# **Topology Proceedings**



| //topology.auburn.edu/tp/           |
|-------------------------------------|
| ology Proceedings                   |
| artment of Mathematics & Statistics |
| urn University, Alabama 36849, USA  |
| log@auburn.edu                      |
| -4124                               |
|                                     |

COPYRIGHT © by Topology Proceedings. All rights reserved.



## AN EXPANSIVE HOMEOMORPHISM ON A TWO-DIMENSIONAL PLANAR CONTINUUM

CHRISTOPHER MOURON

ABSTRACT. A homeomorphism  $h: X \to X$  is called *expansive* provided that for some fixed c > 0 and every  $x, y \in X$  there exists an integer n, dependent only on x and y, such that  $d(h^n(x), h^n(y)) > c$ . A two-dimensional planar continuum that admits an expansive homeomorphism is constructed.

#### 1. INTRODUCTION

A continuum is a nondegenerate compact connected metric space. A homeomorphism  $h: X \to X$  is called *expansive* provided that for some fixed c > 0 and every distinct  $x, y \in X$ there exists an integer n, dependent only on x and y, such that  $d_X(h^n(x), h^n(y)) > c$ . Expansive homeomorphisms exhibit chaotic behavior in that no matter how close two points are either their forward or reverse images will eventually be a certain distance apart. The Plykin attractor [4] and the dyadic solenoid [5] are examples of continua that admit expansive homeomorphisms.

<sup>2000</sup> Mathematics Subject Classification. Primary 54H20, 54F50; Secondary 54E40.

 $Key\ words\ and\ phrases.$  Expansive homeomorphism, planar continua, Plykin attractor.

A continuum is 1-dimensional if for every  $\epsilon > 0$  there exists a finite open cover  $\mathcal{U}$  whose mesh is less than  $\epsilon$  such that for every  $y \in X$ , y is in at most 2 elements of  $\mathcal{U}$ . If X is a plane continuum, then X is 2-dimensional if X contains an open disk and 1dimensional otherwise. A planar continuum X is a *non-separating plane* continuum provided that  $\mathbb{R}^2 - X$  is connected. The Plykin attractor is a Lakes of Wada continuum that separates the plane into 4 components and is the most widely known 1-dimensional planar continuum that admits an expansive homeomorphism. It has been shown by the author that 1-dimensional non-separating plane continua do not admit expansive homeomorphisms. (In fact, tree-like continua do not admit expansive homeomorphisms [3].) This paper gives an example of a 2-dimensional planar continuum that admits an expansive homeomorphism and separates the plane. However, the following question remains open: Does there exist a 2dimensional non-separating plane continuum that admits expansive homeomorphism?

#### 2. Inverse limits and the Plykin attractor

A useful method of constructing continua is through *inverse limits.* Let  $\{G_i\}_{i=1}^{\infty}$  be a sequence of topological spaces. For each i < j, let  $f_i^j : G_j \longrightarrow G_i$  be a continuous function called a *bonding map*. If  $f_k^j = f_k^i \circ f_i^j$  for each k < i < j, then the collection  $\{G_i, f_i^j\}_{i=1}^{\infty}$ is called an *inverse system*. Each of the spaces  $G_i$  is called a *factor space* of the inverse system.

Since each bonding map  $f_k^j$  is determined by the collection of one step bonding maps  $f_i^{i+1} = f_i$  for  $k \leq i < j$ , it is sufficient to consider only these maps. The inverse system  $\{G_i, f_i\}_{i=1}^{\infty}$  is sometimes written as

$$G_1 \xleftarrow{f_1} G_2 \xleftarrow{f_2} G_3 \dots G_{i-1} \xleftarrow{f_{i-1}} G_i \xleftarrow{f_i} \dots$$

Every inverse system  $\{G_i, f_i\}_{i=1}^{\infty}$  determines a topological space X called the *inverse limit* of the system and is written  $\lim_{i \to 1} \{G_i, f_i\}_{i=1}^{\infty}$ . The space X is the subspace of the Cartesian product  $\prod_{i=1}^{\infty} G_i$  given by

$$X = \varprojlim \{G_i, f_i\}_{i=1}^{\infty} = \{(x_i)_{i=1}^{\infty} \in \prod_{i=1}^{\infty} G_i | f_i(x_{i+1}) = x_i \text{ for each } i\}.$$

X has the subspace topology induced on it by  $\prod_{i=1}^{\infty} G_i$ . If  $\mathbf{x} = (x_i)_{i=1}^{\infty}$  and  $\mathbf{y} = (y_i)_{i=1}^{\infty}$  are two points of the inverse limit, we define distance to be

$$d(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{\infty} \frac{d_i(x_i, y_i)}{2^i},$$

where  $d_i$  is the metric on  $G_i$ . If each of the factor spaces  $G = G_i$ and each of the bonding maps  $f = f_i$  are the same, then there is natural homeomorphism on the inverse limit  $\hat{f} : X \longrightarrow X$  defined by

$$\widehat{f}(x_1, x_2, x_3...) = (f(x_1), f(x_2), f(x_3), ...) = (f(x_1), x_1, x_2, ...).$$

