Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT (©) by Topology Proceedings. All rights reserved.



TOPOLOGY
PROCEEDINGS

Volume 27, No. 2, 2003
Pages 559-573

AN EXPANSIVE HOMEOMORPHISM ON A
TWO-DIMENSIONAL PLANAR CONTINUUM

CHRISTOPHER MOURON

ABSTRACT. A homeomorphism h : X — X is called ezpan-
sive provided that for some fixed ¢ > 0 and every z,y € X
there exists an integer n, dependent only on x and y, such that
d(h"™(z),h"(y)) > c. A two-dimensional planar continuum
that admits an expansive homeomorphism is constructed.

1. INTRODUCTION

A continuum is a nondegenerate compact connected metric
space. A homeomorphism h : X — X is called expansive pro-
vided that for some fixed ¢ > 0 and every distinct z,y € X
there exists an integer n, dependent only on x and y, such that
dx(h™(z),h™(y)) > c. Expansive homeomorphisms exhibit chaotic
behavior in that no matter how close two points are either their for-
ward or reverse images will eventually be a certain distance apart.
The Plykin attractor [4] and the dyadic solenoid [5] are examples
of continua that admit expansive homeomorphisms.
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A continuum is I-dimensional if for every € > 0 there exists a
finite open cover U whose mesh is less than e such that for every
y € X, y is in at most 2 elements of . If X is a plane contin-
uum, then X is 2-dimesional if X contains an open disk and 1-
dimensional otherwise. A planar continuum X is a non-separating
plane continuum provided that R? — X is connected. The Plykin
attractor is a Lakes of Wada continuum that separates the plane
into 4 components and is the most widely known 1-dimensional
planar continuum that admits an expansive homeomorphism. It
has been shown by the author that 1-dimensional non-separating
plane continua do not admit expansive homeomorphisms. (In fact,
tree-like continua do not admit expansive homeomorphisms [3].)
This paper gives an example of a 2-dimensional planar continuum
that admits an expansive homeomorphism and separates the plane.
However, the following question remains open: Does there exist a 2-
dimensional non-separating plane continuum that admits expansive
homeomorphism?

2. INVERSE LIMITS AND THE PLYKIN ATTRACTOR

A useful method of constructing continua is through inverse lim-
its. Let {G;}:2, be a sequence of topological spaces. For each i < j,
let f{ : G; — G, be a continuous function called a bonding map.
If f{ = f} o f] for each k < i < j, then the collection {G;, f/}22,
is called an inverse system. Each of the spaces G; is called a factor
space of the inverse system.

Since each bonding map f} is determined by the collection of
one step bonding maps ff“ = f; for k < i < j, it is sufficient
to consider only these maps. The inverse system {G;, f;}32, is
sometimes written as

e, e e e L

Every inverse system {Gj, fi}5°, determines a topological space
X called the inverse limit of the system and is written im{G;, f;}22;.

The space X is the subspace of the Cartesian product [[>2; G; given
by

X = @{Gl, fz}fil = {(IL‘z)fil S H;.il Gz|f1($l+1) = x; for each Z}
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X has the subspace topology induced on it by [[72; G;. If x =
()2, and y = (y;)52, are two points of the inverse limit, we define
distance to be

dix,y) = T, “,

where d; is the metric on G;. If each of the factor spaces G = G;
and each of the bonding maps f = f; are the same, then there is
natural homeomorphism on the inverse limit f : X — X defined

by

~

f(z1,22,73...) = (f(21), f(22), f(23),...) = (f(21), 71, 225 ...

We call fthe shift homeomorphism on X. Notice that

~

[ YNx1, 20, w3...) = (w2, 23, 24, ...).
The construction of the Plykin attractor will be through the
inverse limit of the common factor space P with common bonding
map f. Let P =1[0,4]/{A, B} where A is the identification of 0,1,

and 2 and B is the identification of 3 and 4 in the interval [0, 4]
(see Figure 1). Define

min{ |z, |z — 1], |z — 2| z € [0,3]}
da(®) =4 min{lz — 3|+ 1|z — 4|+ 1, € (3,4]}

min{|z| +1,]z — 1|+ 1,[z — 2|+ 1 z€[0,2]}
(%) =\ min{|e — 3|, |z — 4|, x e (2,4]}

Define distance on P by

dp(z,y) = min{|z — y|,do(2) + da(y), dp(z) + dp(y) }-

Let f: P — P be the bonding map defined by
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(2.5 — 2z 0<x<.25
1+ 2(x —.25) 25 <x<.75

