$$

Then we have

- (7) (a) every element of $\mathcal{G}_{\eta}(B)$ is contained in some member of \mathcal{O}' ;
 - (b) $\mathcal{G}_{\eta}(B) \cup \mathcal{B}_{\eta}(B)$ is a cover of B;
 - (c) the length of nonempty element of $\mathcal{B}_{\eta}(B)$ is n(B) + 1.
- (8) For each $x \in B$, $\{\eta \in \omega^{n(B)+1} : \operatorname{Ord}(x, \mathcal{V}_{\eta}) < \omega\} \in \mathcal{F}^{n(B)+1}$.

Take $x = (x_i) \in B$ and for each $i \leq n(B)$, let $F_i = \{j \in \omega :$ Ord $(x_i, \mathcal{V}^j_{B,i}) < \omega\} \in \mathcal{F}$ and $F = \prod_{i \leq n(B)} F_i \in \mathcal{F}^{n(B)+1}$. For each

 $\eta \in F, \operatorname{Ord}(x, \mathcal{V}_{\eta}(B)) < \omega.$ So, $\{\eta \in \omega^{n(B)+1} : \operatorname{Ord}(x, \mathcal{V}_{\eta}(B)) < \omega\} \in \mathcal{F}^{n(B)+1}.$

(9) For each $x \in B$, $\{\eta \in \omega^{n(B)+1} : \operatorname{Ord}(x, \mathcal{G}_{\eta}(B) \cup \mathcal{B}_{\eta}(B)) < \omega\} \in \mathcal{F}^{n(B)+1}$.

For each $m \in \omega$ and $\tau \in \Phi_m$, let us define \mathcal{G}_{τ} and \mathcal{B}_{τ} of elements of \mathcal{B} . For each $m \in \Phi_0 = \omega$, let $\mathcal{G}_m = \mathcal{G}_m(X^{\omega})$ and $\mathcal{B}_m = \mathcal{B}_m(X^{\omega})$. Assume that for $m \in \omega$ and $\mu \in \Phi_m$, we have already obtained \mathcal{G}_{μ} and \mathcal{B}_{μ} . Let $\tau \in \Phi_{m+1}$ and $\tau = \mu \oplus \eta$, where $\mu = \tau_- \in \Phi_m$ and $\eta \in \omega^{m+2}$. Let $B \in \mathcal{B}_{\mu}$. If $B \neq \emptyset$, then we denote $\mathcal{G}_{\eta}(B)$ and $\mathcal{B}_{\eta}(B)$ by $\mathcal{G}_{\tau}(B)$ and $\mathcal{B}_{\tau}(B)$, respectively. If $B = \emptyset$, let $\mathcal{G}_{\tau}(B) = \mathcal{B}_{\tau}(B) = \{\emptyset\}$. Let $\mathcal{G}_{\tau} = \mathcal{G}_{\mu} \cup (\cup \{\mathcal{G}_{\tau}(B) : B \in \mathcal{B}_{\mu}\})$ and $\mathcal{B}_{\tau} = \cup \{\mathcal{B}_{\tau}(B) : B \in \mathcal{B}_{\mu}\}$. Then every nonempty element of \mathcal{B}_{τ} has the length m + 2.

CLAIM 3. $\{\mathcal{G}_{\tau} \cup (\mathcal{B}_{\tau} \wedge \mathcal{O}') : \tau \in \Phi\}$ is a θ -sequence of open refinements of \mathcal{O}' .

Proof: of Claim 3: By (7) (a) and induction, $\mathcal{G}_{\tau} \cup (\mathcal{B}_{\tau} \wedge \mathcal{O}')$ is an open refinement of \mathcal{O}' . Take an $x = (x_i) \in X^{\omega}$. By (9), take a $\tau(0) = m(0) \in \omega$ such that $Ord(x, \mathcal{G}_{\tau(0)} \cup \mathcal{B}_{\tau(0)}) < \omega$. Then $\tau(0) \in \Phi_0$. If $\mathcal{B}_{\tau(0)_x} = \emptyset$, then we are done. So, assume that $\mathcal{B}_{\tau(0)_x} \neq \emptyset$. By (7) (c), every nonempty element of $\mathcal{B}_{\tau(0)}$ has the length 1. By (9) again, we can take an $\eta(1) \in \omega^2$ such that

 $\eta(1) \in \cap \{\{\eta \in \omega^2 : Ord(x, \mathcal{G}_{\eta}(B) \cup \mathcal{B}_{\eta}(B)) < \omega\} : x \in B \in \mathcal{B}_{\tau(0)}\} \in \mathcal{F}^2.$

Let $\tau(1) = (\eta(0), \eta(1)) \in \Phi_1$. Then we have $Ord(x, \mathcal{G}_{\tau(1)} \cup \mathcal{B}_{\tau(1)}) < \omega$. Assume also that $\mathcal{B}_{\tau(1)_x} \neq \emptyset$. Continuing in this manner, we can choose a $\tau(t) = (\eta(0), \eta(1), \cdots, \eta(t)) \in \Phi_t$ such that for each $t \in \omega$,

 $\operatorname{Ord}(x, \mathcal{G}_{\tau(t)} \cup \mathcal{B}_{\tau(t)}) < \omega \text{ and } \mathcal{B}_{\tau(t)_{x}} \neq \emptyset.$