We call  $\widehat{f}$  the *shift homeomorphism* on X. Notice that

$$\widehat{f}^{-1}(x_1, x_2, x_3...) = (x_2, x_3, x_4, ...)$$

The construction of the Plykin attractor will be through the inverse limit of the common factor space P with common bonding map f. Let  $P = [0, 4]/\{A, B\}$  where A is the identification of 0,1, and 2 and B is the identification of 3 and 4 in the interval [0, 4] (see Figure 1). Define

$$d_a(x) = \begin{cases} \min\{|x|, |x-1|, |x-2| & x \in [0,3]\}\\ \min\{|x-3|+1, |x-4|+1, & x \in (3,4]\} \end{cases}$$

and

$$d_b(x) = \begin{cases} \min\{|x|+1, |x-1|+1, |x-2|+1 & x \in [0,2]\}\\ \min\{|x-3|, |x-4|, & x \in (2,4]\} \end{cases}.$$

Define distance on P by

$$d_P(x, y) = \min\{|x - y|, d_a(x) + d_a(y), d_b(x) + d_b(y)\}.$$

Let  $f: P \longrightarrow P$  be the bonding map defined by

$$f(x) = \begin{cases} 2.5 - 2x & 0 \le x < .25 \\ 1 + 2(x - .25) & .25 \le x < .75 \\ 2.5 - 2(1 - x) & .75 \le x < 1 \\ 2.5 - 4(x - 1) & 1 \le x < 1.125 \\ 1 + 8(x - 1.125) & 1.125 \le x < 1.375 \\ 3 + 4(x - 1.375) & 1.375 \le x < 1.625 \\ 1 + 8(1.875 - x) & 1.625 \le x < 1.875 \\ 2.5 - 4(2 - x) & 1.875 \le x < 2 \\ 2.5 + 2(x - 2) & 2 \le x < 2.75 \\ 3 - 2(x - 2.75) & 2.75 \le x < 3 \\ 2.5 - 2(x - 3) & 3 \le x < 3.25 \\ 2(x - 3.25) & 3.25 \le x < 3.75 \\ 2.5 - 2(4 - x) & 3.75 \le x < 4 \end{cases}$$

Motivation for f(x) comes from Figure 5.6 on page 210 of [2]. For a pictorial representation of f see Figure 2. Let  $\mathcal{P} = \varprojlim \{P, f_i\}_{i=1}^{\infty}$ where  $f_i = f$  for each i. Then  $\mathbf{x} = \{x_1, x_2, ...\}$  is an element of  $\mathcal{P}$ provided that  $f(x_{i+1}) = f_i(x_{i+1}) = x_i$  for each i. For  $\mathbf{x}, \mathbf{y} \in \mathcal{P}$ , define distance as  $d_{\mathcal{P}}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{\infty} 2^{-i} (d_{\mathcal{P}}(x_i, y_i))$ . Let  $\hat{f} : \mathcal{P} \longrightarrow \mathcal{P}$ be the shift homeomorphism induced by f.

**Proposition 1.** Suppose  $\mathbf{x} = (x_1, x_2, ...) \in \mathcal{P}$ , then the following are true:

- (1) If  $x_i \in (0,1)$  then  $x_{i+1} \in (3.25, 3.75)$ .
- (2) If  $x_i \in (1,2)$  then  $x_{i+1} \in (.25, .75) \cup (1.125, 1.25) \cup (1.75, 1.875)$ .
- (3) If  $x_i \in (2, 2.5)$  then  $x_{i+1} \in (0, .25) \cup (1, 1.125) \cup (1.875, 2) \cup (1.25, 1.3125) \cup (1.6875, 1.75) \cup (3, 3.25) \cup (3.75, 4).$
- (4) If  $x_i \in (2.5,3)$  then  $x_{i+1} \in (1.3125, 1.375) \cup (1.625, 1.6875) \cup (2, 2.25) \cup (2.75, 3).$
- (5) If  $x_i \in (3,4)$  then  $x_{i+1} \in (1.375, 1.625) \cup (2.25, 2.75)$ .

The next two lemmas show how f expands the distances between points.

**Lemma 2.** Suppose  $x_{i-1} = y_{i-1}$  and  $x_i \neq y_i$ , then either  $d_P(x_i, y_i) \ge$  .0625 or  $d_P(x_{i+1}, y_{i+1}) \ge$  .0625.



Figure 1



Figure 2

*Proof.* The proof of this lemma contains a large number of cases of which 3 are shown. The proof of the other cases are similar.

