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THE STRUCTURE OF SECTORS OF ZEROS OF
ENTIRE FLOWS

KEVIN A. BROUGHAN

ABSTRACT. Dynamical systems or flows 2 = f(z), where f is
entire on C, are considered. The nature of the separatrices,
the structure of sectors and the boundaries of sectors of the
flow at the zeros of f(z) are determined.

1. INTRODUCTION

This paper continues the study, commenced in [1, 2, 3, 9] and con-
tinued in [4], to explore the local and global properties of complex
functions, especially those useful in number theory, using topolog-
ical methods based on dynamical systems. This requires an inves-
tigation of the flow

. dz

Z=—=f(2),2€0

dt
where f is a complex valued function of a complex variable, t is a
real parameter and 2 a non-empty open subset of C.

When f(z) is required to be holomorphic there are strong impli-
cations for the topology of the flow which results. Some of these
were detailed in [3]. For example there are no saddle points. There
are no limit cycles on simply connected subdomains. Here this work
is taken further.
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Potential applications include a deeper understanding of the
zeros of the Riemann zeta function. It is already known [4] that
each simple zero on the critical line is a focus. From the results
in this paper it follows that each sector at each zero, simple or
otherwise, is unbounded.

In Section 2 the term separatrix is defined, as is transit time. In
the main Section 3, additional to what was shown in [3], it is proved
that the neighborhood of a center is simply connected and that the
sum of the transit times for boundary orbits is less than or equal
to the period at the center. Each elliptic sector at a higher order
zero has a very similar structure, i.e. it is simply connected and
the boundary consists of disjoint orbits. The zero itself is the only
zero of the flow on the boundary of a sector. Where the zero is a
node or focus the picture is somewhat more complicated: zeros on
the boundary are possible, but only as part of “separatrix cycles”
with at most one or two orbits and a maximum of one zero. In
all cases (center, node, focus, elliptic sector) the neighborhood is
unbounded. This explains a major feature of the phase portrait
of ((s), as may be observed in [4, Figure 2] reproduced here (with
permission) as Figure 1.

There is an occasional need to embed flows onto the Riemann
sphere, but the structure of the point at infinity is not used.
Implicitly, the flow is replaced by

L @)

L+ |22+ (=)
which is real analytic on C and continuous on C U {oo} when f is
holomorphic, has a zero at infinity, and the same phase portrait at

zZ = f(2).

2. HOLOMORPHIC DYNAMICAL SYSTEMS STRUCTURE

When considering the flow 2 = f(z), where f is holomorphic on
an open subset of C, special properties of f restrict the type of flow.
Each zero is isolated. If the zero is simple and the eigenvalues of
the characteristic polynomial of the linearization are real, then, by
the Cauchy-Riemann equations, the eigenvalues must be equal. So
saddle points do not exist.

Simple zeros can be categorized as centers surrounded by closed
integral paths, nodes where all integral paths near the points either
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FIGURE 1. Lower section of the flow z = ((z).

end or originate at the point, saddles where exactly four integral
paths meet at the point, two beginning and two ending, and foci
where the integral paths in the neighborhood of the zero never reach
the point but spiral endlessly about it.

The local form at a simple zero z = p is 2 = f'(p)(z — p). The
type of zero is related to the type of the coefficient f’(p): if pure
imaginary the zero is a center, if real a node and if both real and
complex parts are non-zero then the zero is a focus. If the zero is
not simple then it must have some finite order n > 2 and the local
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approximation is 2 = f(™(p)(z — p)”/n!. Because of this the flow
in the neighborhood of z = p has a finite number (indeed 2n — 2) of
elliptic sectors, where within each sector the flow begins and ends
at the zero. The factor f(™)(p)/n! determines the local orientation
of the flow, but not in this case its type.

An example is given in Figure 2. This is the polynomial flow

F=p(2)=(2-30)2%(z—i—1)(z+2i+1)

which has three zeros, a doublet with two sectors at z = 0, a center
at z =1+ 14 and a focus at z = —1 — 2i.

Using the Riemann mapping theorem and Schwarz lemma it can
be shown [3, Theorem 3.2] that there are no limit cycles on simply
connected domains. (The author conjectures that limit cycles never
exist on any sort of domain for these flows.)

