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IDEAL REFLECTIONS

PAUL GARTSIDE, SINA GREENWOOD∗, AND DAVID MCINTYRE

Abstract. A reflection theorem is a result of the form “if all
small subsets of a space have property P then the space itself
has P”. Typical “small” sets would be those of cardinality
≤ ℵ1, the meager sets, or closed nowhere dense sets. We ab-
stract the properties of “small” necessary to ensure reflection
of the countable chain condition, separability and the Lindelöf
property. We investigate when first and second countability
reflect in meager sets.

1. Introduction

A reflection theorem is a result of the form “if all small subsets of
a space (in some class C of spaces) have property P then the space
itself has P”. If a reflection theorem holds for a property P, then
one says “P reflects in small subsets (for the class C)”. Classically,
“small” has meant “of size ≤ ω1”. For example Hajnal and Juhasz
[10] showed that second countability reflects in size ≤ ω1 subsets;
and Dow [7] proved that metrizability reflects in size ≤ ω1 subsets
for compact spaces. Reflection results are also important in set
theory, hence the emphasis on cardinality.
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However, in the topological context other definitions of “small”
also make sense. In particular, closed nowhere dense subsets, or
meager subsets, are traditionally considered small. Katetov [11]
showed that compactness reflects in closed nowhere dense sets for
spaces with no isolated points. Mills and Wattel [12] extended this
result to show (in particular) the Lindelöf property and countable
compactness both reflect in closed nowhere dense sets for spaces
with no isolated points (or, in their terminology, that these prop-
erties are nowhere densely generated). See also Blair [4] for some
related results.

In this paper we continue the study of reflection in “small” sub-
sets, paying particular attention to reflection in closed nowhere
dense subsets and related notions of smallness. Recall that a Luzin
space is a topological space which is uncountable and has no iso-
lated points, in which every nowhere dense set is countable. Let I

be a functor associating with each topological space X a collection
I(X) of subsets of X (the “small” subsets of X). It turns out that
many results on reflection in subsets in I are of the form “prop-
erty P does not reflect in subsets in I if and only if there is space
X such that X does not have P and all sets in I(X) are count-
able.” In other words, failure of reflection is witnessed by a very
strong counterexample along the lines of a Luzin space. Existence,
non-existence, or set-theoretic independence of the strong example
may then be verified. For example, first countable non-separable
Luzin spaces exist under CH, but there are no Luzin spaces under
MA+¬CH.

The paper is structured as follows. In Section 2 we formulate and
prove a metatheorem which captures the general form of the result
that non-reflection is equivalent to the existence of a strong exam-
ple. In Section 3 we consider the (hereditary) Lindelöf property, the
(hereditary) countable chain condition (ccc) and (hereditary) sep-
arability. We then determine the status of the strong example for
each of these properties and a wide choice of small sets I. For these
properties, the metatheorem applies because the property reflects
in subsets of size ≤ ω1. In contrast to these properties, reflection of
first countability and second countability in small subsets related to
nowhere dense sets behaves quite unlike reflection in subsets of size
≤ ω1, even though the results are of the standard form. We present
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results on reflection of first and second countability in Sections 4
and Section 5 respectively.

Note that the results quoted above on reflection in closed nowhere
dense sets held for spaces with no isolated points. Without restrict-
ing the number of isolated points, no interesting properties reflect
in nowhere dense sets, meager sets and so on. To see this, note that
there are no nonempty meager subsets of a discrete space, and the
only nonempty meager subset of a space with only one non-isolated
point is the non-isolated point. Thus we will put some restriction
on the number of isolated points, usually that there are at most
countably many isolated points, or sometimes that there are only
finitely many. We denote the set of isolated points of a space X by
I(X), and we denote |I(X)| by i(X).

All spaces are assumed to be T3. We will also investigate re-
flection in discrete sets, and in the closures of discrete sets. The
relationship between such sets and nowhere dense sets is captured
in the following well-known observation.