25-2(1—z) . 75<z<]1
25—4(z—1) 1<z<1.125
1+8(x—1.125) 1.125 <z < 1.375
34+4(z—1.375) 1.375 <z < 1.625
fa)={ 1+8(L875—2) 1625 <z <1875
25-4(2—z) 1875<x<?2
25+2z—-2) 2<z<275
3-2(x—275) 275<x<3
25-2z—-3) 3<x<325

2(x — 3.25) 3.25 <z < 3.75

| 25-2(4-2) 375<w<4

Motivation for f(z) comes from Figure 5.6 on page 210 of [2]. For
a pictorial representation of f see Figure 2. Let P = @{P, fitey
where f; = f for each i. Then x = {x1,x2,...} is an element of P
provided that f(zj+1) = fi(zit+1) = z; for each i. For x,y € P,
define distance as dp(x,y) = > o0, 274 (dp (x4, yi)). Let f:P—P
be the shift homeomorphism induced by f.

Proposition 1. Suppose x = (x1,2,...) € P, then the following

are true:

(1) If x; € (0,1) then x;y1 € (3.25,3.75).

(2) If z; € ( ,2) then zi41 € (.25,.75)U(1.125,1.25)U(1.75, 1.875).

(3) If x; € (2,2.5) then ;41 € (0,.25) U (1,1.125) U (1.875,2) U
(1.25,1.3125) U (1.6875, 1.75) U (3,3.25) U (3.75,4).

(4) If z; € (2.5, ) then ;11 € (1.3125,1.375) U (1.625,1.6875) U
(2,2.25) U (2.75, 3).

(5) If 21 € (3,4) then x531 € (1.375,1.625) U (2.25,2.75).

The next two lemmas show how f expands the distances between
points.

Lemma 2. Suppose ;1 = y;—1 and x; # y;, then either dp(z;,y;) >
.0625 or dp(l’i+1,yi+1) Z .0625.
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Proof. The proof of this lemma contains a large number of cases of
which 3 are shown. The proof of the other cases are similar.

Case 1. Suppose z;,y; € (0,1). Since f maps the interval (0,.75)
one-to-one and onto (1,2.5)/A, f maps (.25, 1) one-to-one and onto
(1,2.5)/A and x;—; = y;—1, we may take x; € (0,.25) and y; €
(.75,1). Then z;+1 € (3.25,3.375) and y;+1 € (3.625,3.75). Hence,
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dp($i+1,yi+1) > .25 > .0625.

Case 2. Suppose z; € (0,1) and y; € (1,2). Then x;4; €
(3.25,3.75) and y; 11 € (.25,.75)U(1.125, 1.25)U(1.75, 1.875). Hence,

dp(.l‘i+1,yi+1) > .375 > .0625.

Case 3. Suppose z; € (0,1) and y; € (2,2.5). Then z;_; €
(1,2.5)/A and y;—1 € (2.5,3.5). Thus, z;—1 # y;—1 which is a
contradiction. O

Lemma 3. Suppose dp(x;,y;) < .0625 for all i > 1 then
dp(f(21), f(y1)) = 2dp(z1, 91)-

Proof. The proof of this lemma also contains a large number of
cases of which 2 are shown. Again, the proof of the other cases are
similar. From Lemma 2 we may assume that x7 # y1.

Case A. Suppose x1,y; € (3,4). There are 8 subcases to consider:

Case A.1l. Suppose x1,y; € (3,3.25), then dp(z1,y1) = |y1 — 1]-

Here, f(z1), f(y1)€(2,2.5). So, dp(f(x1), f(y1))=[f(y1)— f(z1)| =
12.5 — 2(y1 — 3) — (2.5 — 2(x1 — 3))| = 2|y1 — 1| = 2dp(z1,y1).

Case A.2. Suppose x1 €(3,3.25), y1 €(3.25,3.5), then dp(x1,y1) =

Yy1—o1. Herea f(xl) € (27 25)7 f(yl) € (07 5) 807 dP(f(ml)a f(yl))
f(@1) =2+ f(y1) =2.5-2(21 —3) =2+ 2(y1 —3.25) = 2(y1 —x1) =
2dp(x1,91).

Case A.3. Suppose x1,y; € (3.25,3.5), then dp(z1,y1) =|y1 —x1].

