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AN EXPANSIVE HOMEOMORPHISM ON A
TWO-DIMENSIONAL PLANAR CONTINUUM

CHRISTOPHER MOURON

Abstract. A homeomorphism h : X → X is called expan-
sive provided that for some fixed c > 0 and every x, y ∈ X
there exists an integer n, dependent only on x and y, such that
d(hn(x), hn(y)) > c. A two-dimensional planar continuum
that admits an expansive homeomorphism is constructed.

1. Introduction

A continuum is a nondegenerate compact connected metric
space. A homeomorphism h : X → X is called expansive pro-
vided that for some fixed c > 0 and every distinct x, y ∈ X
there exists an integer n, dependent only on x and y, such that
dX(hn(x), hn(y)) > c. Expansive homeomorphisms exhibit chaotic
behavior in that no matter how close two points are either their for-
ward or reverse images will eventually be a certain distance apart.
The Plykin attractor [4] and the dyadic solenoid [5] are examples
of continua that admit expansive homeomorphisms.
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560 C. MOURON

A continuum is 1-dimensional if for every ε > 0 there exists a
finite open cover U whose mesh is less than ε such that for every
y ∈ X, y is in at most 2 elements of U . If X is a plane contin-
uum, then X is 2-dimesional if X contains an open disk and 1-
dimensional otherwise. A planar continuum X is a non-separating
plane continuum provided that R2 − X is connected. The Plykin
attractor is a Lakes of Wada continuum that separates the plane
into 4 components and is the most widely known 1-dimensional
planar continuum that admits an expansive homeomorphism. It
has been shown by the author that 1-dimensional non-separating
plane continua do not admit expansive homeomorphisms. (In fact,
tree-like continua do not admit expansive homeomorphisms [3].)
This paper gives an example of a 2-dimensional planar continuum
that admits an expansive homeomorphism and separates the plane.
However, the following question remains open: Does there exist a 2-
dimensional non-separating plane continuum that admits expansive
homeomorphism?

2. Inverse limits and the Plykin attractor

A useful method of constructing continua is through inverse lim-
its. Let {Gi}∞i=1 be a sequence of topological spaces. For each i < j,
let f ji : Gj −→ Gi be a continuous function called a bonding map.
If f jk = f ik ◦ f

j
i for each k < i < j, then the collection {Gi, f ji }∞i=1

is called an inverse system. Each of the spaces Gi is called a factor
space of the inverse system.

Since each bonding map f jk is determined by the collection of
one step bonding maps f i+1

i = fi for k ≤ i < j, it is sufficient
to consider only these maps. The inverse system {Gi, fi}∞i=1 is
sometimes written as

G1
f1←− G2

f2←− G3 . . . Gi−1
fi−1←− Gi

fi←− . . . .

Every inverse system {Gi, fi}∞i=1 determines a topological space
X called the inverse limit of the system and is written lim←−{Gi, fi}

∞
i=1.

The space X is the subspace of the Cartesian product
∏∞
i=1Gi given

by

X = lim←−{Gi, fi}
∞
i=1 = {(xi)∞i=1 ∈

∏∞
i=1Gi|fi(xi+1) = xi for each i}.
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X has the subspace topology induced on it by
∏∞
i=1Gi. If x =

(xi)∞i=1 and y = (yi)∞i=1 are two points of the inverse limit, we define
distance to be

d(x,y) =
∑∞

i=1
di(xi,yi)

2i
,

where di is the metric on Gi. If each of the factor spaces G = Gi
and each of the bonding maps f = fi are the same, then there is
natural homeomorphism on the inverse limit f̂ : X −→ X defined
by

f̂(x1, x2, x3...) = (f(x1), f(x2), f(x3), ...) = (f(x1), x1, x2, ...).

We call f̂ the shift homeomorphism on X. Notice that

f̂−1(x1, x2, x3...) = (x2, x3, x4, ...).

The construction of the Plykin attractor will be through the
inverse limit of the common factor space P with common bonding
map f . Let P = [0, 4]/{A,B} where A is the identification of 0,1,
and 2 and B is the identification of 3 and 4 in the interval [0, 4]
(see Figure 1). Define

da(x) =

{
min{|x|, |x− 1|, |x− 2| x ∈ [0, 3]}
min{|x− 3|+ 1, |x− 4|+ 1, x ∈ (3, 4]}

and

db(x) =

{
min{|x|+ 1, |x− 1|+ 1, |x− 2|+ 1 x ∈ [0, 2]}
min{|x− 3|, |x− 4|, x ∈ (2, 4]} .