Proposition 1.1. Let D be a discrete subset of a space X. Then
D r I(X) is nowhere dense.

A space is linearly Lindelöf if every increasing open cover has a
countable subcover, and cosmic if it has a countable network. All
other undefined terms will be found in [13] or [9].

2. A Metatheorem

In this section we prove a general reflection theorem.
Let P be a topological property, let I be a functor associating

with each topological space X a family I(X) of subsets of X, and let
C be a class of spaces. Let A1 to A3 be the following assumptions
on P and I:

A1 (Countability Property): If A ∈ I(X) and A is count-
able, then A has property P.

A2 (Covering Property): Suppose X0 ⊆ X. If A ⊆ X0,
then there exists Â ⊆ X such that:
(i) A ⊆ Â;
(ii) if Â has P in X then A has P in X0; and
(iii) if A ∈ I(X0) then Â ∈ I(X).
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A3 (Non Reflection in ≤ ℵ1 sized subsets): IfX does not
have property P, then there exists X0 ⊆ X with |X0| = ω1

such that:
(i) X0 does not have P;
(ii) every subset of X0 with P is countable;
(iii) there is a J ⊆ X0 with I(X0) r J countable and Ĵ ∈

I(X).

Theorem 2.1. If P is a topological property and I is a functor
satisfying A1–A3 (for spaces with countably many isolated points)
then P reflects in I (for spaces with countably many isolated points)
if and only if there does not exist a space Y such that Y has only
countably many isolated points, Y does not have property P, and
all sets in I(Y ) are countable. Further, any counterexample to re-
flection will contain a subspace of this special form.

Proof. For necessity, note that if Y is such a space then, by A1, Y
is an example showing that P does not reflect in I.

For sufficiency, suppose that X does not have P but every A ∈
I(X) does have P. Let Y be a subset of X with cardinality ω1 as in
A3. Thus Y does not have P. Let A ∈ I(Y ). By A2, there is some
B ∈ I(X) with A ⊆ B. By hypothesis, B has P in X, so A has P
in Y , so A is countable. It remains only to show that Y has only
countably many isolated points. By A3(iii) there is some J with
I(X0)r J countable and Ĵ ∈ I(X). By hypothesis, Ĵ has P, so J
has P, so J is countable, and thus I(X0) is also countable. �

Notice that if any property P satisfies A1–A3, then hereditary
P also satisfies A1–A3.

3. Some applications of the metatheorem

In what follows, we will apply our metatheorem to the following
properties P and functors I:

Properties: the (hereditary) countable chain condition (ccc);
the (hereditary) Lindelöf property; the linearly Lindelöf
property; and (hereditary) separability.

Functors: meager; nowhere dense; closed nowhere dense; clo-
sure of a discrete set; and discrete.

All of the above properties and functors satisfy A1, since any count-
able set has each of the properties. For A2, notice that if A is
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nowhere dense (discrete) in X0 ⊆ X then A is nowhere dense (dis-
crete) in X. When I is the functor of meager sets, of nowhere dense
sets or of discrete sets, we may take Â = A, and it is clear that A2
will be satisfied. When I is the functor of closed nowhere dense sets
or closures of discrete sets, we take Â = A

X . This certainly gives
Â ∈ I(X) whenever A ∈ I(X0). When P is a hereditary property or
ccc, knowing that Â has P will clearly imply that A has P. Thus A2
easily holds for all combinations except for the properties of being
separable or (linearly) Lindelöf, and the functors of closed nowhere
dense sets and of closures of discrete sets. Below we will check A3,
determine the status of the strong counterexample provided by the
metatheorem, and investigate the six exceptional cases.

3.1. The countable chain condition.

Theorem 3.1. The ccc and the hereditary ccc both reflect in meager
sets, in nowhere dense sets and in closed nowhere dense sets for
spaces with countably many isolated points. Both properties reflect
in discrete subsets and in closures of discrete subsets for arbitrary
spaces.

Proof. As remarked above, A1 and A2 are satisfied, so we need only
verify A3.