**Case 1.** Suppose  $x_i, y_i \in (0, 1)$ . Since f maps the interval (0, .75) one-to-one and onto (1, 2.5)/A, f maps (.25, 1) one-to-one and onto (1, 2.5)/A and  $x_{i-1} = y_{i-1}$ , we may take  $x_i \in (0, .25)$  and  $y_i \in (.75, 1)$ . Then  $x_{i+1} \in (3.25, 3.375)$  and  $y_{i+1} \in (3.625, 3.75)$ . Hence,

 $d_P(x_{i+1}, y_{i+1}) \ge .25 > .0625.$ 

**Case 2.** Suppose  $x_i \in (0,1)$  and  $y_i \in (1,2)$ . Then  $x_{i+1} \in (3.25, 3.75)$  and  $y_{i+1} \in (.25, .75) \cup (1.125, 1.25) \cup (1.75, 1.875)$ . Hence,

$$d_P(x_{i+1}, y_{i+1}) \ge .375 > .0625.$$

**Case 3.** Suppose  $x_i \in (0,1)$  and  $y_i \in (2,2.5)$ . Then  $x_{i-1} \in (1,2.5)/A$  and  $y_{i-1} \in (2.5,3.5)$ . Thus,  $x_{i-1} \neq y_{i-1}$  which is a contradiction.

**Lemma 3.** Suppose  $d_P(x_i, y_i) < .0625$  for all  $i \ge 1$  then  $d_P(f(x_1), f(y_1)) \ge 2d_P(x_1, y_1).$ 

*Proof.* The proof of this lemma also contains a large number of cases of which 2 are shown. Again, the proof of the other cases are similar. From Lemma 2 we may assume that  $x_1 \neq y_1$ .

**Case A.** Suppose  $x_1, y_1 \in (3, 4)$ . There are 8 subcases to consider:

**Case A.1.** Suppose  $x_1, y_1 \in (3, 3.25)$ , then  $d_P(x_1, y_1) = |y_1 - x_1|$ . Here,  $f(x_1), f(y_1) \in (2, 2.5)$ . So,  $d_P(f(x_1), f(y_1)) = |f(y_1) - f(x_1)| = |2.5 - 2(y_1 - 3) - (2.5 - 2(x_1 - 3))| = 2|y_1 - x_1| = 2d_P(x_1, y_1)$ .

**Case A.2.** Suppose  $x_1 \in (3, 3.25)$ ,  $y_1 \in (3.25, 3.5)$ , then  $d_P(x_1, y_1) = y_1 - x_1$ . Here,  $f(x_1) \in (2, 2.5)$ ,  $f(y_1) \in (0, .5)$ . So,  $d_P(f(x_1), f(y_1)) = f(x_1) - 2 + f(y_1) = 2.5 - 2(x_1 - 3) - 2 + 2(y_1 - 3.25) = 2(y_1 - x_1) = 2d_P(x_1, y_1)$ .

**Case A.3.** Suppose  $x_1, y_1 \in (3.25, 3.5)$ , then  $d_P(x_1, y_1) = |y_1 - x_1|$ . Here,  $f(x_1), f(y_1) \in (0, .5)$ . So,  $d_P(f(x_1), f(y_1)) = |f(y_1) - f(x_1)| = |2(y_1 - 3.25) - (2(x_1 - 3.25))| = 2|y_1 - x_1| = 2d_P(x_1, y_1)$ .

**Case A.4.** Suppose  $x_1 \in (3.375, 3.5), y_1 \in (3.5, 3.625)$  then  $d_P(x_1, y_1) = y_1 - x_1$ . Here,  $f(x_1) \in (.25, .5), f(y_1) \in (.5, .75)$ . So,  $d_P(f(x_1), f(y_1)) = f(y_1) - f(x_1) = 2(y_1 - 3.25) - (2(x_1 - 3.25)) = 2(y_1 - x_1) = 2d_P(x_1, y_1)$ .

**Case A.5.** Suppose  $x_1 \in (3.5, 3.75), y_1 \in (3.5, 3.75)$  then  $d_P(x_1, y_1) = |y_1 - x_1|$ . Here,  $f(x_1), f(y_1) \in (.5, 1)$ . So,  $d_P(f(x_1), f(y_1)) = |f(y_1) - f(x_1)| = |2(y_1 - 3.25) - (2(x_1 - 3.25))| = 2|y_1 - x_1| = 2d_P(x_1, y_1)$ .

**Case A.6.** Suppose  $x_1 \in (3.625, 3.75), y_1 \in (3.75, 3.875)$  then  $d_P(x_1, y_1) = y_1 - x_1$ . Here,  $f(x_1) \in (.5, 1), f(y_1) \in (2, 2.25)$ . So,  $d_P(f(x_1), f(y_1)) = f(y_1) - 2 + 1 - f(x_1) = 2.5 - 2(4 - y_1) - 2 + 1 - (2(x_1 - 3.25)) = 2(y_1 - x_1) = 2d_P(x_1, y_1)$ .

**Case A.7.** Suppose  $x_1, y_1 \in (3.75, 4)$  then  $d_P(x_1, y_1) = |y_1 - x_1|$ . Here,  $f(x_1), f(x_2) \in (2, 2.5)$ . So,  $d_P(f(x_1), f(y_1)) = |f(y_1) - f(x_1)| = |2.5 - 2(4 - y_1) - (2.5 - 2(4 - x_1))| = 2|y_1 - x_1| = 2d_P(x_1, y_1)$ .

