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CLASSIC PROBLEMS—25 YEARS LATER
(PART 2)

PETER J. NYIKOS

The first article in this series [40] (referred to below simply as
“Part 1”) dealt with the four Classic Problems that appeared in
Volume 1 of this journal. This second article updates Part 1 and
deals in detail with the four Classic Problems in Volume 2 and
problems related to them.

The most progress on any of the eight problems this past year was
made by A. Dow on Classic Problem I (“Efimov’s Problem”): Does
every infinite compact space contain either a nontrivial convergent
sequence or a copy of βω?

[As in Volume 2, “space” means “Hausdorff space.”]

Dow showed that there is a counterexample if 2s < 2c and the co-
finality of the poset ([s]ω,⊂) is equal to s. Roughly speaking, Dow’s
construction substitutes zero-sets for points in V. Fedorchuk’s PH
(that is, s = ℵ1 + 2ℵ1 = c) construction [16]. The construction
can be done in ZFC and results in an infinite compact space with
no convergent sequences. The purpose of the second condition is to
insure that the space has cardinality 2s, while the purpose of the
condition 2s < 2c is to insure there is no copy of βω in the space.
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[Here s stands for the splitting number. See [12] and [45] for
information on s and other small uncountable cardinal numbers.
Given a set S, the symbol [S]ω stands for the set of all countably
infinite subsets of S.]

The axiom cf [s]ω = s is very general; its status is similar to
that of the “small” Dowker space of C. Good which is discussed
below in connection with Classic Problem VII. That is, cf [s]ω = s
unless there is an inner model with a proper class of measurable
cardinals. This is because s is of uncountable cofinality, and because
the Covering Lemma over any model of GCH is already enough to
insure that cf [κ]ω = κ for all cardinals except cardinals of countable
cofinality. Now the Core Model satisfies GCH, and it is known that
there is an inner model with a proper class of measurable cardinals
whenever the Covering Lemma over the Core Model [abbreviated
Cov(V,K)] fails.

The following well-known argument that s is not of countable
cofinality was pointed out by Heike Mildenberger. Suppose κ has
cofinality ω, and no subcollection of P(ω) of cardinality < κ is
splitting. Let A be a family of κ subsets of ω, and let A =

⋃
{An :

n ∈ ω} with |An| < κ for all n. For each n, there is a set Bn that
is not split by any member of An and which satisfies Bn+1 ⊂ Bn.
Then take an infinite pseudointersection of the Bn. This is a set
that cannot be split by any member of A.

A trivial modification of this argument shows that cf(s) ≥ t. It
is still not known whether s is a regular cardinal.

The axiom that 2s < 2c is more restrictive, but still quite general.
For example, given regular uncountable cardinals κ < λ, there is
an iterated ccc forcing construction of a model where s = κ and
c = λ [12, 5.1], where it is easy to see that the final model satisfies
2<λ = c(< 2c). Even more simply, adding ℵ1 Cohen reals to a model
of 2ℵ1 < 2c results in a model where s = ℵ1 and the other cardinals
are not affected. Many other forcings have the same effect.

It might be worth mentioning here that Efimov’s problem and
Fedorchuk’s constructions are of interest to analysts. M. Talagrand
[43] produced a Grothendieck space such that no quotient and no
subspace contains `∞. A Banach space is called Grothendieck if
every weak* convergent sequence in the dual spaceX∗ is also weakly
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convergent. Talagrand’s example was the Banach space C(K) for
a compact space K which contains neither ω + 1 nor βω; it used
CH for the construction.

Piotr Koszmider has called my attention to a pair of Banach
space equivalents to K having a copy of βω. One is that C(K)
(with the uniform topology) has `∞ as a quotient. The other is that
C(K) contains a subspace Banach-isomorphic to `1(c). We do not
know of conditions on C(K) equivalent to K having a convergent
sequence; a necessary condition is that C(K) has a complemented
copy of c0.

A completely different application to analysis was done by M.
Dz̆amonja and K. Kunen [13]. They used ♦ to construct a com-
pact S-space with no copy of either ω + 1 or βω, to give a heredi-
tarily separable solution to the following problem: If X is compact
and supports a Radon measure with nonseparable measure alge-
bra, then does X map onto [0, 1]ω1? They were able to make the
measure algebra isomorphic to the one for 2ω1 .