We deal first with reflection in meager, nowhere dense and closed
nowhere dense sets. Let X be a space with countably many isolated
points which is not (hereditarily) ccc. Take a family {Uα : α ∈ ω1 }
of disjoint open sets in (a subspace of)X. Without loss of generality
Uα ∩ I(X) = ∅ for each α. Choose xα in Uα for each α. Then
X0 = {xα : α ∈ ω1 } is a discrete subspace of X so it does not
have the (hereditary) ccc, every (hereditarily) ccc subset of X0 is
countable, and, putting J = X0, Ĵ ∈ I(X) so A3(iii) holds.

Similarly, A3 holds for discrete subsets and for closures of discrete
subsets without the restriction on i(X).

The strong example given by the metatheorem is an uncountable
space which is not (hereditary) ccc in which every discrete subset is
countable: there are no such spaces, so the (hereditary) ccc reflects
in each of the functors as claimed. �

3.2. Separability. As we remarked before, if I is the functor
of meager sets, nowhere dense sets or discrete sets and P is the
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property of separability or hereditary separability then A1 and A2
are easily satisfied with Â = A for A ⊆ X0. When P is hereditary
separability, A1 and A2 are also satisfied when I is the functor
of closed nowhere dense sets or closures of discrete sets, taking
Â = A

X for A ⊆ X0. For A3, if X is a non-separable space then
we construct a left-separated subspace X0 = {xα : α ∈ ω1 } in the
standard way. This clearly satisfies A3(i) and (ii). Putting J =
I(X0)r I(X), J is discrete and nowhere dense in X, so Ĵ ∈ I(X).
Further, if Ĵ has P then J has P. Thus A3(iii)(b) is satisfied for the
above combinations of P and I for spaces where I(X) is countable.

The canonical example given by the metatheorem for non-reflec-
tion in meager sets, nowhere dense sets and closed nowhere dense
sets is (almost) a Luzin space, while the canonical example for
non-reflection in discrete and closures of discrete sets contains an
L-space and vice versa.

Proposition 3.2. There exists a non-separable Luzin space if and
only if there exists a non-separable space with countably many
isolated points in which all nowhere dense sets are countable.

Proof. For the non-trivial implication, suppose that X has count-
ably many isolated points and every nowhere dense set countable.
Let Z be the space obtained by resolving each isolated point
of X into Q. In other words, if we put Y = X r I(X) then Z =
Y ∪ (I(X) × Q), a basic neighbourhood of y ∈ Y is
(U ∩ Y ) ∪ ((U ∩ I(X)) × Q) for U a neighbourhood of y in X,
and a basic neighbourhood of (x, q) is {x}× V where V is a neigh-
bourhood of q in Q. Then Z is a Luzin space. �

Proposition 3.3. There exists an L-space if and only if there exists
a non-separable space in which all (closures of) discrete subsets are
countable.

Proof. If X is an L-space, then it contains a left-separated subspace
which is an L-space in which all closures of discrete subsets are
countable.

Conversely, suppose X is a non-separable space in which all dis-
crete subsets are countable. Then X contains a left-separated sub-
space X0 = {xα : α ∈ ω1 }. If X0 were not hereditarily Lindelöf
then there would be an uncountable Λ ⊆ ω1 with {xα : α ∈ Λ }
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right-separated. But then this subset would be uncountable and
discrete, a contradiction. So X0 is a non-separable L-space. �

Combining the above observations we have the following results.

Theorem 3.4. The property of (hereditary) separability reflects
in meager subsets and in nowhere dense subsets for spaces with
countably many isolated points, if and only if there does not exist a
non-separable Luzin space.

The property of hereditary separability reflects in closed nowhere
dense subsets for spaces with countably many isolated points if and
only if there does not exist a non-separable Luzin space.

The property of (hereditary) separability reflects in discrete sub-
sets if and only if there does not exist an L-space.

The property of hereditary separability reflects in closures of dis-
crete subsets if and only if there does not exist an L-space.