More details and proofs of these results may be found in [3].
In [4, Section 1.1] a glossary of dynamical systems terminology is
given.
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3. DEFINITION OF SEPARATRIX

In the examples of meromorphic flows considered in [3, 4] the
most interesting features have been the zeros and the separatrices.
The former are specified very completely in the literature but not
the latter. For example if there is a definition of separatrix in [6]
or [7] it is hard to find. The definitions which do occur (see below)
are adequate for polynomial or rational function flows, but not for
more general holomorphic flows. For example [10, page 290] defines
a separatrix to be either a critical point, limit cycle or trajectory on
the boundary of a hyperbolic sector at a critical point. This does
not take account of separatrices with endpoints “at infinity” or at
a pole. The definition in [8, page 223] is better: “a path which
is either a limit cycle or a path terminating or beginning on the
projective plane with a side of a hyperbolic sector”. However, in
the examples of special interest, e.g. the exponential, hyperbolic,
gamma, Riemann zeta and Riemann xi functions, behaviour at in-
finity is far from regular, but each of these functions exhibits strong
separatrix phenomena.

The definition below avoids the use of points at infinity and cov-
ers the separatrixes which have appeared in the examples. Limit
cycles do not occur so are not part of the definition. Zeros have
their own classification, so have been left out also.

Definition 3.1. We say the orbit « is a positive separatrix if
for some z € « the maximum interval of existence of the path
commencing at z and proceeding in positive time is finite. We
say the orbit v is a negative separatrix if for some z € ~ the
maximum interval of existence of the path commencing at z and
proceeding in negative time is finite. The orbit ~ is a separatrix
if it is a positive or negative separatrix.

This definition works for functions like e*,((z),&(z), polynomi-
als, rational functions and the like. For the exponential flow (Figure
3), the separatrixes are the lines through y = nmi,n € Z running
parallel to the x-axis. For ze® there is a node at 0 and the sepa-
ratrix through y = 0 is lost, with the remaining separatrixes of e*
being distorted. For f(z) = 1/z the x and y axes, make up four
separatrixes, consistent with the given definition.
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With this definition of separatrix, the union of all separatrixes
and zeros remains closed, as it does under the definition of Marcus

[9].

Definition 3.2 (transit time). Let 2 = f(z) be a meromorphic
flow and + an orbit. If a,b € v we define the transit time from a
to b, denoted 7(a,b), to be the value of the integral
b
)= [
o f(2)

where the integral is evaluated along the path . Note that any
continuous deformation of this path will give the same value of the
integral provided it does not cross a zero of f(z). Note also that if
a =(t1) and b = ~y(t2) then 7(a,b) = ta — t;.

If v is an orbit we define the transit time of -y, denoted 7(v),
to be the length of the maximum interval of existence for the flow
commencing at any z € -, if this is bounded above and below,
otherwise let 7(7) = oo.

Transit time is simply the time it takes to go from one point
to another on an orbit. It is not defined for points which are on
different orbits.

Definition 3.3. Let o and § be two orbits in the same elliptic
sector at a zero (periodic orbits about the same zero). We say 3
is outside « if every path from a point in the interior of o U {z,}
(respectively «) to a point on (3 cuts «a.

Lemma 3.4. Let 2 = f(z) be an entire flow. Let C be the graph
of an orbit on the boundary of a center or elliptic sector at z,. Let
x,y € C and let € > 0 be given. Then there is an orbit v about z,
such that for all orbits 3 about z,, with 3 outside v, 3N Be(x) # ()
and BN Be(y) # 0.

Proof. There exists an orbit «; which meets B.(z) and an orbit
~v2 which meets B¢(y). If v is the orbit of the pair 71, v2 which is
outside the other, then v meets both B¢(z) and B(y): if v =
and z, is a center and ~ did not meet B¢(y) then the two open sets
consisting of the interior region of v and the exterior region of
would disconnect the connected set C'U B(y) U~2. The case where
C is on the boundary of an elliptic sector is similar. O
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4. MAIN RESuULTS

In this section the neigbourhoods of a center (begun in [3, The-
orem 3.3]), elliptic sector at a zero, and focus or node of an entire
flow Z = f(z) are described in separate theorems.

Theorem 4.1 (neighbourhood of a center). Let z, be a center for
the entire flow 2 = f(z) with open neighbourhood P and boundary
components (Cx,\ € A). Then P is simply connected and each C)
is a separatriz. The sum of the transit times of the C) is bounded
by the (common) period of the orbits which circulate about z,.