Here, f(xl)a f(yl) € (07 5) SO? dP(f(xl)vf(yl)) = |f(y1)_f(x1)| =
|2(y1 — 3.25) - (2(1‘1 — 3.25))| = 2|y1 — J}1| = 2dp(l‘1,y1).

Case A.4. Suppose z; € (3.375,3.5), y1 € (3.5,3.625) then
dP(mbyl) =Y — 21 Herea f(xl) S (2575)7 f(yl) € (57 75) SO7
dp(f(z1), f(y1)) = f(y1) = f(21) = 2(y1 — 3.25) — (2(z1 — 3.25)) =
2(y1 — 1) = 2dp(w1,91)-

Case A.5. Suppose x1 € (3.5,3.75), y1 €(3.5,3.75) then dp(x1, y1) =
ly1 — 1| Here, f(z1),f(y1) € (5,1). So, dp(f(z1), f(y1)) =
|fy1) = flz)] = [2(y1 — 3.25) — (2(z1 — 3.25))| = 2|y1 — a1 =
2dp (71, Y1)
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Case A.6. Suppose r1 € (3.625,3.75), y1 € (3.75,3.875) then
dp(z1,91) = y1 — 1. Here, f(z1) € (5,1), f(y1) € (2,2.25). So,
dp(f(21), f(y1) = fly1) —24+1— f(a1) = 25— 24 —y1) — 2+ 1~
(2(x1 —3.25)) = 2(y1 — 21) = 2dp(x1,y1).

Case A.7. Suppose z1,y1 € (3.75,4) then dp(x1,y1) = |y1 — x1].

Here, f(z1), f(z2) € (2,2.5). So, dp(f(z1), f(y1)) = [f(y1) —
f(xz1)] = 12.5-2(4—y1)—(2.5-2(4—21))| = 2y1—21| = 2dp(21, Y1)

Case A.8. Suppose z1 € (3,3.25), y1 € (3.75,4) then x9 €
(2.25,2.375)U(1.375,1.4375) and y, € (2.625,2.75)U(1.5625,1.625).
So, dp(x2,y2) > .125 > .0625 which is a contradiction.

Case B. Suppose z; € (2,3) and y; € (3,4). Since dp(z1,y1) <
.0625, there are 2 subcases to consider:

Case B.1. Suppose z; € (2.9375,3) and y; € (3,3.0625) then
dp(x1,y1) = |y1 — x1|. Here, f(x1) € (2.5,2.625) and f(y1) €
(2.375,2.5).  So, dp(f(z1),f(y1)) = |fly) — fl@)| =
2.5 =2(y1 —3) — (3 —2(21 — 2.75))| = 2[y1 — 21|.

Case B.2. Suppose z; € (2.9375,3) and y; € (3.9375,4) then
dp(x1,91) = |7 — 21 — y1|. Here, f(z1) € (2.5,2.625) and f(y1) €

(2.375,2.5).  So, plane dp(f(z1), f(y1)) = [f(y1) — f(z1)] =
‘2.5—2(4—y1)—(3—2(:{]1—2.75))‘ :2‘7—$1—y1‘. ]

The next theorem states that the shift homeomorphism on the
Plykin attractor is expansive.

Theorem 4. ]?: P — P is an expansive homeomorphism with
expansive constant .0625.

Proof. Suppose x={x1, 2, ...}, y= {y1,y2, ...} are distinct points of
P. Let ¢ be the smallest index such that x; # ;.
Case 1. Suppose i = 1 and dp(zk,yr) > .0625 for some k& > 1.

Then f2*(x)= {2k, Trs1, ...} and F2F(y)= {yk, Yrs1, ... }. Hence,

dp(FYF(x), F4(y))> dp(ap, yr) > 0625,

Case 2. Suppose ¢ = 1 and dp(zg,yr) < .0625 for all positive
integers k. Let n be an integer such that

log2(.0625/dp(x1,y1)) < n < log2(.0625/dp(x1,y1)) + 1.
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Then it follows from Lemma 3 that

dp(f"(x), ()= dp(f™(@1), f* (1)) > 2"dp(21,91)) > .0625.