This leaves only the two exceptional cases: reflection of separa-
bility in closures of discrete subsets and in closed nowhere dense
sets.

Theorem 3.5. Separability reflects in closures of discrete subsets
for spaces with countably many isolated points if and only if there
does not exist an L-space.

Proof. Let X be an L-space. Then X is not separable. But any
discrete set in X is countable, and dense in its closure. So closures
of discrete sets are separable. Thus separability does not reflect.

Conversely, let X be a non-separable space with all closures of
discrete sets separable. Then all closures of discrete sets are ccc, and
by Theorem 3.1, X is hereditarily ccc. Since X is non-separable
it contains a left-separated subset, which is hereditarily ccc, and
hence must be hereditarily Lindelöf. This then is an L-space. �

The status of reflection of separable in closed nowhere dense sets
sets remains unclear. If there is a non-separable space X with only
countably many isolated points, all of whose closed nowhere dense
sets are separable, then as in the preceding proof, there is a left-
separated subspace in type ω1, X0 say, which is hereditarily ccc.
Then X0 is hereditarily Lindelöf, and hence an L-space. Thus:

Proposition 3.6. If there are no L-spaces then separability reflects
in closed nowhere dense subspaces.
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It is not clear that the X0 discussed above is Luzin. Nor is it
clear (to the authors) how to construct a space like X just from
the existence of an L-space. Restricting our attention to compact
spaces improves the situation.

Proposition 3.7. If there are no non-separable Luzin spaces, then
separability reflects in closed nowhere dense, and closures of discrete
subsets for compact spaces with countably many isolated points.

Proof. Let X be a compact space with only countably many iso-
lated points and all closed nowhere dense subsets separable. Let
C be a closed nowhere dense set. Then C is separable, and all its
closed subsets are closed nowhere dense in X, and so too are sepa-
rable. Thus, C is a compact space each of whose closed subsets is
separable. By a theorem of Arhangel’skii [3] it follows all subsets
of C are separable. Thus all closed nowhere dense subsets of X
are hereditarily separable, and by Theorem 3.4 X is (hereditarily)
separable. �

3.3. The Lindelöf property. As with separability, if I is the
functor of meager sets, nowhere dense sets or discrete sets and P
is the (hereditary) Lindelöf property then A1 and A2 are satis-
fied, and likewise when I is the functor of closed nowhere dense
sets or closures of discrete sets and P is the hereditary Lindelöf
property. For A3, if X is a non-Lindelöf space then it contains a
right-separated subspace X0 = {xα : α ∈ ω1 }. This satisfies A3(i)
and (ii). Putting J = I(X0) r I(X) gives a discrete subset of X,
so Ĵ ∈ I(X). Thus A3(iii) is also satisfied if I(X) is countable.

The canonical example for non-reflection of the (hereditary) Lin-
delöf property in meager and nowhere dense sets is (or contains) a
non-Lindelöf space with countably many isolated points and with
every nowhere dense set countable. We shall see below that there
are no such spaces. Likewise, we shall see that the canonical exam-
ple for non-reflection of the hereditary Lindelöf property in closures
of discrete spaces cannot exist. Finally, the canonical example for
non-reflection of the (hereditary) Lindelöf property in discrete sub-
sets contains an S-space and any S-space is a canonical example.
The existence of S-spaces is consistent with and independent of
ZFC.
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Proposition 3.8. There exists a space X with countably many iso-
lated points such that X is not (hereditarily) Lindelöf and every
discrete subset of X is countable if and only if there exists an
S-space.

Proof. Suppose that X is such a space. Then X contains a right-
separated subspace X0 = {xα : α ∈ ω1 }. If X0 contained a non-
separable subspace, there would be an uncountable Λ ⊆ ω1 such
that {xα : α ∈ Λ } is left-separated and hence discrete, a contra-
diction. Thus X0 is an S-space.