Proof. 1. P is simply connected: If not there exists a closed path I
in P such that the interior of I' has a non-empty intersection with
the complement of P. Call this intersection A. Then A is closed
and compact and has a boundary consisting of orbits and zeros of
the flow. (These are finite in number since they are contained in a
compact subset of C.) Since there are no limit cycles there must
be at least one zero on the boundary. But this is impossible, since
the zero would have a hyperbolic sector (from the orbits of P).

2. Let T be the period, T' = 27i/f'(2,) [3, Theorem 2.3]. Then
2oaenT(CN) < T

Claim A: For all € > 0 and x,y € C), there exists a § > 0 such
that for all orbits v with

¥ € yUBs(z) # 0,y € yUBs(y) #0

such that |7(2',y") — 7(z,y)| < & Chose § > 0 such that, for some
constant M > 0, M < |f(z)| on Bs(z) and on Bs(y). Then

NI
20

< —=<eEe
M

Claim B: If z € C), and € > 0 are given and a N Be(z) # 0 and
3 is outside «a, then SN Be(z) # 0: the proof of this is similar to
that of Lemma 2.4.

By [3, Theorem 3.3] the index set is countable (or finite) so we
identify it with N.

‘T(xlv y/) - T(:L', y)’ -
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Now, for each ¢ € N let x;,y; € C; be arbitrary distinct points
with the positive direction of flow being from z; to y;. Choose
€1 > 0 such that B¢, N Be, = () and, inductively, ¢; > 0 such that
the entire set of Be,(z;) and B, (y;) are disjoint.

By Claim A, for each i we can find a d; > 0 such that any orbit
~v; with

j € Be, (i) N i, y; € Be, (yi) N i
satisfies

€
|T(l‘;,y£) —7(zs,y:1)| < bYR

Then for each N € N one of the orbits (y; : 1 <i < N) is outside
all of the others in the set, and, by Claim B and Claim A, satisfies

N

> r(@hy) < T

=1

But this implies

N
ZT(:Ui, yi) <T +e.
i=1

Since the points x; and y;, and N are arbitrary, this implies

iT(Cl) <T+ €

=1

and the result follows.
3. Each C), is a separatrix: this is imediate since each 7(C)) is
bounded. O

Figure 5 represents the flow of a function with 7 zeros, all of
them simple:

5= 22+ DE - D - (14 1)),

There are centers at 0 and ¢ + 1. The boundary of the neighbour-
hood of 0 consists of two disjoint separatrixes, whereas that of i+ 1
has one. Figure 2 of [3] is an example with 4 disjoint separatrixes
on the boundary of a center. Figure 1 of [3] and Figure 1 above,
are examples of elliptic sectors, the next type to be considered.
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Theorem 4.2 (structure of an elliptic sector). Let 2 = f(z) be an
entire flow with a zero at z, having order n > 2. Let P be the set
consisting of the union of all of the orbits of the flow in a given
sector at z, which satisfy Lo () = Ly (v) = 2,. Then P is a simply
connected open subset of C and OP consists of an at most countable
union of a set of closed separatrices {y(xx,t) : X € A,t € Dy}, Dy
being the mazximum interval of existence of the flow through xy,
and where each y(xy,t) has an unbounded graph, together with two
unbounded separatrices, u,v which satisfy L,(u) = zo, = La(v).

Proof. 1. P is open: If z € P then any orbit through a point suffi-
ciently close to z, by continuous dependence on initial conditions,
comes arbitrarily close to z, in both positive and negative time.
Therefore it must tend to z, since z, is elliptic. Hence P is open.

2. P is connected: If G, H is a disconnecting partition of P
then necessarily z, € G or z, € H and not both. But this is a
contradiction since points in either set must come arbitrarily close
to z, since each must contain complete orbits.
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3. P is simply connected: If not there exists a closed path I' in
P such that the interior of I' has a non-empty intersection with the
complement of P. Call this intersection A. Then A is closed and
compact and has a boundary consisting of orbits and zeros of the
flow. Since there are no limit cycles there must be at least one zero
on the boundary. But this is impossible, since the zero would have
a hyperbolic sector (from the orbits of P).

4. OP = B is closed. If B = () the proof is complete. Otherwise
proceed as follows:

5. Necessarily B consists of disjoint orbits and zeros. Any zero,
other than z,, would constitute a critical point with a hyperbolic
sector, so cannot occur. Chose one point x) for each orbit. Let
D) = («a, 8) be the maximal interval of existence of y(zy,t). Let

By = {v(za,t) |t € Dy}
Then
B = {z,} Uxen B

the union being disjoint.