Case 3. Suppose ¢ > 1. Then by Lemma 2, either dp(z;,y;) >
0625 or dp(zit1,¥yi+1) > .0625. This is similar to Case 1) by letting
k=tork=14+1. O

3. CONSTRUCTION OF THE 2-DIMENSIONAL PLANE CONTINUUM
X THAT ADMITS AN EXPANSIVE HOMEOMORPHISM.

The 2-dimensional planar continuum X that admits an expansive
homeomorphism that is constructed is the compactification of a
disk minus two points, D {a b}, whose boundary contains P;
and Po (see figure 5). Let f1 and f2 be shift homeomorphisms
on Plykin attractors P; and P2. The expansive homeomorphisms
F on X uses the shift homeomorphism f1 When restricted to P
and the inverse of the shift homeomorphism f2 when restricted
to Pp. If two distinct points x,y € D — {a, b} have different 1st
coordinates, then it is shown that there is a positive integer n such
that dx (F"(x), F™(y)) > c. On the other hand if x, y have different
2nd coordinates, then it is shown that there is a positive integer
n such that dx(F~"(x),F"(y)) > ¢, where c¢ is the expansive
constant.

The construction of X begins by creating 2 homeomorphic con-
tinua Y7, Y2 with inverse limits that use single bonding maps h, ha
on factor spaces G'1, Go. To construct the factor space, define

T={(z,y)|lx >0,y >0,z +y <2}
Ly ={(z,0)]2 <z <25}, Ly = {(0,y)|2 < y < 2.5}

P = {(‘Tvpl)’x € P}v Py = {(p%y)‘y S P}

Then let Gy = T'U Ly U P;, where the point (2.5,0) in L; is iden-
tified to the point (A,p1) in P; and let Go = T'U Ly U P,, where
the point (0,2.5) in Ly is identified to the point (p2, A) in P ( see
Figures 3 and 4).

To define distance on G and Ga, let ng,wg2 be the projection
maps on the kth coordinate for G; and G2, where k € {1,2}. Also
for k € {1,2} and z,y € Py define

d, (2,y) = dp,(2,y) =dp(ag, (2),7¢, ().
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If z,y € T U Ly, define
de, (2, y) =drur, (2, y) = |7§, () — 76, ()] + |7g, (2) = 7E, (Y)]-
Ifx €eTULy and y € Py, define
dGl (m,y) :dTULl (mv (2'53 0))—|—dp1((A,p1),y).
Ifx € TULy and y € Ps, define

da, ('Tv y) =drur, (.1‘, (Ov 2.5))+dp2((p27 A)7 y)'
To define the bonding maps hq, ha, let ¢, : [0,2] — [0, 2] by

2z 0<z<.b
b(z) = z+.5 .5§z<17

1452 1<2<2

.0z 0<z<l1
W(z) = z—.5 1<z2<15

2(z—1) 15<2<2
Define g1 : T U L1 — Gy by

(o(z),¥(y)) <15

(x4 .25,(1.75 —x)Y(y)) 1.5 <x<1.75
91(@9) = (2(z — 1.75) + 2,0) 175 <z < 2

(z,p1) 2 <z <25

Define gy : T'U Ly — G by

(U(z), o(y)) y <15

((1.75 — y)(z),y +.25) 1.5 <y < 1.75
92(2.9) = (0,2(x — 1.75) + 2) 1.75 < y < 2

(P2, ) 2<y<25

Let hy : Gi1 — G be defined by

h . 91(7rG1( )7%‘1(“’)) weTUL
1) = (f(mg, (w)), p1) we Py

Let ho : Go — G4 be defined by

b B 92(7T1GQ(w),7ré2(w)) weTULy
20) =\ (o, Sl () weP

The following 2 lemmas examines the movement of points under
the bonding maps h; and ho.
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P 1

(Ap_1)

Figure 3

P 2

G2

Figure 4

(0,0) (2,0)

Lemma 5. Suppose that k € {1,2} and that (r,s) € T U Ly
such that r # 0. Then there exists a positive integer n such that
hy~Y(r,s) € TU Ly and h}(r,s) € Dy

Proof. The proof is shown for k£ = 1. The proof is similar for k = 2.
Here hi((r,s)) = g1((r,s)). So it suffices to find an n such that
gt (r,s) € Py.



EXPANSIVE HOMEOMORPHISM 569

Case 1. Suppose (r,s) € L;. Then ¢g1((r,s)) = (r,p1) € P1. So
take n = 1.

Case 2. Suppose (r,s) € T such that 1.75 < r < 2. Then
g1((r,s)) € Ly. Now Case 1 applies. Here take n = 2.