A minor erratum in Part 1 was the claim that Z. Balogh’s first
ZFC Dowker space [3] was hereditarily realcompact; this is known
only for another Balogh example [5].

Here is an item related to Classic Problem IV, the M3-M1 prob-
lem: the paper by T. Mizokami, N. Shimane, and Y. Kitamura has
appeared [34]. In it, they prove that every WAP stratifiable space
is M1. A space X is said to be WAP iff for every non-closed A
there is x ∈ A \ A and a subset B of A such that x is the only
point in the closure of B which is not also in A. For example,
sequential spaces and scattered spaces are WAP. It seems to be un-
known whether Ck(X) is WAP for all Polish X. In particular, it
is unknown whether Ck(irrationals) is WAP, and it is still an open
problem whether Ck(irrationals) is M1; it is known to be M3 [21].

VOLUME 2

The first two of the Volume 2 problems are best considered to-
gether. Problem V is a double weakening of the more famous and
older Problem VI:
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Classic Problem V. Does every infinite compact hereditar-
ily normal [abbreviated T5] space of countable tightness
contain a nontrivial convergent sequence?

Classic Problem VI. (“The Moore-Mrówka Problem”) Is
every compact space of countable tightness sequential?

In hindsight, Problem V may seem too specialized to be called
a “classic.” However, in 1978 we were very much in the dark as to
how well behaved compact spaces of countable tightness or compact
T5 spaces might be under ZFC-compatible axioms. Back then, we
could not rule out the possibility that ZFC is enough to give a neg-
ative solution to Problem VI while Problem V is ZFC-independent.
Also, we had no idea how long we would have to wait for a final
solution to Problem VI even if it is ZFC-independent, and I felt
that Problem V might give us a more attainable goal to shoot for
in the interim.

We did have Fedorchuk’s sensational 1975 construction under
Axiom Φ [later shown equivalent to ♦] of an infinite compact T5

hereditarily separable, hence countably tight space with no nontriv-
ial convergent sequences, so we knew a negative solution to both
problems is consistent. But the PFA, which turned out to imply
a positive solution to Problem VI (and hence to V) had not even
been formulated yet. The strongest general tool at our disposal in
that direction was MA +¬CH, and that is actually compatible with
a negative solution to Problem VI [36]. Even now, it is still not
known whether MA +¬CH is compatible with a negative solution
to Problem V. Also, while we now know that a positive solution to
Problem V is compatible with CH, the status of Problem VI under
CH is still unsolved [14] despite its being on the list of 26 unsolved
problems in [1]. (The statement in Volume 2 that Rajagopalan had
constructed a compact non-sequential space of countable tightness
from CH was incorrect.)

As it turned out, the solution to Problem V only predated the
one for VI by a couple of months, but it could easily have been
otherwise. The PFA solution to Problem V was the culmination
of five months of intensive research by David Fremlin and myself
beginning in March of 1986. We were working from combinatorial
axioms derived from Martin’s Maximum, which we soon narrowed
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down to one [36, 6.8] that is now known to follow from the PFA,
and does not require large cardinals [10]. One discovery by Fremlin
led to another by myself, which in turn led to new discoveries by
Fremlin (some of which appear in [20]). This continued until, on
the way to the 1986 Prague International Topological Symposium,
I showed that this axiom implies that every compact T5 space of
countable tightness is sequential [36]. In Prague, I gave a copy of
my proof to Balogh. Fremlin and I continued to work on Problem
VI and our joint efforts resulted in a proof that every compact space
of countable tightness is sequentially compact under the PFA.

The matter might have rested there for a long time had Balogh
not looked closely at Fremlin’s proof that MM implies the axiom
we were using, and thought “outside the box” as Gary Gruenhage
put it last year when calling Balogh’s solution to Problem VI the
first of “Zoli’s six greatest hits.” Balogh did it by mixing topology
into Fremlin’s proof and coming up with a modification that even
broke new set-theoretic ground. His solution came right at the end
of 1986 and can be found in [3]; a simplified version of the proof,
using elementary submodels, can be found in [11]. Later Dow [10]
showed how it can be done without using large cardinals.