Define distance on P by

dP (x, y) = min{|x− y|, da(x) + da(y), db(x) + db(y)}.

Let f : P −→ P be the bonding map defined by
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f(x) =



2.5− 2x 0 ≤ x < .25
1 + 2(x− .25) .25 ≤ x < .75
2.5− 2(1− x) .75 ≤ x < 1
2.5− 4(x− 1) 1 ≤ x < 1.125
1 + 8(x− 1.125) 1.125 ≤ x < 1.375
3 + 4(x− 1.375) 1.375 ≤ x < 1.625
1 + 8(1.875− x) 1.625 ≤ x < 1.875
2.5− 4(2− x) 1.875 ≤ x < 2
2.5 + 2(x− 2) 2 ≤ x < 2.75
3− 2(x− 2.75) 2.75 ≤ x < 3
2.5− 2(x− 3) 3 ≤ x < 3.25
2(x− 3.25) 3.25 ≤ x < 3.75
2.5− 2(4− x) 3.75 ≤ x < 4

.

Motivation for f(x) comes from Figure 5.6 on page 210 of [2]. For
a pictorial representation of f see Figure 2. Let P = lim←−{P, fi}

∞
i=1

where fi = f for each i. Then x = {x1, x2, ...} is an element of P
provided that f(xi+1) = fi(xi+1) = xi for each i. For x,y ∈ P,
define distance as dP(x,y) =

∑∞
i=1 2−i(dP (xi, yi)). Let f̂ : P −→ P

be the shift homeomorphism induced by f .

Proposition 1. Suppose x = (x1, x2, ...) ∈ P, then the following
are true:
(1) If xi ∈ (0, 1) then xi+1 ∈ (3.25, 3.75).
(2) If xi ∈ (1, 2) then xi+1 ∈ (.25, .75)∪ (1.125, 1.25)∪ (1.75, 1.875).
(3) If xi ∈ (2, 2.5) then xi+1 ∈ (0, .25) ∪ (1, 1.125) ∪ (1.875, 2) ∪

(1.25, 1.3125) ∪ (1.6875, 1.75) ∪ (3, 3.25) ∪ (3.75, 4).
(4) If xi ∈ (2.5, 3) then xi+1 ∈ (1.3125, 1.375) ∪ (1.625, 1.6875) ∪

(2, 2.25) ∪ (2.75, 3).
(5) If xi ∈ (3, 4) then xi+1 ∈ (1.375, 1.625) ∪ (2.25, 2.75).

The next two lemmas show how f expands the distances between
points.

Lemma 2. Suppose xi−1 = yi−1 and xi 6= yi, then either dP (xi, yi) ≥
.0625 or dP (xi+1, yi+1) ≥ .0625.
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Proof. The proof of this lemma contains a large number of cases of
which 3 are shown. The proof of the other cases are similar.

Case 1. Suppose xi, yi ∈ (0, 1). Since f maps the interval (0, .75)
one-to-one and onto (1, 2.5)/A, f maps (.25, 1) one-to-one and onto
(1, 2.5)/A and xi−1 = yi−1, we may take xi ∈ (0, .25) and yi ∈
(.75, 1). Then xi+1 ∈ (3.25, 3.375) and yi+1 ∈ (3.625, 3.75). Hence,



564 C. MOURON

dP (xi+1, yi+1) ≥ .25 > .0625.

Case 2. Suppose xi ∈ (0, 1) and yi ∈ (1, 2). Then xi+1 ∈
(3.25, 3.75) and yi+1 ∈ (.25, .75)∪(1.125, 1.25)∪(1.75, 1.875). Hence,

dP (xi+1, yi+1) ≥ .375 > .0625.

Case 3. Suppose xi ∈ (0, 1) and yi ∈ (2, 2.5). Then xi−1 ∈
(1, 2.5)/A and yi−1 ∈ (2.5, 3.5). Thus, xi−1 6= yi−1 which is a
contradiction. �

Lemma 3. Suppose dP (xi, yi) < .0625 for all i ≥ 1 then

dP (f(x1), f(y1)) ≥ 2dP (x1, y1).