**Case A.8.** Suppose  $x_1 \in (3, 3.25), y_1 \in (3.75, 4)$  then  $x_2 \in (2.25, 2.375) \cup (1.375, 1.4375)$  and  $y_2 \in (2.625, 2.75) \cup (1.5625, 1.625)$ . So,  $d_P(x_2, y_2) \ge .125 > .0625$  which is a contradiction.

**Case B.** Suppose  $x_1 \in (2,3)$  and  $y_1 \in (3,4)$ . Since  $d_P(x_1,y_1) < .0625$ , there are 2 subcases to consider:

**Case B.1.** Suppose  $x_1 \in (2.9375, 3)$  and  $y_1 \in (3, 3.0625)$  then  $d_P(x_1, y_1) = |y_1 - x_1|$ . Here,  $f(x_1) \in (2.5, 2.625)$  and  $f(y_1) \in (2.375, 2.5)$ . So,  $d_P(f(x_1), f(y_1)) = |f(y_1) - f(x_1)| = |2.5 - 2(y_1 - 3) - (3 - 2(x_1 - 2.75))| = 2|y_1 - x_1|$ .

**Case B.2.** Suppose  $x_1 \in (2.9375, 3)$  and  $y_1 \in (3.9375, 4)$  then  $d_P(x_1, y_1) = |7 - x_1 - y_1|$ . Here,  $f(x_1) \in (2.5, 2.625)$  and  $f(y_1) \in (2.375, 2.5)$ . So, plane  $d_P(f(x_1), f(y_1)) = |f(y_1) - f(x_1)| = |2.5 - 2(4 - y_1) - (3 - 2(x_1 - 2.75))| = 2|7 - x_1 - y_1|$ .

The next theorem states that the shift homeomorphism on the Plykin attractor is expansive.

**Theorem 4.**  $\hat{f} : \mathcal{P} \longrightarrow \mathcal{P}$  is an expansive homeomorphism with expansive constant .0625.

*Proof.* Suppose  $\mathbf{x} = \{x_1, x_2, ...\}, \mathbf{y} = \{y_1, y_2, ...\}$  are distinct points of  $\mathcal{P}$ . Let *i* be the smallest index such that  $x_i \neq y_i$ .

**Case 1.** Suppose i = 1 and  $d_P(x_k, y_k) \ge .0625$  for some  $k \ge 1$ . Then  $\hat{f}^{1-k}(\mathbf{x}) = \{x_k, x_{k+1}, ...\}$  and  $\hat{f}^{1-k}(\mathbf{y}) = \{y_k, y_{k+1}, ...\}$ . Hence,

$$d_{\mathcal{P}}(\widehat{f}^{1-k}(\mathbf{x}), \widehat{f}^{1-k}(\mathbf{y})) \ge d_{P}(x_{k}, y_{k}) \ge .0625.$$

**Case 2.** Suppose i = 1 and  $d_P(x_k, y_k) < .0625$  for all positive integers k. Let n be an integer such that

 $log_2(.0625/d_P(x_1, y_1)) \le n < log_2(.0625/d_P(x_1, y_1)) + 1.$ 

Then it follows from Lemma 3 that

$$d_{\mathcal{P}}(\widehat{f}^n(\mathbf{x}), \widehat{f}^n(\mathbf{y})) \ge d_P(f^n(x_1), f^n(y_1)) \ge 2^n d_P(x_1, y_1)) \ge .0625.$$

**Case 3.** Suppose i > 1. Then by Lemma 2, either  $d_P(x_i, y_i) \ge .0625$  or  $d_P(x_{i+1}, y_{i+1}) \ge .0625$ . This is similar to Case 1) by letting k = i or k = i + 1.

### 3. Construction of the 2-dimensional plane continuum X that admits an expansive homeomorphism.

The 2-dimensional planar continuum X that admits an expansive homeomorphism that is constructed is the compactification of a disk minus two points,  $D - \{a, b\}$ , whose boundary contains  $\mathcal{P}_1$ and  $\mathcal{P}_2$  (see figure 5). Let  $\hat{f}_1$  and  $\hat{f}_2$  be shift homeomorphisms on Plykin attractors  $\mathcal{P}_1$  and  $\mathcal{P}_2$ . The expansive homeomorphisms F on X uses the shift homeomorphism  $\hat{f}_1$  when restricted to  $\mathcal{P}_1$ and the inverse of the shift homeomorphism  $\hat{f}_2^{-1}$  when restricted to  $\mathcal{P}_2$ . If two distinct points  $\mathbf{x}, \mathbf{y} \in D - \{a, b\}$  have different 1st coordinates, then it is shown that there is a positive integer n such that  $d_X(F^n(\mathbf{x}), F^n(\mathbf{y})) > c$ . On the other hand if  $\mathbf{x}, \mathbf{y}$  have different 2nd coordinates, then it is shown that there is a positive integer n such that  $d_X(F^{-n}(\mathbf{x}), F^{-n}(\mathbf{y})) > c$ , where c is the expansive constant.