Since $\mathcal{B}_{\tau(t)_x} \neq \emptyset$ and is finite for each $t \in \omega$, it follows from König's lemma (cf. K. Kunen [4]) that there are sequences $\{\xi_t : t \in \omega\}, \{\mathcal{N}(t) : t \in \omega\}, \{\mathcal{M}(t) : t \in \omega\}, \{K(t) : t \in \omega\}, \{P(t) : t \in \omega\}, \{B(t) = B(\xi(t), P(t)) : t \in \omega\}, B(\xi(t), P(t)) = \prod_{i \in \omega} B_{t,i}$ of elements of \mathcal{B} satisfying: for each $t \in \omega$,

- (10) (a) $x \in B(t) = \prod_{i \in \omega} B(t)_i \in \mathcal{B}_{\eta(t)}(B(t-1))$ and n(B(t)) = t+1, where $B(-1) = X^{\omega}$;
 - (b) $\xi_t \in \Xi_{B(t-1),\eta(t)};$
 - (c) $\mathcal{N}(t) = \mathcal{N}(B(t-1));$

- (d) $\mathcal{M}(t) = \mathcal{M}(\xi_t);$
- (e) $K(t) = K(\xi_t) = \prod_{i \in \omega} K(t)_i \in \mathcal{K}(B(t-1), \eta(t));$
- (f) $P(t) \in \mathcal{P}(\{0, 1, \cdots, n(B(t-1))\});$
- (g) if K(t) satisfies the condition (*) and $r(\xi_t) = n(B(t 1))$, then there is an $i < n(\xi_t)$ with $i \in P(t)$;
- (h) if $i \in P(t)$, then $\lambda(clB(t)_i) < \lambda(clB(t-1)_i)$;
- (i) for $i \notin P(t)$,
 - (1) if $i \in \mathcal{M}(t)$, then $K(t)_i \subset \operatorname{cl}B(t-1)_i, i \in \mathcal{N}(t+1)$, and furthermore, if $i \in \mathcal{N}(t)$, then $K(t)_i = \operatorname{cl}B(t-1)_i \cap X^{(\alpha(\operatorname{cl}B(t-1)_i))} = K(t+1)_i = \operatorname{cl}B(t) \cap X^{(\alpha(\operatorname{cl}B(t)_i))}$, and hence, $\lambda(\operatorname{cl}B(t-1)_i) = \lambda(\operatorname{cl}B(t)_i)$;
 - (2) if $i \notin \mathcal{M}(t)$, then $\lambda(\mathrm{cl}B(t)_i) < \lambda(\mathrm{cl}B(t-1)_i)$.

Let $i \in \omega$. By (10)(a), let $\tilde{t} \geq 1$ such that $n(B(\tilde{t})) > i$. By (10)(h), if $i \in P(m)$ for $m \geq \tilde{t}, \lambda(\operatorname{cl}B(m)_i) < \lambda(\operatorname{cl}B(m-1)_i)$. Since there does not exist an infinite decreasing sequence of ordinals, there is a $t_i \in \omega$ with $t_i \geq \tilde{t}$ such that for each $t \geq t_i, i \notin P(t)$. By (10) (i) (2), there is an m_i such that $m_i \geq t_i$ and for each $t \geq m_i, i \in \mathcal{M}(t)$. Then, by (10) (i) (1), for each $t \geq m_i, \operatorname{cl}B(t+1)_i$ is topped and $\operatorname{cl}B(t+1)_i \cap X^{(\alpha(\operatorname{cl}B(t+1)_i))} = K(t+1)_i = K(m_i+1)_i$. Let $K = \prod_{i \in \omega} K(m_i+1)_i$. Then K is a compact subset of X^{ω} . Since \mathcal{O} is an open cover of X^{ω} , which is closed under finite unions, there is an $\mathcal{O} = \prod_{i \in \omega} \mathcal{O}_i \in \mathcal{O}'$ such that $K \subset O$. By (10) (a), take an $s \geq 1$ such that:

(11) (a) $n(O) \le n(B(s-1)),$ (b) for each $i < n(O), m_i + 1 \le s.$

For each i < n(O), by (11) (b), $K(s)_i = K(m_i + 1)_i \subset O_i$. Then $K(s) \subset O$ and hence, K(s) satisfies the conditon (*). Since $n(\xi_s) \leq n(O), r(\xi_s) = n(B(s-1))$. By (10)(g), there is an $i < n(\xi_s)$ with $i \in P(s)$, which contradicts the way of taking s.

The proof is complete.

References

- K. Alster, On the product of a perfect paracompact space and a countable product of scattered paracompact spaces, Fund. Math. 127 (1987), 241–246.
- [2] R. Engelking, *General Topology*, Berlin: Helderman, 1989.
- [3] G. Gruenhage and Y. Yajima, A filter property of submetacompactness and its application to products, Topology Appl. **36** (1990), 43–55.

- [4] K. Kunen, Set Theory: An Introduction to Independence Proofs, Amsterdam: North Holland, 1980.
- [5] H. Tanaka, A class of spaces whose countable product with a perfect paracompact space is paracompact, Tsukuba J. Math. 16 (1992), 503–512.
- [6] H. Tanaka, Covering properties in countable products, Tsukuba J. Math. 17 (1993), 565–587.
- [7] H. Tanaka, Submetacompactness and weak submetacompactness in countable products, Topology Appl. 67 (1995), 29–41.
- [8] R. Telgársky, C-scattered and paracompact spaces, Fund. Math. 73 (1971), 59–74.
- [9] R. Telgársky, Spaces defined by topological games, Fund. Math. 88 (1975), 193–223.

DEPARTMENT OF MATHEMATICS, OSAKA KYOIKU UNIVERSITY, KASHIWARA, OSAKA, 582-8582, JAPAN

E-mail address: htanaka@cc.osaka-kyoiku.ac.jp