Related Problems for V and VI.

The biggest success story pertaining to any of the eight Classic
Problems has to do with Problem V. Not only is the problem itself
solved, but all those listed under the heading of Related problems
in Volume 2 have also been solved. These were:

Is every separable compact T5 space
(a) of countable tightness?
(b) of cardinality ≤ c?
(c) sequentially compact?
(d) sequential?

In Volume 2, it was explained how the axiom 2ℵ0 < 2ℵ1 gives a
positive answer to (a), while Fedorchuk’s construction under Axiom
Φ ( ⇐⇒ ♦)[15] gives negative answers to (b), (c), and (d). The
PFA gives positive answers to all four parts [38]. A model of MA
+¬CH was given in [38] where (a) is answered negatively.

To find a still-open problem in the discussion of Problem V in
Volume 2, one has to look close to the end, where it is said, “It
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is not known whether every separable compact T5 space is of car-
dinal < 2c under MA +¬CH.” We do know from Jones’s Lemma
that 2|D| ≤ c for any discrete subset D of any separable T5 space,
and if we could substitute the Lindelöf degree of any subspace for
|D| when the space is compact, we would be done. However, Szent-
miklóssy’s theorem that every compact space of countable spread is
hereditarily Lindelöf under MA +¬CH does not generalize to arbi-
trary spreads < c. We also do not know of any model of MA +¬CH
where (b) or (c) has a negative answer, so we have only halfway met
the challenge in the continuation of the above quotation: “In fact,
it is a mystery what happens to any of these problems under MA
+¬CH.” On the other hand, the final problem at the end of the
discussion of Problem V in Volume 2 has been solved: MA +¬CH
is compatible with some version of γN being T5 [38].

The Related problems list for Problem VI ran:

A. Is there a hereditarily separable, countably compact, noncom-
pact space?
B. (Efimov) Does a compact space of countable tightness have a
dense set of points of first countability?
C. (Hajnal and Juhász) Is there a hereditarily separable compact
space of cardinal > c?
D. Is there a compact space of countable tightess that is not se-
quentially compact?
E. Is every separable, countably compact space of countable tight-
ness compact? What if it is locally compact?
F. (Franklin and Rajagopalan) Is every separable, first countable,
countably compact [hence, sequentially compact] space compact?
What if it is locally compact?

All but the last two of these problems has been solved. In each
of the other cases, Fedorchuk’s Axiom Φ ( ⇐⇒ ♦) example [15]
solves the problem one way, while the PFA solves it the other way.
In the case of related problem C, MA +¬CH is enough to solve it
in the other direction, as was already explained in Volume 2. In the
case of related problem B, V. Malykhin showed that adding a single
Cohen real is enough to produce a compact space X of countable
tightness and π-character, in which every point of X has character
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ω1 [33]. In particular, if the ground model satisfies p > ω1 then
X is Fréchet-Urysohn. I. Juhász [24] showed that adding a single
Cohen real results in a model where a weakening (t) of ♣ holds,
and that (t) is already enough to construct a space like Malykhin’s.

The PFA solution to related problem A for regular spaces is
due to J. Baumgartner and S. Todorčević, who showed that there
are no S-spaces compatible with the PFA [6], [44]. Clearly, every
countably compact noncompact space is non-Lindelöf and so an
example for related problem A must be an S-space. For arbitrary
(Hausdorff) spaces, a slight modification of posets for the Moore-
Mrówka problem [3], [11] returns a negative PFA solution.

The PFA solution to related problem B is due to Dow [9], and
the one to related problem D is due to Fremlin and me as recounted
above and in [36]; the proof is similar to that of Statement 4 of [38],
but also uses free sequences of length ω1 given by Statement D of
[38] to complete the “centrifugal saturation.”

The status of related problems E and F is quite different from
that of the others. There is a ZFC counterexample for the first
part of related problem E [41], but it is not even Urysohn, let alone
regular. For regular spaces, almost all of what we know is already to
be found in [37], including the information that almost every known
regular counterexample for Statement E is also a counterexample
for Statement F; that almost every published counterexample is
also locally compact; and that this is one of the growing list of
problems for which there are counterexamples if c is either ℵ1 or
ℵ2: there are counterexamples both if p = ℵ1 and if b = c, and the
well known fact that p ≤ b gives us no room for loopholes if c ≤ ℵ2.

