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Abstract. In this paper, we prove the following: If {Xn :
n ∈ ω} is a countable collection of C-scattered submetacom-
pact spaces, then the product

∏
n∈ωXn is submetacompact.

1. Introduction

A space X is said to be metacompact if every open cover of X has
a point finite open refinement, and X is said to be submetacompact
if for every open cover U of X, there is a sequence (Vn)n∈ω of open
refinements of U such that for each x ∈ X, there is an n ∈ ω with
Ord(x,Vn) < ω. For x ∈ X and n ∈ ω, let Vnx = {V ∈ Vn : x ∈ V }
and Ord(x,Vn) = |Vnx |. We call this sequence (Vn)n∈ω a θ-sequence
of open refinemenets of U . Clearly, every paracompact space is
metacompact and every metacompact space is submetacompact. It
is well known that if X is countably compact and submetacompact,
then X is compact.

Since the notion of C-scattered spaces was introduced by R.
Telgársky [8], C-scattered spaces play the fundamental role in the
study of covering properties of products. A space X is said to be
scattered if every nonempty subset A of X has an isolated point
in A, and X is said to be C-scattered if for every nonempty closed
subset A of X, there is a point x ∈ A which has a compact neigh-
borhood in A. Scattered spaces and locally compact spaces are
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C-scattered. Telgársky proved that if X is a C-scattered paracom-
pact (Lindelöf) space, then X × Y is paracompact (Lindelöf) for
every paracompact (Lindelöf) space Y .

Telgársky [9] also introduced the notion of DC-like spaces, using
topological games. The class of DC-like spaces includes all spaces
with a σ-closure-preserving closed cover by compact subsets and all
C-scattered paracompact spaces. Telgársky proved that if X is a
paracompact (Lindelöf) DC-like space, then X ×Y is paracompact
(Lindelöf) for every paracompact (Lindelöf) space Y . Furthermore,
G. Gruenhage and Y. Yajima [3] proved that if X is a metacom-
pact (submetacompact) DC-like space, then X×Y is metacompact
(submetacompact) for every metacompact (submetacompact) space
Y , and that if X is a C-scattered metacompact (submetacompact)
space, then X × Y is metacompact (submetacompact) for every
metacompact (submetacompact) space Y . For covering properties
of countable products, the author proved the following.

(A) ([5]) If Y is a perfect paracompact (hereditarily Lindelöf)
space and {Xn : n ∈ ω} is a countable collection of paracompact
(Lindelöf) DC-like spaces, then the product Y ×

∏
n∈ωXn is para-

compact (Lindelöf).
(B) ([6, 7]) If {Xn : n ∈ ω} is a countable collection of metacom-

pact (submetacompact) DC-like spaces, then the product
∏
n∈ωXn

is metacompact (submetacompact).
(C) ([6]) If {Xn : n ∈ ω} is a countable collection of C-scattered

metacompact spaces, then the product
∏
n∈ωXn is metacompact.

The author asked whether the product
∏
n∈ωXn is submetacom-

pact whenever Xn is a C-scattered submetacompact space for each
n ∈ ω.

Our purpose in this paper is to give an affirmative answer to this
question.

All spaces are assumed to be regular T1 spaces. Let ω denote
the set of natural numbers and |A| denote the cardinality of a set
A. Undefined terminology can be found in R. Engelking [2].

2. Submetacompactness

Let X be a space. For a closed subset A of X, let
A∗ = {x ∈ A : x has no compact neighborhood in A}.
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Let A(0) = A,A(α+1) = (A(α))
∗

and A(α) = ∩β<αA(β) for a limit
ordinal α. Note that every A(α) is a closed subset of X and if A
and B are closed subsets of X such that A ⊂ B, then A(α) ⊂ B(α)

for each ordinal α. Furthermore, X is C-scattered if and only if
X(α) = ∅ for some ordinal α. Let X be a C-scattered space and
A ⊂ X. Put

λ(X) = inf{α : X(α) = ∅} and
λ(A) = inf{α : A ∩X(α) = ∅} ≤ λ(X).