Conversely, suppose Y is an S-space. Then every discrete subset
of Y is separable, hence countable. In particular, I(Y ) is count-
able. �

Theorem 3.9. The (hereditary) Lindelöf property reflects in mea-
ger sets and in nowhere dense sets for spaces with countably many
isolated points.

The hereditary Lindelöf property reflects in closed nowhere dense
sets and in closures of discrete sets for spaces with countably many
isolated points.

The (hereditary) Lindelöf property reflects in discrete subsets for
spaces with countably many isolated points if and only if there does
not exist an S-space.

Proof. We have already seen that A1, A2 and A3 hold for each of
these combinations of P and I, and that the canonical counterex-
ample for reflection in discrete sets exists if and only if there is
an S-space. It remains only to show that the canonical example
cannot exist in any of the other cases.

Let Y be the canonical example given by the metatheorem, so Y
does not have P, Y has only countably many isolated points, and
every set in I(Y ) is countable. Resolving all the isolated points into
Q, we may assume that I(Y ) = ∅. Since Y is not (hereditarily)
Lindelöf it contains a right-separated subset Y0 = { yα : α ∈ ω1 }.
We claim that I(Y0) is dense in Y0, for if not then we can put
α = min{β : yβ /∈ I(Y0) }, and yα is isolated in Y0 but not in I(Y0),
a contradiction. But then I(Y0) is uncountable and the closure of
a discrete set, hence in I(Y ) whether I is meager, nowhere dense,
closed nowhere dense or closure of discrete. This is a contradic-
tion. �
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It is a classical theorem (Mills and Wattel, [12]) that the Lindelöf
property reflects in closed nowhere dense sets for spaces without iso-
lated points. The proof does not follow the Metatheorem route. It
is an open problem of Arhangel’skii whether or not the Lindelöf
property reflects in closures of discrete sets. Since the property
“linearly Lindelöf” reflects in closures of discrete sets [1], any coun-
terexample must be linearly Lindelöf but not Lindelöf.

3.4. Reflection in Closed Discrete Subspaces. Recall that
a space is countably compact if and only if every closed discrete
subset is finite. It follows that countable compactness reflects in
closed discrete subspaces. But it also follows that very little else
will reflect in closed discrete subsets: all closed discrete subsets
of the long line are finite and hence ccc (Lindelöf, separable, sec-
ond countable), while the long line is not ccc (Lindelöf, separable,
second countable).

4. Reflection of first countability

Let p be a free ultra-filter on ω. Then ω ∪ {p} as a subspace of
βω has a countable infinity of isolated points, is not first countable,
but has all meager subsets second countable. Hence in this section
we will be dealing with spaces which are dense in themselves, in
other words which have no isolated points.

Van Douwen [6] showed that there exists a T3, dense in itself
countable space in which every nowhere dense subset is closed dis-
crete, which is therefore not first countable. Thus, first countability
does not reflect in nowhere dense (or closed nowhere dense, or clo-
sures of discrete) subsets. In this section we consider classes of
spaces in which first countability does reflect in meager subspaces.
Most of the results depend on finding a dense meager subset.

Proposition 4.1. If every meager subset of a dense in itself space
X is first countable, and X has a dense meager subspace, then X
is first countable.

Proof. Note that if D is dense and meager in X and x ∈ X then
D∪{x} is dense and meager in X, and, since X is T3, if D is dense
in X and x ∈ D then χ(x,D) = χ(x,X). �

In our search for dense meager subsets, we look at the type of
neighborhood base of each point.

Let B(x) = {B(x, α) : α ∈ χ(x,X) } be a neighborhood base
at x. We say that B(x) satisfies P1 if, for every A ⊆ B(x) with
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|A| < χ(x,X) we have int(
⋂
A) 6= ∅. We say that B(x) satisfies P2

if, for every A⊆ B(x) with |A| < cf(χ(x,X)) we have int(
⋂
A) 6= ∅.

We say that X is a P1-space if every point has a local basis which
satisfies P1.

Proposition 4.2. (1) If a point x has a neighborhood base satisfy-
ing P1 then it has a linearly ordered local π-base of size
cf(χ(x,X)).