Case 3. Suppose (r,s) € T such that 1.5 < r < 1.75. Then
1.75 < 7'['101 (91((r,s))) < 2, so Case 2 applies. Now take n = 3.

Case 4. Suppose (r,s) € T such that 1 < r < 1.5. Then

6, (91((r;s))) = é(r) = 1+ 5. So, 1.5 < g (91((r,))) =
1+ .5r < 1.75 and hence, Case 3 applies. Here, let n = 4.

Case 5. Suppose (r,s) € T such that .5 < r < 1. Then
Wél (gl((r7 5))) = ¢(T> =7r+4.5. S0, 1< Wé'l (gl((rv 8))) =r+.5<
1.5. Thus, Case 4 applies, so let n = 5.

Case 6. Suppose (r,s) € T such that 0 < r < .5. Then
7, (91((r,8))) = ¢(r) = 2r. Let m be an integer such that
5 < 2™r < 1. Then, .5 < wg, (91"((r,s))) = 2™r < 1. Hence,
let n =m + 5. 0

Lemma 6. Suppose that k € {1,2} and (r,s) € T U L. Then

for every ¢ > 0, there exists a negative integer n such that
g, (hi(r,s)) < e

Proof. Proof follows from doing proof of Lemma 5 in reverse. [

Lemmas 7 and 8 show how h; and he expands the distances
between points.

Lemma 7. Suppose (r,s),(x,y) € T'U Ly such that r # x. Then
there exists a positive integer n such that dg, (b} (r,s), h}(x,y)) >
.0625.

Proof. Assume r > x.

Case 1. Suppose x = 0. We may assume that r < .0625.
Let n be a positive integer such that 2" 'r < .0625 < 2"r.
Then dg, (h{(r,s),h{(0,y)) = |n&, (hi(r,s)) — g, (7(0,9))] =
[(@"(r) — ¢™(0))| = 2™r > .0625.
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Case 2. Suppose 0 < x < r. Then by Lemma 5, we may
choose n to be a positive integer such that h?~'(r,s) € T U L,
and hY(r,s) € Py.

Case 2a. Suppose hl(z,y) € P1. Let r, = nf; (h}(r,s)) and x, =
wél(h{l(aj,y)). Then r, and z, are distinct elements of [2,2.5]p.
Since f : [2,2.5]p, — [2.5,3.5]p, is one-to-one, f(r,) and f(xy)
are distinct elements of [2.5,3.5]p. Also, since f : [2.5,3.5]p —
[0,.5]p, U[2,3]p U[3.5,4p,] is one-to-one, f2(r,) and f2(z,) are
distinct elements of [0,.5]p, U [2,3]p U [3.5,4]p.

It follows from Lemma 3 that there exists a & > 0 such that
dp(f*(xn), fE(rn)) > .0625. Hence dg, (h"T*(r,s), A"+ (2,y)) =
dp, ((f*(rn), p1), (f¥ (@0, p1)) =dp(fF(zn), fF(rn)) > .0625.

Case 2b. Suppose hl(x,y) € Pi. We may assume that
dg, (77%}1 (h1(r,s)), 77%;1 (hi(z,y)) < .0625.

Hence, g, (hi(x,y)) € [2.4375,2.5]1, and W};l(h?ﬂ(r, s))

€ [2,2.0625]p. Then 11 = mf (hi+!(2,y)) € [2.4375,2.5]p and
Trtl = ﬂ'él (Wt (r, s)) € [2.5,2.625]p. Then the proof is similar to
Case 2a. O

Lemma 8. Suppose (r,s),(z,y) € T U Ly such that s # y. Then
there exists a positive integer n such that dg,(h5(r,s), hy(x,y)) >
.0625.

Proof. Proof is similar to proof of Lemma 7. ([l

Let Y7 = @{Gl,hl}fil, and Yy = @{Gg,hg}ﬁl. Let k£ €
{1,2}. Each element w € Y} is an infinite sequence of ordered
pairs w = ((z1,41), (x2,¥2), ...) where hg(x;,y;) = (xi—1,yi—1). Let
Hy:Y7 — Y7 and Hs : Yo — Y5 be shift homeomorphisms in-
duced from the inverse limit constructions.