It is clear that if A,B are subsets of X such that A ⊂ B, then
λ(A) ≤ λ(B). A subset A of X is said to be topped if there is an
ordinal α(A) such that A∩X(α(A)) is a nonempty compact subset of
X and A∩X(α(A)+1) = ∅. Thus, λ(A) = α(A)+1. For each x ∈ X,
there is a unique ordinal α such that x ∈ X(α) −X(α+1), which is
denoted by rank(x) = α. There is a neighborhood base Bx of x in
X, consisting of open subsets of X, such that for each B ∈ Bx, clB
is topped in X and α(clB) = rank(x). If A is a topped subset of X
and B is a subset of A such that B∩(A∩X(α(A))) = B∩X(α(A)) = ∅,
then λ(B) ≤ α(A) < λ(A) = α(A) + 1.

The following plays the fundamental role in the study of sub-
metacompactness.

Lemma 2.1 (Gruenhage and Yajima [3]). There is a filter F on
ω satisfying: For every submetacompact space X and every open
cover U of X, there is a sequence (Vn)n∈ω of open refinements of
U such that for each x ∈ X,

{n ∈ ω : Ord(x,Vn) < ω} ∈ F .

By Lemma 2.1, let Fn+1 denote the filter on ωn+1 generated by
sets of the form∏

i≤n Fi, where Fi ∈ F for each i ≤ n.

Put

Φn =
∏
i≤n ω

i+1 for each n ∈ ω and Φ = ∪{Φn : n ∈ ω}.

For µ = (τ0, τ1, · · · , τn) ∈ Φn, n ∈ ω with n ≥ 1, let µ− =
(τ0, τ1, · · · , τn−1) ∈ Φn−1. If τ ∈ Φ0, let τ− = ∅. For each τ ∈ ωn+2,
let µ ⊕ τ = (τ0, τ1, · · · , τn, τ) ∈ Φn+1. Let U ,V be collections of
subsets of a space X. Put U ∧ V = {U ∩ V : U ∈ U and V ∈ V}.
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Theorem 2.2. If {Xn : n ∈ ω} is a countable collection of C-
scattered submetacompact spaces, then the product

∏
n∈ωXn is sub-

metacompact.

Proof: : By the method used in the proof of [1, Theorem], we
may assume the following:

(1) X is a C-scattered submetacompact space and for each n ∈
ω, Xn = X,

(2) X is topped and there is a point a ∈ X such that X(α(X)) =
{a}.

We shall show that Xω is submetacompact. Let B be the base of
Xω, consisting of all basic open subsets of Xω, i.e., B =

∏
n∈ω Bn ∈

B if there is an n ∈ ω such that for i < n,Bi is an open subset of
X and for i ≥ n,Bi = X. Let

n(B) = inf{i : Bj = X for j ≥ i}.
We call n(B) the length of B. Let O be an open cover of Xω,

which is closed under finite unions and O′ = {B ∈ B : B ⊂
O for some O ∈ O}.

Take B =
∏
i∈ω Bi ∈ B and let N (B) = {i < n(B) : clBi

is topped in X}. Take i < n(B) with i /∈ N (B). If λ(clBi) is an
isolated ordinal, then there is an ordinal γ such that λ(clBi) = γ+1
and clBi ∩ X(γ) is nonempty and locally compact. For each x ∈
clBi ∩X(γ), there is an open neighborhood Bx of x in X such that
clBx is topped in X, cl(Bx ∩ X(γ)) is compact, and α (clBx) =
rank(x). For each x ∈ clBi −X(γ), take an open neighborhood Bx
of x in X such that clBx is topped in X, clBx∩(clBi ∩X(γ)) = ∅,
and α (clBx) = rank(x). Then every clBi∩ clBx is topped in X and
α(clBi∩ clBx) = α (clBx). Next, let i = n(B). Since X(α(X)) =
{a}, take a proper open neighborhood Ba of a in X, and for each
x ∈ X−{a}, take an open neighborhood Bx of x in X such that a /∈
clBx, clBx is topped in X, and α(clBx) = rank(x). If λ(clBi) is a
limit ordinal, then for each x ∈ clBi, there is an open neighborhood
Bx of x in X such that clBx is topped in X and α(clBx) = rank(x).