Proof. The proof of this lemma also contains a large number of
cases of which 2 are shown. Again, the proof of the other cases are
similar. From Lemma 2 we may assume that x1 6= y1.

Case A. Suppose x1, y1 ∈ (3, 4). There are 8 subcases to consider:

Case A.1. Suppose x1, y1 ∈ (3, 3.25), then dP (x1, y1) = |y1 − x1|.
Here, f(x1), f(y1)∈(2, 2.5). So, dP (f(x1), f(y1))=|f(y1)−f(x1)| =
|2.5− 2(y1 − 3)− (2.5− 2(x1 − 3))| = 2|y1 − x1| = 2dP (x1, y1).

Case A.2. Suppose x1∈(3, 3.25), y1∈(3.25, 3.5), then dP (x1, y1) =
y1−x1. Here, f(x1) ∈ (2, 2.5), f(y1)∈(0, .5). So, dP (f(x1), f(y1)) =
f(x1)−2+f(y1) = 2.5−2(x1−3)−2+2(y1−3.25) = 2(y1−x1) =
2dP (x1, y1).

Case A.3. Suppose x1, y1 ∈ (3.25, 3.5), then dP (x1, y1) = |y1−x1|.
Here, f(x1), f(y1) ∈ (0, .5). So, dP (f(x1), f(y1)) = |f(y1)−f(x1)| =
|2(y1 − 3.25)− (2(x1 − 3.25))| = 2|y1 − x1| = 2dP (x1, y1).

Case A.4. Suppose x1 ∈ (3.375, 3.5), y1 ∈ (3.5, 3.625) then
dP (x1, y1) = y1 − x1. Here, f(x1) ∈ (.25, .5), f(y1) ∈ (.5, .75). So,
dP (f(x1), f(y1)) = f(y1)− f(x1) = 2(y1 − 3.25)− (2(x1 − 3.25)) =
2(y1 − x1) = 2dP (x1, y1).

Case A.5. Suppose x1∈(3.5, 3.75), y1∈(3.5, 3.75) then dP (x1, y1)=
|y1 − x1|. Here, f(x1), f(y1) ∈ (.5, 1). So, dP (f(x1), f(y1)) =
|f(y1) − f(x1)| = |2(y1 − 3.25) − (2(x1 − 3.25))| = 2|y1 − x1| =
2dP (x1, y1).
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Case A.6. Suppose x1 ∈ (3.625, 3.75), y1 ∈ (3.75, 3.875) then
dP (x1, y1) = y1 − x1. Here, f(x1) ∈ (.5, 1), f(y1) ∈ (2, 2.25). So,
dP (f(x1), f(y1)) = f(y1)− 2 + 1− f(x1) = 2.5− 2(4− y1)− 2 + 1−
(2(x1 − 3.25)) = 2(y1 − x1) = 2dP (x1, y1).

Case A.7. Suppose x1, y1 ∈ (3.75, 4) then dP (x1, y1) = |y1 − x1|.
Here, f(x1), f(x2) ∈ (2, 2.5). So, dP (f(x1), f(y1)) = |f(y1) −
f(x1)| = |2.5−2(4−y1)−(2.5−2(4−x1))| = 2|y1−x1| = 2dP (x1, y1).

Case A.8. Suppose x1 ∈ (3, 3.25), y1 ∈ (3.75, 4) then x2 ∈
(2.25, 2.375)∪(1.375, 1.4375) and y2 ∈ (2.625, 2.75)∪(1.5625, 1.625).
So, dP (x2, y2) ≥ .125 > .0625 which is a contradiction.

Case B. Suppose x1 ∈ (2, 3) and y1 ∈ (3, 4). Since dP (x1, y1) <
.0625, there are 2 subcases to consider:

Case B.1. Suppose x1 ∈ (2.9375, 3) and y1 ∈ (3, 3.0625) then
dP (x1, y1) = |y1 − x1|. Here, f(x1) ∈ (2.5, 2.625) and f(y1) ∈
(2.375, 2.5). So, dP (f(x1), f(y1)) = |f(y1) − f(x1)| =
|2.5− 2(y1 − 3)− (3− 2(x1 − 2.75))| = 2|y1 − x1|.
Case B.2. Suppose x1 ∈ (2.9375, 3) and y1 ∈ (3.9375, 4) then
dP (x1, y1) = |7 − x1 − y1|. Here, f(x1) ∈ (2.5, 2.625) and f(y1) ∈
(2.375, 2.5). So, plane dP (f(x1), f(y1)) = |f(y1) − f(x1)| =
|2.5− 2(4− y1)− (3− 2(x1 − 2.75))| = 2|7− x1 − y1|. �

The next theorem states that the shift homeomorphism on the
Plykin attractor is expansive.