(2) If a point x has a linearly ordered local π-base of size
cf(χ(x,X)) then every neighbourhood base at x satisfies P2.
In particular, if χ(x,X) is a regular cardinal then every
neighbourhood base at x satisfies P1.

Proof. (1) Suppose B(x) = {Bα : α ∈ χ(x,X) } is a neighborhood
base at x satisfying P1. Then { int(

⋂
β<αBβ) :α<χ(x,X) }

is a linearly ordered local π-base, which contains a linearly
ordered local π-base of size cf(χ(x,X)).

(2) Suppose that P = {P (α) : α < cf(χ(x,X)) } is a linearly
ordered local π-base at x. Let B be a neighbourhood base
at x and let A ⊆ B with |A| < cf(χ(x,X)). For each
A ∈ A choose µA < cf(χ(x,X)) with P (µA) ⊆ A, and
put µ = sup{µA : A ∈ A}. Then P (µ) ⊆ int(

⋂
A), so

int(
⋂
A) 6= ∅ as required. �

Proposition 4.3. If every meager subset of a dense in itself P1
space X is first countable, then for each x∈X we have cf(χ(x,X))=
ω.

Proof. Suppose that there is some x ∈ X with cf(χ(x,X)) > ω. Put
κ = cf(χ(x,X)). Let P = {P (α) : α < κ } be a linearly ordered
local π-base at x. Inductively choose βα < κ and xα ∈ P (βα) so
that xα /∈ P (βα+1). Then D = {xα : α < κ } is discrete so (since
X has no isolated points) D∪{x} is meager. Every neighbourhood
of x contains cofinally many of the points xα, so D∪{x} is not first
countable. �

In the next few results we will show that first countability re-
flects in meager subsets by constructing dense meager subsets and
appealing to Proposition 4.1. The nowhere dense sets from which
the meager sets are constructed will be the boundaries of a dense
family of open sets. In order for these boundaries to be non-empty,
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we require a certain amount of connectedness: what we shall require
is that there is a π-base of connected sets.

Definition 4.4. Let X be a dense in itself space. A ∆-tree for X
is a tree T , with the following properties:

• the αth level T (α), is a disjoint family of open sets in X;
• T (0) = {X};
• for each a ∈ T (α), the collection

M(a) = { b ∈ T (α+ 1) : a < b }
is a maximal disjoint collection of open sets with b ⊆ a for
each b ∈M(a) and |M(a)| ≥ 2.
• if α is a limit and Bα is the set of branches in Tα =⋃

β<α T (β). Then T (α) = { int(
⋂
B) : B ∈ Bα }r {∅}.

Note that every dense in itself T3 space has such a tree. We define
the ∆-height of X to be the least height of a ∆-tree for X.

Lemma 4.5. Let X be dense in itself with a π-base of connected
sets, and and let T be a ∆-tree for X of height α0. For each α < α0

let Dα = ∂(
⋃
T (α)). Then

⋃
α<α0

Dα is dense. In particular, if α0

is countable then X has a dense meager subspace.

Proof. Let U be a member of the π-base of connected sets. Suppose,
for a contradiction, that U ∩ ∂a = ∅ for all a ∈ T . Inductively, we
can choose some aα ∈ T (α) with a ∩ U 6= ∅ and therefore (since
a∩U is clopen in U) U ⊆ a: at limit levels α we have U ⊆

⋂
β<α aβ

so aα = int(
⋂
β<α aβ)) ∈ T (α) and U ⊆ aα. Proceeding in this way

we obtain elements of the tree of arbitrary height, in particular we
obtain aα0 ∈ T (α0), contradicting the definition of α0. So U must
meet ∂a for some a in some T (α), and hence U meets Dα.

Finally note that each Dα is the boundary of an open set, hence
nowhere dense, so if α0 is countable then

⋃
α<α0

Dα is meager. �

Recall that a space X has a Gδ diagonal if it has a sequence
(Gn)n∈ω of open covers such that for each x,

⋂
n∈ω st(x,Gn) = {x}.