Since Bi(B) = {Bx : x ∈ clBi} is an open cover of clBi and X

is submetacompact, there is a θ-sequence (VjB,i)j∈ω of open (in X)

refinements of Bi(B),VjB,i = {Vξ : ξ ∈ ΞjB,i}, j ∈ ω, such that for
each j ∈ ω,∪VjB,i = Bi and for each x ∈ Bi, {j ∈ ω : Ord(x,VjB,i) <
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ω} ∈ F , where F is the filter on ω described in Lemma 2.1. For
each j ∈ ω and ξ ∈ ΞjB,i, take an x(ξ) ∈ clBi such that Vξ ⊂
Bx(ξ). For each i ∈ N (B) and j ∈ ω, let ΞjB,i = {ξjB,i} and VjB,i =
{V

ξjB,i
} = {Bi}. For each η = (j0, j1, · · · , jn(B)) ∈ ωn(B)+1, put

ΞB,η =
∏
i≤n(B) ΞjiB,i. For each ξ = (ξ(i)) ∈ ΞB,η, let V (ξ) =∏

i≤n(B) Vξ(i) × X × · · · and Vη(B) = {V (ξ) : ξ ∈ ΞB,η}. Then
every Vη(B) is an open cover of B. Take a ξ = (ξ(i)) ∈ ΞB,η and let
M(ξ) = {i ≤ n(B) : clVξ(i) is topped in X}. Then N (B) ⊂ M(ξ).
Put K(ξ) =

∏
i∈M(ξ) (clVξ(i)∩X(α(clVξ(i))))×

∏
i≤n(B),i/∈M(ξ) Vξ(i)×

{a} × · · · =
∏
i∈ωKξ,i and K(B, η) = {K(ξ) : ξ ∈ ΞB,η}. We

consider the following condition for K(ξ).

(*) There is an open set B′ ∈ O′ such that K(ξ) ⊂ B′.

If K(ξ) satisfies (*), define n(ξ) = inf{n(O) : K(ξ) ⊂ O and
O ∈ O′}. Put

r(ξ) = max{n(B), n(ξ)}.

There is an O(ξ) =
∏
i∈ω Oξ,i ∈ O′ such that:

(3) K(ξ) ⊂ O(ξ),
(4) n(ξ) = n(O(ξ)).

Take an H(ξ) =
∏
i∈ωHξ,i ∈ O′ such that:

(5) (a)
∏
i<n(ξ)Hξ,i ×X × · · · ⊂ O(ξ);

(b) for i with n(ξ) ≤ i ≤ n(B) or i ≤ n(B) with i /∈M(ξ),
let Hξ,i = Oξ,i;

(c) for i < n(ξ) with i ∈M(ξ), let Hξ,i be an open subset
of X such that Kξ,i = clVξ(i) ∩ X(α(clVξ(i))) ⊂ Hξ,i ⊂
clHξ,i ⊂ Oξ,i;

(d) for i with n(B) < i < n(ξ), let Hξ,i be an open subset
of X such that Kξ,i = {a} ⊂ Hξ,i ⊂ clHξ,i ⊂ Oξ,i;

(e) if r(ξ) = n(B), let Hξ,i = X for each i > n(B), and if
r(ξ) = n(ξ) > n(B) let Hξ,i = X for i ≥ n(ξ).

Then we haveK(ξ) ⊂ H(ξ). Let P(B) = {P : P ⊂ {0, 1, · · · , n(B)}}
and P ∈ P(B). Define

G(ξ) =
∏
i∈ω Gξ,i and B(ξ, P ) =

∏
i∈ω Bξ,P,i

as follows:
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(6) (a) Suppose r(ξ) = n(B). For each i ≤ n(B), let Gξ,i =
Vξ(i) ∩Oξ,i and for each i > n(B), let Gξ,i = X.

(b) Suppose r(ξ) = n(ξ) > n(B). For each i ∈ ω, let
Gξ,i = ∅.

(c) In either case, for each i ≤ n(B), if i ∈ P , let Bξ,P,i =
Vξ(i)− clHξ,i, and if i /∈ P , let Bξ,P,i = Vξ(i) ∩Oξ,i. For
each i > n(B), let Bξ,P,i = X.