Incidentally, related problem F is one of my personal favorites.
At the 1986 Prague International Topological Symposium I offered
a prize of 500 US dollars for a solution, and raised it to $1000 at
the 1996 Prague Toposym. Despite this, almost no progress has
been made on it since 1986.

Classic Problem VII. Does there exist a “small” Dowker
space? More precisely, does there exist a normal space
which is not countably paracompact and is one or more of
the following:
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A. First countable?
B. [hereditarily] separable?
C. of cardinality ℵ1?
D. submetrizable?
E. locally compact?

The word “small” is very informal and one person’s list of prop-
erties might easily differ greatly from another’s. Most people would
probably agree that “of cardinality ≤ c” has a greater claim to be-
ing called “small” than submetrizability or local compactness. Had
I put it in, then the most significant advance on Problem VII in
the last 25 years would arguably have been Balogh’s ZFC example
in [4]. As it is, the most significant is clearly Good’s construc-
tion of a locally compact, locally countable (hence, first countable)
Dowker space under a higher-cardinal analogue of ♣ that follows
from Cov(V,K) and hence requires very large cardinals for its nega-
tion [22]. Good gave a general construction which also works under
♣ to give an example which is, in addition, of cardinality ℵ1. More-
over, it can be embedded in a separable example using the technique
P. de Caux used at the end of his paper for his very similar example
[8].

Good used consequences of Cov(V,K) similar to those employed
by W. Fleissner for his solution of the bigger half of the normal
Moore space problem [17]. The smallest examples in either case
have cardinality i+

ω . This is the successor of the first singular
strong limit cardinal iω, which is the supremum of the sequence of
cardinals in, where i0 = ℵ0 and in+1 = 2in .

Like de Caux’s example, Good’s examples are all countable unions
of discrete subspaces. However, they are not submetrizable. On the
other hand, the second example in [25] is submetrizable, as men-
tioned in Volume 2 already.

Also recounted in Volume 2, there is a construction of a Dowker
space from CH that satisfies all but the last part of Classic Problem
VII. See [25], where a ♦ construction was announced that satisfies
all five conditions simultaneously, including the hereditary version
of condition B. This does not seem to have ever appeared in print,
but there is a ♦ construction in [23] that satisfies all the conditions
except D, submetrizabilty. One erroneous comment from [25] car-
ried over to the Volume 2 discussion. It was claimed that the ♦
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example is σ-countably compact, but there is no such thing as a
σ-countably compact Dowker space.

We still do not have a locally compact Dowker space from CH
alone. On the other hand, I know of only two independence results
directly bearing on Problem VII as stated. One is that there is no
first countable, locally compact, submetrizable example of cardi-
nality ℵ1 under MA +¬CH. This is because of Balogh’s theorem
[2] that under MA +¬CH, every first countable, locally compact
space of cardinality ℵ1 either contains a perfect preimage of ω1

(hence, cannot be submetrizable) or is a Moore space. Now, Moore
spaces are countably metacompact, and normal spaces are count-
ably paracompact iff they are countably metacompact.

The other independence theorem has little to do with Dowker-
ness. The “hereditarily” version of part B (call this version B+

and the other B−) is consistently false because the PFA implies
that there are no S-spaces [6], [44] and so every hereditarily sepa-
rable space is Lindelöf and therefore (countably) paracompact. In
contrast, the PFA actually implies the existence of first countable
Dowker spaces, and is consistent with the existence of first count-
able, locally compact Dowker spaces [42]: M. Bell’s first countable
example [7] exists under p = c, which is implied by MA +¬CH and
hence by the PFA; W. Weiss constructed a locally compact first
countable example assuming p = c = ω2 +♦c(c, ω-limits) [46] [42],
and this combination of axioms is known to be compatible with
the PFA. There are also examples of first countable Dowker spaces
of cardinality ℵ1 compatible with the Product Measure Extension
Axiom (PMEA) [22].