Theorem 4. f̂ : P −→ P is an expansive homeomorphism with
expansive constant .0625.

Proof. Suppose x={x1, x2, ...}, y= {y1, y2, ...} are distinct points of
P. Let i be the smallest index such that xi 6= yi.
Case 1. Suppose i = 1 and dP (xk, yk) ≥ .0625 for some k ≥ 1.
Then f̂1−k(x)= {xk, xk+1, ...} and f̂1−k(y)= {yk, yk+1, ...}. Hence,

dP(f̂1−k(x), f̂1−k(y))≥ dP (xk, yk) ≥ .0625.

Case 2. Suppose i = 1 and dP (xk, yk) < .0625 for all positive
integers k. Let n be an integer such that

log2(.0625/dP (x1, y1)) ≤ n < log2(.0625/dP (x1, y1)) + 1.
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Then it follows from Lemma 3 that

dP(f̂n(x), f̂n(y))≥ dP (fn(x1), fn(y1)) ≥ 2ndP (x1, y1)) ≥ .0625.

Case 3. Suppose i > 1. Then by Lemma 2, either dP (xi, yi) ≥
.0625 or dP (xi+1, yi+1) ≥ .0625. This is similar to Case 1) by letting
k = i or k = i+ 1. �

3. Construction of the 2-dimensional plane continuum

X that admits an expansive homeomorphism.

The 2-dimensional planar continuum X that admits an expansive
homeomorphism that is constructed is the compactification of a
disk minus two points, D − {a, b}, whose boundary contains P1

and P2 (see figure 5). Let f̂1 and f̂2 be shift homeomorphisms
on Plykin attractors P1 and P2. The expansive homeomorphisms
F on X uses the shift homeomorphism f̂1 when restricted to P1

and the inverse of the shift homeomorphism f̂−1
2 when restricted

to P2. If two distinct points x,y ∈ D − {a, b} have different 1st
coordinates, then it is shown that there is a positive integer n such
that dX(Fn(x), Fn(y)) > c. On the other hand if x,y have different
2nd coordinates, then it is shown that there is a positive integer
n such that dX(F−n(x), F−n(y)) > c, where c is the expansive
constant.

The construction of X begins by creating 2 homeomorphic con-
tinua Y1, Y2 with inverse limits that use single bonding maps h1, h2

on factor spaces G1, G2. To construct the factor space, define
T = {(x, y)|x ≥ 0, y ≥ 0, x+ y ≤ 2}

L1 = {(x, 0)|2 ≤ x ≤ 2.5}, L2 = {(0, y)|2 ≤ y ≤ 2.5}

P1 = {(x, p1)|x ∈ P}, P2 = {(p2, y)|y ∈ P}.
Then let G1 = T ∪ L1 ∪ P1, where the point (2.5, 0) in L1 is iden-
tified to the point (A, p1) in P1 and let G2 = T ∪ L2 ∪ P2, where
the point (0, 2.5) in L2 is identified to the point (p2, A) in P2 ( see
Figures 3 and 4).

To define distance on G1 and G2, let πkG1
, πkG2

be the projection
maps on the kth coordinate for G1 and G2, where k ∈ {1, 2}. Also
for k ∈ {1, 2} and x, y ∈ Pk define

dGk(x, y) = dPk(x, y) =dP (πkGk(x), πkGk(y)).
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If x, y ∈ T ∪ Lk, define

dGk(x, y) =dT∪Lk(x, y) = |π1
Gk

(x)− π1
Gk

(y)|+ |π2
Gk

(x)− π2
Gk

(y)|.
If x ∈ T ∪ L1 and y ∈ P1, define

dG1(x, y) =dT∪L1(x, (2.5, 0))+dP1((A, p1), y).

If x ∈ T ∪ L2 and y ∈ P2, define

dG2(x, y) =dT∪L2(x, (0, 2.5))+dP2((p2, A), y).