Theorem 4.6. First countability reflects in meager subsets for
dense in themselves spaces with a Gδ diagonal and a π-base of con-
nected sets.

Proof. Let X be a dense in itself space with a Gδ diagonal and a π-
base of connected sets. Let G = (Gn)n∈ω be a Gδ diagonal sequence.
We can clearly construct a ∆-tree T for X with the property that
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if a ∈ T (n) then a ⊆ U for some U ∈ Gn. But then, since X has no
isolated points, if an ∈ T (n) for all n ∈ ω then int(

⋂
n∈ω an) = ∅.

Thus X has ∆-height ω. By Lemma 4.5, X has a dense meager
subset, so by Proposition 4.1 first countability reflects in meager
subsets of X. �

Proposition 4.7. Assume that Souslin’s Hypothesis (SH) holds.
Let X be a dense in itself ccc space with a π-base of connected sets.
Then X has a dense meager subset.

Proof. Let T be a ∆-tree for X. For every a, b ∈ T with a < b we
have b ⊆ a, so since X is ccc every chain in T is countable. Further,
let a, b ∈ T be incompatible. We have a ∈ T (α) and b ∈ T (β) for
some α, β and without loss of generality α ≤ β. There is some
b′ ∈ T (α) with b′ ≤ b. Since a � b we have a 6= b′ so a ∩ b′ = ∅, so
a∩b = ∅. Thus every anti-chain in T is a collection of disjoint open
sets in X, hence countable. Thus, if T had uncountable height it
would be a Souslin Tree. By SH, there are no such trees. So T
has countable height, and by Lemma 4.5 X has a dense meager
subset. �

Theorem 4.8. Let C be the class of dense in themselves spaces
with a π-base of connected sets. Then the following are equivalent.

(i) Every ccc space in C has a dense meager subset.
(ii) First countability reflects in meager subsets for ccc spaces

in C.
(iii) Every hereditarily Lindelöf space in C, all of whose meager

subsets are second countable, is first countable.
(iv) There are no Souslin trees.

Proof. The implication (i) implies (ii) follows from Proposition 4.1,
and (ii) implies (iii) is trivial. The implication (iv) implies (i) is
Proposition 4.7. It remains only to prove that if there is a Souslin
tree then there is a hereditarily Lindelöf space in C, which is not first
countable but every meager subset of which is second countable.

Let L be a compact, connected Souslin line with no separable
open subsets. Then it is known [14] that the meager subsets of L
are second countable. Remove one point from L, call the result L′.
Note that L′ is first countable, of weight ω1, hereditarily Lindelöf,
locally connected, and all its meager subsets are second countable.
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Dow [8] has proved that every ccc space of π-weight no more
than ω1 has a remote point in its Stone–Čech compactification. (A
point p ∈ βXrX is a remote point if and only if for every nowhere
dense subset N of X we have p /∈ NβX).

In particular L′ has a remote point p. Let X = L′ ∪ {p}, as
a subspace of βL′. Then X is T3, hereditarily Lindelöf, and is
not first countable (points in a Stone–Cech remainder never have
countable character). As L′ is locally connected, X has a π-base
of connected sets. Further, every meager subset of X is either a
meager (and second countable) subspace of L′, or is the disjoint
sum of a meager subset of L′ and the single point p, and hence is
second countable because p is remote. Thus X is as required. �

5. Reflection of second countability

In this section we consider reflection of second countability. To
start with we restrict our attention to first countable spaces. Then
we combine the results obtained with the results on reflection of
first countability from the preceding section.

Again, we will restrict ourselves to spaces with only finitely many
isolated points: if we allow infinitely many isolated points then no
positive results hold, as the following example shows.

Proposition 5.1. There is a first countable cosmic space X with
countably many isolated points, all of whose meager subsets are
second countable but which is not itself second countable.