Despite all this, we seem very far from any ZFC examples, except
perhaps for part D of Problem VII. At the beginning of April 2002,
less than four months before his death, I sent Zoltán Balogh an e-
mail in which I asked him whether any of his Dowker examples were
submetrizable. In his reply, which came the same day, he wrote,

“One of my Dowker spaces is almost submetrizable, and I some-
how thought it could be made submetrizable. Give me a couple of
weeks on that and I’ll let you know.”
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That was the last I ever heard from him. Part D of Problem VII
remains unsolved, so far as we know.1

The Related problems list for Problem VII ran:

(1) Is there a pseudonormal space (a space such that two disjoint
closed subsets, one of which is countable, are contained in disjoint
open sets) which is not countably metacompact, and is one or more
of the above [A, B, C, D, E]?

(2) Is there a realcompact Dowker space?

(3) Is there a monotonically normal Dowker space?

The answer to (2) is “Yes” [5]; to (3) is “No” [42]. As for (1),
there is a ZFC example of a 2-manifold which is pseudonormal but
not countably metacompact in [35]. Like all manifolds, it is lo-
cally compact and first countable (A, E). It is produced by adding
half-open intervals to the open first octant in the square of the
long line. A routine modification of the topology on the subspace
of those points with ordinal coordinates, together with endpoints
of the added intervals, produces a first countable, locally compact
pseudonormal space of cardinality ℵ1 which is still not countably
metacompact. Finally, this subspace can be embedded in a sepa-
rable example like Good’s example, still in ZFC, giving A, B−, C,
and E.

I am unaware of any submetrizable (part D) examples just from
ZFC. Locally compact, first countable, submetrizable ones of car-
dinality ℵ1 (A, C, D, E) are ruled out just as they are for Dowker
spaces. So, too, are hereditarily separable examples (B+).

One more achievement relating to small Dowker spaces is worth
noting here: the use of pcf theory by M. Kojman and S. Shelah to
produce a Dowker space of cardinality ℵω+1 in ZFC [31]. In models
where c ℵω+1, this space is smaller than Balogh’s example in [4]. It
is not known whether there is a Dowker space of cardinality < ℵw+1

is all models of ZFC.

Classic Problem VIII. Is every γ-space quasi-metrizable?

1See note added in proof.
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The answer is “No.” R. Fox [18] came up with a machine which
outputs a γ-space with each γ-space input and which produces non-
quasi-metrizable spaces in certain cases. It preserves the Hausdorff
separation axiom, but not regularity. Fox and J. Kofner found a
Tychonoff example [19] which is quasi-developable and scattered.
In a note added in proof to [19], they announced the construction
of a paracompact γ-space that is not quasi-metrizable. Now, H.-P.
Künzi has done us the service of publishing a description of the
example and an outline of the proof that it works [32].

The Related problems list for Problem VIII ran:

(1) Is every paracompact (or Lindelöf) γ-space quasi-metrizable?
(2) Is every γ-space with an ortho-base quasi-metrizable?
(3) Is every linearly orderable γ-space quasi-metrizable?

The answer to the “paracompact” part of (1) is “Yes,” as re-
counted above. We also do not have a ZFC example of a Lindelöf
γ-space that is not non-Archimedeanly quasi-metrizable. A Luzin
subset of the Kofner plane [26], [28, Example 1] is a consistent
example; see Proposition 5 in [27], which was misstated with the
omission of “not” before “non-Archimedean.”

Kofner also provided affirmative answers to (2) [30] and (3) [29].
In both cases, Kofner used the fact that every k-transitive γ-space is
non-Archimedeanly quasi-metrizable, for any integer k. The former
proof uses the fact that any space with an ortho-base is 2-transitive,
while the latter uses the fact that every GO-space is 3-transitive.
His article [28] for Topology Proceedings is a very nice survey of
the state of the art at the time.

Added in Proof. As the galleys for this article were being
prepared, Dennis Burke found some handwritten notes by Balogh
dated 4/25/01–5/1/02 in which he seems to be describing a ZFC
example of a submetrizable Dowker space. It is too early to tell
from the notes whether the example is correct.

References
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