To define the bonding maps h1, h2, let φ, ψ : [0, 2] −→ [0, 2] by

φ(z) =


2z 0 ≤ z < .5
z + .5 .5 ≤ z < 1
1 + .5z 1 ≤ z ≤ 2

,

ψ(z) =


.5z 0 ≤ z < 1
z − .5 1 ≤ z < 1.5
2(z − 1) 1.5 ≤ z ≤ 2

.

Define g1 : T ∪ L1 −→ G1 by

g1(x, y) =


(φ(x), ψ(y)) x ≤ 1.5
(x+ .25, (1.75− x)ψ(y)) 1.5 < x ≤ 1.75
(2(x− 1.75) + 2, 0) 1.75 < x ≤ 2
(x, p1) 2 < x ≤ 2.5

.

Define g2 : T ∪ L2 −→ G2 by

g2(x, y) =


(ψ(x), φ(y)) y ≤ 1.5
((1.75− y)ψ(x), y + .25) 1.5 < y ≤ 1.75
(0, 2(x− 1.75) + 2) 1.75 < y ≤ 2
(p2, y) 2 < y ≤ 2.5

.

Let h1 : G1 −→ G1 be defined by

h1(w) =

{
g1(π1

G1
(w), π2

G1
(w)) w ∈ T ∪ L1

(f(π1
G1

(w)), p1) w ∈ P1
.

Let h2 : G2 −→ G2 be defined by

h2(w) =

{
g2(π1

G2
(w), π2

G2
(w)) w ∈ T ∪ L2

(p2, f(π2
G2

(w))) w ∈ P2
.

The following 2 lemmas examines the movement of points under
the bonding maps h1 and h2.
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Figure 4

Figure 3

(0,2)

(0,0) (2,0)
(2.5,0)

G_1

G_2

(0,2.5)

(0,2)

(0,0) (2,0)

P_1

(A,p_1)

P_2 (p_2,A)

Lemma 5. Suppose that k ∈ {1, 2} and that (r, s) ∈ T ∪ Lk
such that r 6= 0. Then there exists a positive integer n such that
hn−1
k (r, s) ∈ T ∪ Lk and hnk(r, s) ∈ Pk

Proof. The proof is shown for k = 1. The proof is similar for k = 2.
Here h1((r, s)) = g1((r, s)). So it suffices to find an n such that
gn1 (r, s) ∈ P1.
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Case 1. Suppose (r, s) ∈ L1. Then g1((r, s)) = (r, p1) ∈ P1. So
take n = 1.

Case 2. Suppose (r, s) ∈ T such that 1.75 < r ≤ 2. Then
g1((r, s)) ∈ L1. Now Case 1 applies. Here take n = 2.

Case 3. Suppose (r, s) ∈ T such that 1.5 < r ≤ 1.75. Then
1.75 < π1

G1
(g1((r, s))) ≤ 2, so Case 2 applies. Now take n = 3.

Case 4. Suppose (r, s) ∈ T such that 1 < r ≤ 1.5. Then
π1
G1

(g1((r, s))) = φ(r) = 1 + .5r. So, 1.5 < π1
G1

(g1((r, s))) =
1 + .5r ≤ 1.75 and hence, Case 3 applies. Here, let n = 4.

Case 5. Suppose (r, s) ∈ T such that .5 < r ≤ 1. Then
π1
G1

(g1((r, s))) = φ(r) = r + .5. So, 1 < π1
G1

(g1((r, s))) = r + .5 ≤
1.5. Thus, Case 4 applies, so let n = 5.

Case 6. Suppose (r, s) ∈ T such that 0 < r ≤ .5. Then
π1
G1

(g1((r, s))) = φ(r) = 2r. Let m be an integer such that
.5 < 2mr ≤ 1. Then, .5 < π1

G1
(gm1 ((r, s))) = 2mr ≤ 1. Hence,

let n = m+ 5. �

Lemma 6. Suppose that k ∈ {1, 2} and (r, s) ∈ T ∪ Lk. Then
for every ε > 0, there exists a negative integer n such that
π1
Gk

(hnk(r, s)) < ε.

Proof. Proof follows from doing proof of Lemma 5 in reverse. �

Lemmas 7 and 8 show how h1 and h2 expands the distances
between points.