6. Consider t — f—. The argument for ¢ — a+ is similar. If the
image of [0, 3) is bounded in C then necessarily 3 = co and, since
the flow has no limit cycle, w(vy) = x; which would be a critical
point with a hyperbolic sector, impossible for a holomorphic flow.
Therefore B) is unbounded and

B = Uyea{v(za,t) | t € Dy} = UreaBa.

7. Each B, is closed: If not there is an = € w(B)) or x € a(B)).
Since the flow has no limit cycle, x must be a critical point, so must
be center, focus, node or point with only elliptic sectors. Since B is
closed, z € B, so it must have at least one hyperbolic sector, which
is false.

8. Each B, is a separatrix: by choosing r > 0 sufficiently small
and integrating about an arc of a circle center z, radius r it follows
that, for any two points a,b on an orbit v at z, and on a circle

center z, radius r:
/b dz
n
0 2

1
|T(a,b)| <y <nf T
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Call this upper bound M,. Then if z,y € B) are any two points
and n € N is given, by the Lemma 2.4, there is an orbit v, at z,
such that Bi(z) Ny # 0 and Bi(y) Ny # 0. If z, is in this first

intersection and ¥, in the second, then |7(zy,yn)| < M,. Taking
the limit as n — oo shows that 7(z,y)| < M,. Since this is true for
any pair z,y € B), we have 7(B)) < M,, so B, is a positive and
negative separatrix.

9. The orbits u, v define the sector. Their behaviour as { — +o0
can be deduced in a similar manner to those of other orbits on the
boundary of P.

10. |A| < N,: On the Riemann sphere the B) enclose open
disjoint regions, which therefore must be at most countable in
number. g

Theorem 4.3 (structure of a node or focus basin). Let 2 = f(z)
be an entire flow with a simple zero of at z, which is a node or a
focus. Let P be the set of all points in C with orbits which tend
to z, in positive time if it is a sink (or in negative time if it is a
source). Assume, without loss in generality, that z, is a sink. Then
PU{z,} is a simply connected open subset of C and OP consists of
an at most countable union of closed connected subsets each being
of one of three types: (1) zeros z1 each with an attached orbit ~;
such that Lo(y1) = 21 and Ly,(71) = 00, (2) zeros za each with an
attached pair of distinct orbits u,v with Ly(u) = La(v) = 22 and
L,(u) = Ly(v) = 00, and (3) orbits of the form ~y where each 7y
1$ a positive and negative separatrix.

Proof. 1. P is open: this follows from the continuous dependence
of the flow on initial conditions.

2. P is connected: because P U {z,} is path connected and
contains a neighbourhood B.(z,), P is (path) connected.

3. If B = 0P then B is closed. The point z, € B.

4. B consists of the disjoint union of closed connected subsets,
each being the union of zeros and orbits: if

B = Uyea By

with each B, connected, then By, C B is also connected.
If z € By \ By then, by the Poincaré-Bendixson theorem and
the absence of limit cycles [3, Theorem 3.2], f(z) = 0 and z € By.
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Then each B) can be expressed as the union of a chain of distinct
orbits and zeros which is either finite or takes the form:

By = Uiez{zi} Ui

with Lo (gi) = 2i, Lw(9i) = zit1 or La(gi) = zit+1, Lw(gi) = 2 for
each i € Z.

5. Each component of B cannot contain more than one zero of
f(2): if the component B) contains two (or more) distinct zeros
then it must contain a section with three orbits and two zeros, say
(v, 21, B, z2,7y). Neither z; nor z2 can be a sink since they are on
the boundary of a sink. If z; is a node (source) then the flow is
hyperbolic in one sector at zo which is impossible for entire flows.
The same applies to all of the other possible configurations.

6. If follows from 5. that each By must be one of the types (1),
(2) or (3) given in the statement of the theorem. In case (1) and
(2) since Lo(g) = z1 € C, and there is only one zero, we must have
L,(g) = o0, so the orbits are unbounded. In case (3) the orbits
must be unbounded in both time directions.