Proof. Let B the the “bowtie” space obtained by refining the usual
topology on R×R by declaring sets of the form B(x, s) = {(x, 0)}∪
{ (x′, y) : |y| < s|x − x′| } to be open for all x, s ∈ R with s > 0.
Let D = Q × (Q r {0}), let R = R × {0} and let X be the space
with underlying set R∪D and topology obtained by further refining
the topology inherited from B by declaring all the points of D to
be isolated. Then X is first countable, cosmic, and not second
countable. Further, every nowhere dense subset of X is contained
in R, and hence every meager subset is second countable. �

5.1. Reflection of second countability for first countable
spaces.

Definition 5.2. Let Y be a subspace of a space X. Then Y is
second countable in X if there is a countable family B of open sets
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in X such that for every y ∈ Y , if y ∈ U and U is open in X then
there is some B ∈ B with y ∈ B ⊆ U . Such a family B is called a
base for Y in X.

Proposition 5.3. Let Y be a subspace of a space X. If Y is second
countable in X and B is a base for Y in X then there is a countable
B′ ⊆ B which is a base for Y in X.

Proof. Exactly as for the corresponding result for bases of second
countable spaces. �

Proposition 5.4. If Y is a dense subspace of a (T3) space X and
Y is second countable then Y is second countable in X.

Proof. Let B be a countable family of regular open subsets of X
whose traces onto Y form a countable base for Y . Suppose y ∈ U
where y ∈ Y and U is regular open in X. Pick B ∈ B so that
y ∈ B ∩ Y ⊆ U ∩ Y . Then y ∈ B = int(B ∩ Y ) ⊆ int(U ∩ Y ) = U .
So B is a countable base for Y in X. �

Theorem 5.5. Let C be the class of first countable dense in them-
selves spaces. Then second countability reflects in meager subsets
for spaces in C if and only if there is no space in C which is not
second countable but which has every meager subset countable.

Proof. If there is a space in C which is not second countable but
which has every meager set countable, then every meager subset is
second countable so second countability does not reflect in meager
subsets for C.

Conversely, let X be a space in C which is not second countable
but in which every meager subset is second countable. If X is not
separable, then by our results on reflection of separability X has a
subspace which is non-separable (hence non-second-countable), all
of whose meager subsets are countable (and hence second count-
able). So we are done.

Assume then that X is separable. Let D be a countable dense
set and for each x ∈ X let B(x) be a countable neighbourhood base
at x. Since X is not second countable we can inductively choose
points xα such that

⋃
β<α B(xβ) is not a base for {xβ : β ≤ α } in

X. We can assume D = {xα : α < ω }. Note that
⋃
α<ω1

B(xα) is a
base for Y = {xα : α < ω1 } in X. By construction Y is not second
countable in X. And since Y is dense in X, by Proposition 5.4 Y
is not second countable.
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We will show that all meager subsets of Y are countable. For a
contradiction, suppose that there is some uncountable subset A of
Y which is nowhere dense in Y . Let C = A

X . Then C is closed
nowhere dense in X. Hence C∪D is meager in X, so second count-
able, and hence (since it is dense in X) C ∪D is second countable
in X. But then since A ⊆ C ∪ D, A is second countable in X.
Thus there is a countable subset of

⋃
α<ω1

B(xα) which is a basis
for A in X, which contradicts the construction of the points xα and
the fact that A is uncountable. �

The question of whether it is consistent that second countable
reflects in closed nowhere dense subsets of first countable spaces
remains open. Cairns [5] and Alas et al. [1] have (respectively)
shown that second countability does consistently reflect in closed
nowhere dense (respectively, closures of discrete) sets for compact
spaces.

5.2. Reflection of second countability for spaces with
arbitrary character. From the previous results and noting that
every Souslin line contains a Luzin subspace, we have the following.

Corollary 5.6. Let C be the class of spaces with a dense subset
which has a π-base of connected sets. If there are no Luzin spaces
then second countability reflects in meager subsets for spaces in C.
If there is a Souslin tree then second countability does not reflect in
meager subsets for spaces in C.
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