The construction of X begins by creating 2 homeomorphic continua  $Y_1, Y_2$  with inverse limits that use single bonding maps  $h_1, h_2$ on factor spaces  $G_1, G_2$ . To construct the factor space, define

$$T = \{(x, y) | x \ge 0, y \ge 0, x + y \le 2\}$$
  
$$L_1 = \{(x, 0) | 2 \le x \le 2.5\}, L_2 = \{(0, y) | 2 \le y \le 2.5\}$$
  
$$P_1 = \{(x, p_1) | x \in P\}, P_2 = \{(p_2, y) | y \in P\}.$$

Then let  $G_1 = T \cup L_1 \cup P_1$ , where the point (2.5, 0) in  $L_1$  is identified to the point  $(A, p_1)$  in  $P_1$  and let  $G_2 = T \cup L_2 \cup P_2$ , where the point (0, 2.5) in  $L_2$  is identified to the point  $(p_2, A)$  in  $P_2$  (see Figures 3 and 4).

To define distance on  $G_1$  and  $G_2$ , let  $\pi_{G_1}^k, \pi_{G_2}^k$  be the projection maps on the *k*th coordinate for  $G_1$  and  $G_2$ , where  $k \in \{1, 2\}$ . Also for  $k \in \{1, 2\}$  and  $x, y \in P_k$  define

$$d_{G_k}(x,y) = d_{P_k}(x,y) = d_P(\pi_{G_k}^k(x), \pi_{G_k}^k(y)).$$

### If $x, y \in T \cup L_k$ , define $\mathbf{d}_{G_k}(x,y) = \mathbf{d}_{T \cup L_k}(x,y) = |\pi^1_{G_k}(x) - \pi^1_{G_k}(y)| + |\pi^2_{G_k}(x) - \pi^2_{G_k}(y)|.$ If $x \in T \cup L_1$ and $y \in P_1$ , define d

$$d_{G_1}(x,y) = d_{T \cup L_1}(x, (2.5, 0)) + d_{P_1}((A, p_1), y).$$

If  $x \in T \cup L_2$  and  $y \in P_2$ , define

$$d_{G_2}(x,y) = d_{T \cup L_2}(x,(0,2.5)) + d_{P_2}((p_2,A),y).$$

To define the bonding maps  $h_1, h_2$ , let  $\phi, \psi : [0, 2] \longrightarrow [0, 2]$  by

$$\phi(z) = \begin{cases} 2z & 0 \le z < .5\\ z + .5 & .5 \le z < 1\\ 1 + .5z & 1 \le z \le 2 \end{cases},$$
$$\psi(z) = \begin{cases} .5z & 0 \le z < 1\\ z - .5 & 1 \le z < 1.5\\ 2(z - 1) & 1.5 \le z \le 2 \end{cases}.$$

Define  $g_1: T \cup L_1 \longrightarrow G_1$  by

$$g_1(x,y) = \begin{cases} (\phi(x), \psi(y)) & x \le 1.5\\ (x + .25, (1.75 - x)\psi(y)) & 1.5 < x \le 1.75\\ (2(x - 1.75) + 2, 0) & 1.75 < x \le 2\\ (x, p_1) & 2 < x \le 2.5 \end{cases}$$

Define  $g_2: T \cup L_2 \longrightarrow G_2$  by

$$g_2(x,y) = \begin{cases} (\psi(x), \phi(y)) & y \le 1.5\\ ((1.75 - y)\psi(x), y + .25) & 1.5 < y \le 1.75\\ (0, 2(x - 1.75) + 2) & 1.75 < y \le 2\\ (p_2, y) & 2 < y \le 2.5 \end{cases}$$

Let  $h_1: G_1 \longrightarrow G_1$  be defined by

$$h_1(w) = \begin{cases} g_1(\pi_{G_1}^1(w), \pi_{G_1}^2(w)) & w \in T \cup L_1 \\ (f(\pi_{G_1}^1(w)), p_1) & w \in P_1 \end{cases}$$

Let  $h_2: G_2 \longrightarrow G_2$  be defined by

$$h_2(w) = \begin{cases} g_2(\pi_{G_2}^1(w), \pi_{G_2}^2(w)) & w \in T \cup L_2 \\ (p_2, f(\pi_{G_2}^2(w))) & w \in P_2 \end{cases}$$

The following 2 lemmas examines the movement of points under the bonding maps  $h_1$  and  $h_2$ .





*Proof.* The proof is shown for k = 1. The proof is similar for k = 2. Here  $h_1((r, s)) = g_1((r, s))$ . So it suffices to find an n such that  $g_1^n(r, s) \in P_1$ .

**Case 1.** Suppose  $(r, s) \in L_1$ . Then  $g_1((r, s)) = (r, p_1) \in P_1$ . So take n = 1.

**Case 2.** Suppose  $(r,s) \in T$  such that  $1.75 < r \leq 2$ . Then  $g_1((r,s)) \in L_1$ . Now Case 1 applies. Here take n = 2.