To show that each B) is a separatrix consider type (1). The
proofs for the other types are similar. Let z; be the associated zero
and let r > 0 be sufficiently small that there are no other zeros in
B, (z,) or B.(z1) and that these sets are disjoint. Let zo be a point
on By not in the closure of B,(z1) and let € > 0 be given. There
is an orbit v with Lo (y) = 21, Lo(7) = 2o and v N Be(z2) # 0,
which cuts the boundaries of the circular neighborhoods of z, and
z1. The rest of the proof is similar to that given for Theorem 3.1
(2) - it consists in showing that the time on any orbit starting at
a point on the boundary of B, (z,) and lying outside « (and hence
tending to B, ) is bounded by a fixed bound, not dependent on 2.

7. P U{z,} is simply connected: if not there is a bounded re-
gion with boundary meeting B in a closed connected subset. This
consists of a set of type (1),(2) or (3) so must be unbounded, a
contradiction.

8. |A| < R,: by embedding C in the Riemann sphere, the number
of boundary components of types (2) and (3) are seen to be at most
countable. Each component of type (1) is associated with a zero of
f(2), and there are an at most countable number of these, so they
form an at most countable set also. g
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Figure 6 is a neighbourhood of a zero at 0 with 6 zeros on the
boundary, all of type (1):

J(2) = (L4 )2(22 + (2 — (= — (i + 1)),

The separatrixes which tend to 0 (there are 6 of these also), are all
included in the interior of the neighbourhood.

Remark 4.4. (1) The reader might suspect that for each of the
results given in this paper, |A| < co. It would be well to keep in
mind entire functions like:

fe=a" T (T] - §e2“q>>ea:p<gj<z>>

jeEN qEFj

where, for each j, the g;(z) are functions chosen to make the prod-
uct converge, where the I are the positive Farey rationals other
than zero, where the integer n has n > 1, and where « is a complex
number of unit modulus. For example when o = i,n = 1, the flow
has a center at 0 with [A| = R,

(2) When a separatrix occurs on the boundary of a sector at
a zero then, in the main, that separatrix is associated also with
another zero or zeros. Attempts to prove this in general, using
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devices such as the time advance map for the flow, the Riemann
mapping theorem, Schwarz reflection, and properties of conformal
maps [11, 12], have not succeeded. The example Z = zexp(z)
(Figure 4) shows that a boundary separatrix need not be associated
with any other finite zero.

(3) It is expected that a deeper understanding of separatrixes
might be found by considering the singularities of the flow with
complex time s:

% = f(7(278))a7(270> =z

where v : C2 — C is a locally holomorphic function of two complex
variables, and where f(z) is an entire function of one complex vari-
able. An example of a modern reference to this very classical topic
would be the work of the Costin’s including [5].

(4) It is conjectured that for entire flows, the vector field is com-
plete and time advance map holomorphic on a dense open subset
of C. This would follow if it could be shown that, for each n € N,
the sets:

F"={z: (s, B,) C (—oo,n|}, F, ={z: (az,B:) C [-n,00)}

have empty interior.

REFERENCES

[1] Benzinger, H. Plane automomous systems with rational vector fields, Trans.
Amer. Math. Soc. 326 (1991), 465-484.

[2] Benzinger, H. Julia sets and differential equations, Proc. Amer. Math. Soc.
117 (1993), 939-946.

[3] Broughan, K. A. Holomorphic flows on simply connected domains have no
limit cycles, Meccanica (to appear).

[4] Broughan, K. A. and Barnett, A. R. Holomorphic flow of the Riemann
Zeta function, Math. Comp. (to appear).

[5] Costin, O. and Costin, R. D. On the formation of singularities of solu-
tions of nonlinear differential systems in antistokes directions, Inventiones
Mathematicae 145 (2001), 425-485.

[6] Hartman, P. Ordinary Differential Equations, Wiley, 1964.

[7] Hirsch, M. W. and Smale, S. Differential Equations, Dynamical Systems
and Linear Algebra, Academic Press, 1974.

[8] Lefschetz, S. Differential Equations: Geometric Theory (2nd edition) Wi-
ley, 1963.

[9] Marcus, L. Global structure of ordinary differential equations in the plane,
Trans. A.M.S 76 (1954), 127-148.



394 KEVIN A. BROUGHAN

[10] Perko, L. Differential Equations and Dynamical Systems, Second Edition,
Springer, 1996.

[11] Pommerenke, Ch. Boundary behaviour of conformal maps, Springer-Verlag,
1992.

[12] Rudin, W. Real and complez analysis (2nd edition) McGraw-Hill, 1974.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WAIKATO, HAMILTON,
NEW ZEALAND

E-mail address: kab@waikato.ac.nz