Lemma 7. Suppose (r, s), (x, y) ∈ T ∪ L1 such that r 6= x. Then
there exists a positive integer n such that dG1(hn1 (r, s), hn1 (x, y)) ≥
.0625.

Proof. Assume r > x.

Case 1. Suppose x = 0. We may assume that r < .0625.
Let n be a positive integer such that 2n−1r < .0625 ≤ 2nr.
Then dG1(hn1 (r, s), hn1 (0, y)) ≥ |π1

G1
(hn1 (r, s)) − π1

G1
(hn1 (0, y))| =

|(φn(r)− φn(0))| = 2nr ≥ .0625.
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Case 2. Suppose 0 < x < r. Then by Lemma 5, we may
choose n to be a positive integer such that hn−1

1 (r, s) ∈ T ∪ L1

and hn1 (r, s) ∈ P1.

Case 2a. Suppose hn1 (x, y) ∈ P1. Let rn = π1
G1

(hn1 (r, s)) and xn =
π1
G1

(hn1 (x, y)). Then rn and xn are distinct elements of [2, 2.5]P .
Since f : [2, 2.5]P1 −→ [2.5, 3.5]P1 is one-to-one, f(rn) and f(xn)
are distinct elements of [2.5, 3.5]P . Also, since f : [2.5, 3.5]P −→
[0, .5]P1 ∪ [2, 3]P ∪ [3.5, 4P1 ] is one-to-one, f2(rn) and f2(xn) are
distinct elements of [0, .5]P1 ∪ [2, 3]P ∪ [3.5, 4]P .

It follows from Lemma 3 that there exists a k ≥ 0 such that
dP (fk(xn), fk(rn)) ≥ .0625. Hence dG1(hn+k(r, s), hn+k(x, y)) =
dP1((fk(rn), p1), (fk(xn, p1)) =dP (fk(xn), fk(rn)) ≥ .0625.

Case 2b. Suppose hn1 (x, y) 6∈ P1. We may assume that

dG1(π1
G1

(hn1 (r, s)), π1
G1

(hn1 (x, y)) ≤ .0625.

Hence, π1
G1

(hn1 (x, y)) ∈ [2.4375, 2.5]L1 and π1
G1

(hn+1
1 (r, s))

∈ [2, 2.0625]P . Then xn+1 = π1
G1

(hn+1
1 (x, y)) ∈ [2.4375, 2.5]P and

rn+1 = π1
G1

(hn+1
1 (r, s)) ∈ [2.5, 2.625]P . Then the proof is similar to

Case 2a. �

Lemma 8. Suppose (r, s), (x, y) ∈ T ∪ L2 such that s 6= y. Then
there exists a positive integer n such that dG2(hn2 (r, s), hn2 (x, y)) ≥
.0625.

Proof. Proof is similar to proof of Lemma 7. �

Let Y1 = lim←−{G1, h1}∞i=1, and Y2 = lim←−{G2, h2}∞i=1. Let k ∈
{1, 2}. Each element ŵ ∈ Yk is an infinite sequence of ordered
pairs ŵ = ((x1, y1), (x2, y2), ...) where hk(xi, yi) = (xi−1, yi−1). Let
H1 : Y1 −→ Y1 and H2 : Y2 −→ Y2 be shift homeomorphisms in-
duced from the inverse limit constructions.

Define projection maps {πiYk , π
i,1
Yk
, πi,2Yk} such that πiYk(ŵ) = (xi, yi),

πi,1Yk (ŵ) = xi and πi,2Yk (ŵ) = yi. If ŵ, ẑ ∈ Yk, then dYk(ŵ, ẑ) =∑∞
i=1 2−idGk(πiYk(ŵ), πiYk(ẑ)).
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Lemma 9. Let k ∈ {1, 2}. If ŵ, ẑ ∈ Yk and πi,kYk (ŵ) 6= πi,kYk (ẑ) for
some i, then there exists an integer n such that dYk(Hn

k (ŵ),Hn
k (ẑ))≥

.0625

Proof. Proof is for k = 1. Suppose that i is the smallest pos-
itive integer such that πi,1Y1

(ŵ) 6= πi,1Y1
(ẑ). Then for all m ≥ i,

πm,1Y1
(ŵ) 6= πm,1Y1

(ẑ). Let w1 = πi,1Y1
(ŵ), w2 = πi,2Y1

(ŵ), z1 = πi,1Y1
(ẑ),

and z2 = πi,2Y1
(ẑ). It will be shown that there exists an integer n

such that dG1(hn1 (w1, w2), hn1 (z1, z2)) ≥ .0625.