**Case 3.** Suppose  $(r,s) \in T$  such that  $1.5 < r \leq 1.75$ . Then  $1.75 < \pi^1_{G_1}(g_1((r,s))) \leq 2$ , so Case 2 applies. Now take n = 3.

**Case 4.** Suppose  $(r,s) \in T$  such that  $1 < r \leq 1.5$ . Then  $\pi^1_{G_1}(g_1((r,s))) = \phi(r) = 1 + .5r$ . So,  $1.5 < \pi^1_{G_1}(g_1((r,s))) = 1 + .5r \leq 1.75$  and hence, Case 3 applies. Here, let n = 4.

**Case 5.** Suppose  $(r,s) \in T$  such that  $.5 < r \leq 1$ . Then  $\pi^1_{G_1}(g_1((r,s))) = \phi(r) = r + .5$ . So,  $1 < \pi^1_{G_1}(g_1((r,s))) = r + .5 \leq 1.5$ . Thus, Case 4 applies, so let n = 5.

**Case 6.** Suppose  $(r,s) \in T$  such that  $0 < r \leq .5$ . Then  $\pi^1_{G_1}(g_1((r,s))) = \phi(r) = 2r$ . Let *m* be an integer such that  $.5 < 2^m r \leq 1$ . Then,  $.5 < \pi^1_{G_1}(g_1^m((r,s))) = 2^m r \leq 1$ . Hence, let n = m + 5.

**Lemma 6.** Suppose that  $k \in \{1,2\}$  and  $(r,s) \in T \cup L_k$ . Then for every  $\epsilon > 0$ , there exists a negative integer n such that  $\pi^1_{G_k}(h_k^n(r,s)) < \epsilon$ .

*Proof.* Proof follows from doing proof of Lemma 5 in reverse.  $\Box$ 

Lemmas 7 and 8 show how  $h_1$  and  $h_2$  expands the distances between points.

**Lemma 7.** Suppose  $(r, s), (x, y) \in T \cup L_1$  such that  $r \neq x$ . Then there exists a positive integer n such that  $d_{G_1}(h_1^n(r, s), h_1^n(x, y)) \geq$ .0625.

*Proof.* Assume r > x.

**Case 1.** Suppose x = 0. We may assume that r < .0625. Let *n* be a positive integer such that  $2^{n-1}r < .0625 \leq 2^n r$ . Then  $d_{G_1}(h_1^n(r,s), h_1^n(0,y)) \geq |\pi_{G_1}^1(h_1^n(r,s)) - \pi_{G_1}^1(h_1^n(0,y))| = |(\phi^n(r) - \phi^n(0))| = 2^n r \geq .0625$ .

**Case 2.** Suppose 0 < x < r. Then by Lemma 5, we may choose *n* to be a positive integer such that  $h_1^{n-1}(r,s) \in T \cup L_1$  and  $h_1^n(r,s) \in P_1$ .

**Case 2a.** Suppose  $h_1^n(x, y) \in P_1$ . Let  $r_n = \pi_{G_1}^1(h_1^n(r, s))$  and  $x_n = \pi_{G_1}^1(h_1^n(x, y))$ . Then  $r_n$  and  $x_n$  are distinct elements of  $[2, 2.5]_P$ . Since  $f : [2, 2.5]_{P_1} \longrightarrow [2.5, 3.5]_{P_1}$  is one-to-one,  $f(r_n)$  and  $f(x_n)$  are distinct elements of  $[2.5, 3.5]_P$ . Also, since  $f : [2.5, 3.5]_P \longrightarrow [0, .5]_{P_1} \cup [2, 3]_P \cup [3.5, 4_{P_1}]$  is one-to-one,  $f^2(r_n)$  and  $f^2(x_n)$  are distinct elements of  $[0, .5]_{P_1} \cup [2, 3]_P \cup [3.5, 4_{P_1}]$ .

It follows from Lemma 3 that there exists a  $k \ge 0$  such that  $d_P(f^k(x_n), f^k(r_n)) \ge .0625$ . Hence  $d_{G_1}(h^{n+k}(r, s), h^{n+k}(x, y)) = d_{P_1}((f^k(r_n), p_1), (f^k(x_n, p_1))) = d_P(f^k(x_n), f^k(r_n)) \ge .0625$ .

**Case 2b.** Suppose  $h_1^n(x, y) \notin P_1$ . We may assume that

$$d_{G_1}(\pi^1_{G_1}(h_1^n(r,s)), \pi^1_{G_1}(h_1^n(x,y)) \le .0625.$$

Hence,  $\pi_{G_1}^1(h_1^n(x,y)) \in [2.4375, 2.5]_{L_1}$  and  $\pi_{G_1}^1(h_1^{n+1}(r,s)) \in [2, 2.0625]_P$ . Then  $x_{n+1} = \pi_{G_1}^1(h_1^{n+1}(x,y)) \in [2.4375, 2.5]_P$  and  $r_{n+1} = \pi_{G_1}^1(h_1^{n+1}(r,s)) \in [2.5, 2.625]_P$ . Then the proof is similar to Case 2a.