Clearly, if r(ξ) = n(B), then B(ξ, ∅) = G(ξ). Notice that for each
i ∈ ω,Bξ,P,i ⊂ Bi and if B(ξ, P ) 6= ∅, then n(B(ξ, P )) = n(B) + 1.
Let i ≤ n(B). If i ∈ P and i /∈M(ξ), then Bξ,P,i = ∅.

Let
Bη,ξ(B) = {B(ξ, P ) : P ∈ P(B)− {∅}} if r(ξ) = n(B),

Bη,ξ(B) = {B(ξ, P ) : P ∈ P(B)} if r(ξ) = n(ξ) > n(B),

Claim 1. Let K(ξ) satisfy the condition (*), P ∈ P(B) and
B(ξ, P ) ∈ Bη,ξ(B) with B(ξ, P ) 6= ∅. If r(ξ) = n(B), then there is
an i < n(ξ) with i ∈ P .

Proof: of Claim 1: Since K(ξ) satisfies the condition (*) and
r(ξ) = n(B), by the definition, P 6= ∅. Take i ∈ P . By (5) (b) and
(6) (c), we have i < n(ξ).

Now, assume that K(ξ) does not satisfy the condition (*). Let
G(ξ) = ∅. Take P ∈ P(B) and define B(ξ, P ) as follows: If P = ∅,
let B(ξ, P ) = V (ξ). If P 6= ∅, let B(ξ, P ) = ∅. Put Bη,ξ(B) =
{B(ξ, P ) : P ∈ P(B)} = {V (ξ)}.

Then, in each case, we have V (ξ) = G(ξ) ∪ (∪Bη,ξ(B)).

Claim 2. Let i ≤ n(B), ξ = (ξ(i)) ∈ ΞB,η, K(ξ) =
∏
t∈ωKξ,t,

P ∈ P(B), and B(ξ, P ) =
∏
t∈ω Bξ,P,t with Bξ,P,i 6= ∅.

(a) If i ∈ P , then K(ξ) satisfies (*), i ∈M(ξ) and λ(clBξ,P,i) <
λ (clBi).

(b) Let i /∈ P .
(i) If i ∈ M(ξ), then clBξ,P,i is topped in X such that

λ(clBξ,P,i) = λ(clVξ(i)) and Kξ,i = clVξ(i) ∩X(α(clVξ(i)))

= clBξ,P,i ∩ X(α(clBξ,P,i)). Furthermore, if i ∈ N (B),
then clBξ,P,i is topped in X such that λ(clBξ,P,i)
= λ (clBi) and Kξ,i = clBi ∩ X(α(clBi)) = clBξ,P,i ∩
X(α(clBξ,P,i)).



SUBMETACOMPACTNESS 313

(ii) If i /∈M(ξ), then λ(clBξ,P,i) < λ(clBi).

Proof: of Claim 2: (a) Since P 6= ∅ and Bξ,P,i 6= ∅, we have that
K(ξ) satisfies (*) and i ∈ M(ξ). Assume that i /∈ N (B). Then
λ(clVξ(i)) ≤ λ (clBx(ξ(i))∩ clBi) ≤ λ(clBi). Since i ∈ P,Bξ,P,i =
Vξ(i) – clHξ,i. So, by (5) (c), clVξ(i) ∩ X(α(clVξ(i))) ⊂ Hξ,i. Then
λ (clBξ,P,i) ≤ α(clVξ(i)) < λ(clVξ(i)). It follows that λ(clBξ,P,i) <
λ(clBi). Assume that i ∈ N (B). Then λ(clBi) = α(clBi)+1. Since
i ∈ P , as before, we have λ (clBξ,P,i) ≤ α(clBi) < λ(clBi).