Define projection maps {ﬂ@k , ﬂ’i};, ﬂ;:} such that 7r§',lc (W) = (x4, 9i),
Ty (W) = 2; and 1> (W) = yi. If W,Z2 € Y}, then dy, (W,2) =

$i% 2 g (i (W), 4, (2).
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.0625

Proof. Proof is for k = 1. Suppose that 1 is the smallest pos-
itive integer such that 7y, '(w) # T, (z) Then for all m > i,

~

i1 o /2 i1
TR (W) £ mp(3). Let wy =y (%), wy = mA(W), 2 = 7 (@),
and zy = 77912 (z). Tt will be shown that there exists an integer n
such that dg, (R} (w1, w2), h} (21, 22)) > .0625.

Case 1. Suppose that h{ (w1, ws), h{(zl, z9) € P for every j. Then

R (w1, w2) = (f7(w1),p1) and h](z1,22) = (f7(21),p1). Hence , by
Lemmas 2 and 3, there exists an integer n such that

da, (R (w1, w2), by (21, 22)) =dp(f"(w1), ["(21)) = .0625.

Case 2. Suppose that h{ (w1, wy) € Py for every j, but there exists
an « such that h{(z1, z2) ¢ Pi. Then, by Lemma 6, there exists an
integer n such that ﬂ'é (h}(z1,22)) < 1. Then,

dG1 (h (wl,wg) hl (21722)) 2 25—-1=1.5.

Case 3. Suppose that there exists an j such that h{(wl,wg),
h(z1,22) € P1. Then by Lemma 7, there exists an n such that

dGl(h (wl,wQ) hl (21,22)> > .0625.

It follows that dy,(H'"(W), H'"™(Z)) = dy,(H} o Hi(W),
HT o Hi(Z)) > dg, (h? (w1, w2), h} (21, 22)) > .0625. O

Let X = Y1 U YQ/T such that if w € Y1 and z € Y5, then

w is 1dent1ﬁed to z if and only if 7y, (W), 7y, (z) € T, 7y (W) =

}1/1( ), and 7TY (W) = 7r}1/2( ). The projection maps are defined as
7TX( ) =7y, (W )1fW€Y1 and mx (W) = my, (W) if w € Y5. Let

dx (W,2) =
dy, (W,2) w,2 €Yy
dy, (W,2) W,ZcYs
inf({dy; (W, @) + dy, (@, Z)[a €Y1 NY2}) WgYs,2¢YV)
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Let F': X — X be defined by

Hi(W) 0<m(Ww) <15

Hy(w) 77;52(‘7") =p1
FW) =93 HyY(w) 0<rb'(w) <15

Hy'(w) 7y (W) = p2

~

Notice that if 0 < w}(’Q(vAv) < 15and 0 < wi(’-l(w) < 1.5, then
Hy(W) = Hy*(W). Hence, F is a homeomorphism.

Theorem 10. F': X — X is an expansive homeomorphism.

Proof. Suppose W,z € X such that W # z. Then there exists an
integer ¢ such that 7' (W) # 7% (2).

Case 1. Suppose ﬂé’cl(vAv) # ﬂ%l(i) Then w,z € Y;. Hence, by
Lemma 9, there exists an n such that

d(F™(w), F™(z)) =dy, (HM(W), H}(Z)) > .0625.

Case 2. Suppose wé’(z(vAv) #+ Wé’(Z(/Z\). Then w,z € Y,. Hence, by
Lemma 9, there exists an n such that

A(F" (W), F*(2)) =dy, (HR (W), H} (2)) > .0625.

The fact that X is planar follows from an application of the
Anderson-Choquet Embedding Theorem [1] and although not dif-
ficult to show, it is tedious and will be left out.



- HOMEOMORPHISM 573

)

Figure5

REFERENCES

[1] R.D Anderson and Gustave Choquet, A plane continuum no two of whose
nondegenerate subcontinua are homeomorphic: an application of inverse
limits, Proc. Amer. Math. Soc. 10(1959), 347-353.

[2] R. Devaney, An Introduction to Chaotic Dynamical Systems (Addison-
Wesley, Redwood City, CA, 2nd ed., 1989).

[3] C. Mouron, Tree-like continua do not admit expansive homeomorphisms,
Proc. Amer. Math. Soc. 130 (2002), no. 11, 3409-3413

[4] R.V. Plykin, On the geometry of hyperbolic attractors of smooth cascades,
Russian Math. Surverys 39(1974), 85-131.

[5] R.F. Williams, A note on unstable homeomorphisms, Proc. Amer. Math.
Soc. 6(1955), 308-309.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, RHODES COL-
LEGE, MEMPHIS, TN 38112
E-mail address: mouronc@rhodes.edu