**Lemma 8.** Suppose  $(r, s), (x, y) \in T \cup L_2$  such that  $s \neq y$ . Then there exists a positive integer n such that  $d_{G_2}(h_2^n(r, s), h_2^n(x, y)) \geq$ .0625.

*Proof.* Proof is similar to proof of Lemma 7.

Let  $Y_1 = \lim_{i \to 1} \{G_1, h_1\}_{i=1}^{\infty}$ , and  $Y_2 = \lim_{i \to 1} \{G_2, h_2\}_{i=1}^{\infty}$ . Let  $k \in \{1, 2\}$ . Each element  $\widehat{\mathbf{w}} \in Y_k$  is an infinite sequence of ordered pairs  $\widehat{\mathbf{w}} = ((x_1, y_1), (x_2, y_2), ...)$  where  $h_k(x_i, y_i) = (x_{i-1}, y_{i-1})$ . Let  $H_1 : Y_1 \longrightarrow Y_1$  and  $H_2 : Y_2 \longrightarrow Y_2$  be shift homeomorphisms induced from the inverse limit constructions.

Define projection maps  $\{\pi_{Y_k}^i, \pi_{Y_k}^{i,1}, \pi_{Y_k}^{i,2}\}$  such that  $\pi_{Y_k}^i(\widehat{\mathbf{w}}) = (x_i, y_i),$  $\pi_{Y_k}^{i,1}(\widehat{\mathbf{w}}) = x_i \text{ and } \pi_{Y_k}^{i,2}(\widehat{\mathbf{w}}) = y_i.$  If  $\widehat{\mathbf{w}}, \widehat{\mathbf{z}} \in Y_k$ , then  $d_{Y_k}(\widehat{\mathbf{w}}, \widehat{\mathbf{z}}) = \sum_{i=1}^{\infty} 2^{-i} d_{G_k}(\pi_{Y_k}^i(\widehat{\mathbf{w}}), \pi_{Y_k}^i(\widehat{\mathbf{z}})).$ 

**Lemma 9.** Let  $k \in \{1, 2\}$ . If  $\widehat{\mathbf{w}}, \widehat{\mathbf{z}} \in Y_k$  and  $\pi_{Y_k}^{i,k}(\widehat{\mathbf{w}}) \neq \pi_{Y_k}^{i,k}(\widehat{\mathbf{z}})$  for some *i*, then there exists an integer *n* such that  $d_{Y_k}(H_k^n(\widehat{\mathbf{w}}), H_k^n(\widehat{\mathbf{z}})) \geq .0625$ 

Proof. Proof is for k = 1. Suppose that i is the smallest positive integer such that  $\pi_{Y_1}^{i,1}(\widehat{\mathbf{w}}) \neq \pi_{Y_1}^{i,1}(\widehat{\mathbf{z}})$ . Then for all  $m \geq i$ ,  $\pi_{Y_1}^{m,1}(\widehat{\mathbf{w}}) \neq \pi_{Y_1}^{m,1}(\widehat{\mathbf{z}})$ . Let  $w_1 = \pi_{Y_1}^{i,1}(\widehat{\mathbf{w}}), w_2 = \pi_{Y_1}^{i,2}(\widehat{\mathbf{w}}), z_1 = \pi_{Y_1}^{i,1}(\widehat{\mathbf{z}}),$ and  $z_2 = \pi_{Y_1}^{i,2}(\widehat{\mathbf{z}})$ . It will be shown that there exists an integer nsuch that  $d_{G_1}(h_1^n(w_1, w_2), h_1^n(z_1, z_2)) \geq .0625$ .

**Case 1.** Suppose that  $h_1^j(w_1, w_2), h_1^j(z_1, z_2) \in P_1$  for every j. Then  $h_1^j(w_1, w_2) = (f^j(w_1), p_1)$  and  $h_1^j(z_1, z_2) = (f^j(z_1), p_1)$ . Hence, by Lemmas 2 and 3, there exists an integer n such that

$$d_{G_1}(h_1^n(w_1, w_2), h_1^n(z_1, z_2)) = d_P(f^n(w_1), f^n(z_1)) \ge .0625.$$