(b) (i) Assume thatK(ξ) satisfies (*). Since i /∈ P,Bξ,P,i = Vξ(i)∩
Oξ,i. By i ∈M(ξ), clVξ(i) ∩X(α(clVξ(i))) is nonempty and compact.
It follows from clVξ(i) ∩ Oξ,i ⊂ clBξ,P,i that clVξ(i) ∩X(α(clVξ(i))) ⊂
clBξ,P,i. Hence, clBξ,P,i is topped in X such that α(clBξ,P,i) =
α(clVξ(i)) and Kξ,i = clVξ(i) ∩X(α(clVξ(i))) = clBξ,P,i ∩X(α(clBξ,P,i)).
Next, assume that K(ξ) does not satisfy (*). Then P = ∅ and
Bξ,P,i = Vξ(i). So, this follows easily. Furthermore, if i ∈ N (ξ),
since Vξ(i) = Bi, we also obtain it.

(b) (ii) Since i /∈ M(ξ), i /∈ N (B). Then Vξ(i) ⊂ Bx(ξ(i)).
By way of taking Bx(ξ(i)), clBx(ξ(i)) ∩ clBi is topped in X and
α(clBx(ξ(i)) ∩ clBi) = α(clBx(ξ(i))) = rank(x(ξ(i))). So it follows
that α(clBx(ξ(i)) ∩ clBi) < λ(clBi) and K(ξ)i = Vξ(i). By i /∈M(ξ),
we have clVξ(i) ∩ (clBi ∩ clBx(ξ(i)) ∩ X(α(clBx(ξ(i))))) = ∅. So,
λ(clVξ(i)) ≤ α(clBx(ξ(i))). Since i /∈ P , Bξ,P,i = Vξ(i) ∩ Oξ,i. Hence,
we obtain that λ(clBξ,P,i) < λ(clBi).

For each η ∈ ωn(B)+1, put

Gη(B) = {Gξ : ξ ∈ ΞB,η} and

Bη(B) = ∪{Bη,ξ(B) : ξ ∈ ΞB,η}.
Then we have

(7) (a) every element of Gη(B) is contained in some member
of O′;

(b) Gη(B) ∪ Bη(B) is a cover of B;
(c) the length of nonempty element of Bη(B) is n(B) + 1.

(8) For each x ∈ B, {η ∈ ωn(B)+1 : Ord(x,Vη) < ω} ∈ Fn(B)+1.

Take x = (xi) ∈ B and for each i ≤ n(B), let Fi = {j ∈ ω :
Ord(xi,VjB,i) < ω} ∈ F and F =

∏
i≤n(B) Fi ∈ Fn(B)+1. For each
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η ∈ F,Ord(x,Vη(B)) < ω. So, {η ∈ ωn(B)+1 : Ord(x,Vη(B)) <
ω} ∈ Fn(B)+1.

(9) For each x ∈ B, {η ∈ ωn(B)+1 : Ord(x,Gη(B) ∪ Bη(B)) <
ω} ∈ Fn(B)+1.

For each m ∈ ω and τ ∈ Φm, let us define Gτ and Bτ of elements
of B. For each m ∈ Φ0 = ω, let Gm = Gm(Xω) and Bm = Bm(Xω).
Assume that for m ∈ ω and µ ∈ Φm, we have already obtained Gµ
and Bµ. Let τ ∈ Φm+1 and τ = µ⊕ η, where µ = τ− ∈ Φm and η ∈
ωm+2. Let B ∈ Bµ. If B 6= ∅, then we denote Gη(B) and Bη(B) by
Gτ (B) and Bτ (B), respectively. If B = ∅, let Gτ (B) = Bτ (B) = {∅}.
Let Gτ = Gµ ∪ (∪{Gτ (B) : B ∈ Bµ}) and Bτ = ∪{Bτ (B) : B ∈ Bµ}.
Then every nonempty element of Bτ has the length m+ 2.

Claim 3. {Gτ ∪ (Bτ ∧ O′) : τ ∈ Φ} is a θ-sequence of open
refinements of O′.

Proof: of Claim 3: By (7) (a) and induction, Gτ ∪ (Bτ ∧ O′) is
an open refinement of O′. Take an x = (xi) ∈ Xω. By (9), take
a τ(0) = m(0) ∈ ω such that Ord(x,Gτ(0) ∪ Bτ(0)) < ω. Then
τ(0) ∈ Φ0. If Bτ(0)x

= ∅, then we are done. So, assume that
Bτ(0)x 6= ∅. By (7) (c), every nonempty element of Bτ(0) has the
length 1. By (9) again, we can take an η(1) ∈ ω2 such that

η(1) ∈ ∩{{η ∈ ω2 : Ord(x,Gη(B) ∪ Bη(B)) < ω} : x ∈ B ∈
Bτ(0)} ∈ F2.