Case 1. Suppose that hj1(w1, w2), hj1(z1, z2) ∈ P1 for every j. Then
hj1(w1, w2) = (f j(w1), p1) and hj1(z1, z2) = (f j(z1), p1). Hence , by
Lemmas 2 and 3, there exists an integer n such that

dG1(hn1 (w1, w2), hn1 (z1, z2)) =dP (fn(w1), fn(z1)) ≥ .0625.

Case 2. Suppose that hj1(w1, w2) ∈ P1 for every j, but there exists
an α such that hα1 (z1, z2) 6∈ P1. Then, by Lemma 6, there exists an
integer n such that π1

G1
(hn1 (z1, z2)) < 1. Then,

dG1(hn1 (w1, w2), hn1 (z1, z2)) ≥ 2.5− 1 = 1.5.

Case 3. Suppose that there exists an j such that hj1(w1, w2),
hj1(z1, z2) 6∈ P1. Then by Lemma 7, there exists an n such that

dG1(hn1 (w1, w2), hn1 (z1, z2)) ≥ .0625.

It follows that dY1(Hn+i
1 (ŵ),Hn+i

1 (ẑ)) = dY1(Hn
1 ◦ H i

1(ŵ),
Hn

1 ◦H i
1(ẑ)) ≥ dG1(hn1 (w1, w2), hn1 (z1, z2)) ≥ .0625. �

Let X = Y1 ∪ Y2/T such that if ŵ ∈ Y1 and ẑ ∈ Y2, then
ŵ is identified to ẑ if and only if π1

Y1
(ŵ), π1

Y1
(ẑ) ∈ T , π1,1

Y1
(ŵ) =

π1,1
Y1

(ẑ), and π1,2
Y1

(ŵ) = π1,2
Y1

(ẑ). The projection maps are defined as
πX(ŵ) = πY1(ŵ) if ŵ ∈ Y1 and πX(ŵ) = πY2(ŵ) if ŵ ∈ Y2. Let

dX(ŵ, ẑ) =
dY1(ŵ, ẑ) ŵ, ẑ ∈ Y1

dY2(ŵ, ẑ) ŵ, ẑ ∈ Y2

inf({dY1(ŵ, q̂) + dY2(q̂, ẑ)|q̂ ∈ Y1 ∩ Y2}) ŵ 6∈ Y2, ẑ 6∈ Y1
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Let F : X −→ X be defined by

F (ŵ) =



H1(ŵ) 0 ≤ π1,2
X (ŵ) ≤ 1.5

H1(ŵ) π1,2
X (ŵ) = p1

H−1
2 (ŵ) 0 ≤ π1,1

X (ŵ) ≤ 1.5

H−1
2 (ŵ) π1,1

X (ŵ) = p2

.

Notice that if 0 ≤ π1,2
X (ŵ) ≤ 1.5 and 0 ≤ π1,1

X (ŵ) ≤ 1.5, then
H1(ŵ) = H−1

2 (ŵ). Hence, F is a homeomorphism.

Theorem 10. F : X −→ X is an expansive homeomorphism.

Proof. Suppose ŵ, ẑ ∈ X such that ŵ 6= ẑ. Then there exists an
integer i such that πiX(ŵ) 6= πiX(ẑ).

Case 1. Suppose πi,1X (ŵ) 6= πi,1X (ẑ). Then ŵ, ẑ ∈ Y1. Hence, by
Lemma 9, there exists an n such that

d(Fn(ŵ), Fn(ẑ)) =dY1(Hn
1 (ŵ),Hn

1 (ẑ)) ≥ .0625.

Case 2. Suppose πi,2X (ŵ) 6= πi,2X (ẑ). Then ŵ, ẑ ∈ Y2. Hence, by
Lemma 9, there exists an n such that

d(Fn(ŵ), Fn(ẑ)) =dY2(Hn
2 (ŵ),Hn

2 (ẑ)) ≥ .0625.

�

The fact that X is planar follows from an application of the
Anderson-Choquet Embedding Theorem [1] and although not dif-
ficult to show, it is tedious and will be left out.
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Figure 5
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