Let τ(1) = (η(0), η(1)) ∈ Φ1. Then we have Ord(x,Gτ(1) ∪
Bτ(1)) < ω. Assume also that Bτ(1)x

6= ∅. Continuing in this
manner, we can choose a τ(t) = (η(0), η(1), · · · , η(t)) ∈ Φt such
that for each t ∈ ω,

Ord(x,Gτ(t) ∪ Bτ(t)) < ω and Bτ(t)x
6= ∅.

Since Bτ(t)x
6= ∅ and is finite for each t ∈ ω, it follows from

König’s lemma (cf. K. Kunen [4]) that there are sequences {ξt :
t ∈ ω}, {N (t) : t ∈ ω}, {M(t) : t ∈ ω}, {K(t) : t ∈ ω}, {P (t) :
t ∈ ω}, {B(t) = B(ξ(t), P (t)) : t ∈ ω}, B(ξ(t), P (t)) =

∏
i∈ω Bt,i of

elements of B satisfying: for each t ∈ ω,
(10) (a) x ∈ B(t) =

∏
i∈ω B(t)i ∈ Bη(t)(B(t−1)) and n(B(t)) =

t+ 1, where B(−1) = Xω;
(b) ξt ∈ ΞB(t−1),η(t);
(c) N (t) = N (B(t− 1));
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(d) M(t) =M(ξt);
(e) K(t) = K(ξt) =

∏
i∈ωK(t)i ∈ K(B(t− 1), η(t));

(f) P (t) ∈ P({0, 1, · · · , n(B(t− 1))});
(g) if K(t) satisfies the condition (*) and r(ξt) = n(B(t−

1)), then there is an i < n(ξt) with i ∈ P (t);
(h) if i ∈ P (t), then λ(clB(t)i) < λ(clB(t− 1)i);
(i) for i /∈ P (t),

(1) if i ∈ M(t), then K(t)i ⊂ clB(t− 1)i, i ∈ N (t+
1), and furthermore, if i ∈ N (t), then K(t)i
= clB(t − 1)i ∩ X(α(clB(t−1)i)) = K(t + 1)i =
clB(t)∩X(α(clB(t)i)), and hence, λ(clB(t−1)i) =
λ(clB(t)i);

(2) if i /∈M(t), then λ(clB(t)i) < λ(clB(t− 1)i).

Let i ∈ ω. By (10)(a), let t̃ ≥ 1 such that n(B(t̃)) > i. By
(10)(h), if i ∈ P (m) for m ≥ t̃, λ(clB(m)i) < λ(clB(m− 1)i). Since
there does not exist an infinite decreasing sequence of ordinals,
there is a ti ∈ ω with ti ≥ t̃ such that for each t ≥ ti, i /∈ P (t).
By (10) (i) (2), there is an mi such that mi ≥ ti and for each
t ≥ mi, i ∈M(t). Then, by (10) (i) (1), for each t ≥ mi, clB(t+1)i
is topped and clB(t+1)i∩X(α(clB(t+1)i)) = K(t+1)i = K(mi+1)i.
Let K =

∏
i∈ωK(mi + 1)i. Then K is a compact subset of Xω.

Since O is an open cover of Xω, which is closed under finite unions,
there is an O =

∏
i∈ω Oi ∈ O′ such that K ⊂ O. By (10) (a), take

an s ≥ 1 such that:

(11) (a) n(O) ≤ n(B(s− 1)),
(b) for each i < n(O),mi + 1 ≤ s.

For each i < n(O), by (11) (b), K(s)i = K(mi + 1)i ⊂ Oi.
Then K(s) ⊂ O and hence, K(s) satisfies the conditon (*). Since
n(ξs) ≤ n(O), r(ξs) = n(B(s−1)). By (10)(g), there is an i < n(ξs)
with i ∈ P (s), which contradicts the way of taking s.

The proof is complete. �
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