**Case 2.** Suppose that  $h_1^j(w_1, w_2) \in P_1$  for every j, but there exists an  $\alpha$  such that  $h_1^{\alpha}(z_1, z_2) \notin P_1$ . Then, by Lemma 6, there exists an integer n such that  $\pi_{G_1}^1(h_1^n(z_1, z_2)) < 1$ . Then,

$$d_{G_1}(h_1^n(w_1, w_2), h_1^n(z_1, z_2)) \ge 2.5 - 1 = 1.5.$$

**Case 3.** Suppose that there exists an j such that  $h_1^j(w_1, w_2)$ ,  $h_1^j(z_1, z_2) \notin P_1$ . Then by Lemma 7, there exists an n such that

$$d_{G_1}(h_1^n(w_1, w_2), h_1^n(z_1, z_2)) \ge .0625.$$

It follows that  $d_{Y_1}(H_1^{n+i}(\widehat{\mathbf{w}}), H_1^{n+i}(\widehat{\mathbf{z}})) = d_{Y_1}(H_1^n \circ H_1^i(\widehat{\mathbf{w}}), H_1^n \circ H_1^i(\widehat{\mathbf{z}})) \ge d_{G_1}(h_1^n(w_1, w_2), h_1^n(z_1, z_2)) \ge .0625.$ 

Let  $X = Y_1 \cup Y_2/T$  such that if  $\widehat{\mathbf{w}} \in Y_1$  and  $\widehat{\mathbf{z}} \in Y_2$ , then  $\widehat{\mathbf{w}}$  is identified to  $\widehat{\mathbf{z}}$  if and only if  $\pi_{Y_1}^1(\widehat{\mathbf{w}}), \pi_{Y_1}^1(\widehat{\mathbf{z}}) \in T, \ \pi_{Y_1}^{1,1}(\widehat{\mathbf{w}}) = \pi_{Y_1}^{1,1}(\widehat{\mathbf{z}})$ , and  $\pi_{Y_1}^{1,2}(\widehat{\mathbf{w}}) = \pi_{Y_1}^{1,2}(\widehat{\mathbf{z}})$ . The projection maps are defined as  $\pi_X(\widehat{\mathbf{w}}) = \pi_{Y_1}(\widehat{\mathbf{w}})$  if  $\widehat{\mathbf{w}} \in Y_1$  and  $\pi_X(\widehat{\mathbf{w}}) = \pi_{Y_2}(\widehat{\mathbf{w}})$  if  $\widehat{\mathbf{w}} \in Y_2$ . Let

$$\begin{aligned} d_X(\widehat{\mathbf{w}}, \widehat{\mathbf{z}}) &= \\ \begin{cases} d_{Y_1}(\widehat{\mathbf{w}}, \widehat{\mathbf{z}}) & \widehat{\mathbf{w}}, \widehat{\mathbf{z}} \in Y_1 \\ d_{Y_2}(\widehat{\mathbf{w}}, \widehat{\mathbf{z}}) & \widehat{\mathbf{w}}, \widehat{\mathbf{z}} \in Y_2 \\ \inf(\{d_{Y_1}(\widehat{\mathbf{w}}, \widehat{\mathbf{q}}) + d_{Y_2}(\widehat{\mathbf{q}}, \widehat{\mathbf{z}}) | \widehat{\mathbf{q}} \in Y_1 \cap Y_2\}) & \widehat{\mathbf{w}} \notin Y_2, \widehat{\mathbf{z}} \notin Y_1 \end{cases} \end{aligned}$$

Let  $F: X \longrightarrow X$  be defined by

$$F(\widehat{\mathbf{w}}) = \begin{cases} H_1(\widehat{\mathbf{w}}) & 0 \le \pi_X^{1,2}(\widehat{\mathbf{w}}) \le 1.5 \\ H_1(\widehat{\mathbf{w}}) & \pi_X^{1,2}(\widehat{\mathbf{w}}) = p_1 \\ H_2^{-1}(\widehat{\mathbf{w}}) & 0 \le \pi_X^{1,1}(\widehat{\mathbf{w}}) \le 1.5 \\ H_2^{-1}(\widehat{\mathbf{w}}) & \pi_X^{1,1}(\widehat{\mathbf{w}}) = p_2 \end{cases}$$

Notice that if  $0 \leq \pi_X^{1,2}(\widehat{\mathbf{w}}) \leq 1.5$  and  $0 \leq \pi_X^{1,1}(\widehat{\mathbf{w}}) \leq 1.5$ , then  $H_1(\widehat{\mathbf{w}}) = H_2^{-1}(\widehat{\mathbf{w}})$ . Hence, F is a homeomorphism.

**Theorem 10.**  $F: X \longrightarrow X$  is an expansive homeomorphism.

*Proof.* Suppose  $\widehat{\mathbf{w}}, \widehat{\mathbf{z}} \in X$  such that  $\widehat{\mathbf{w}} \neq \widehat{\mathbf{z}}$ . Then there exists an integer *i* such that  $\pi_X^i(\widehat{\mathbf{w}}) \neq \pi_X^i(\widehat{\mathbf{z}})$ .

**Case 1.** Suppose  $\pi_X^{i,1}(\widehat{\mathbf{w}}) \neq \pi_X^{i,1}(\widehat{\mathbf{z}})$ . Then  $\widehat{\mathbf{w}}, \widehat{\mathbf{z}} \in Y_1$ . Hence, by Lemma 9, there exists an n such that

$$d(F^n(\widehat{\mathbf{w}}), F^n(\widehat{\mathbf{z}})) = d_{Y_1}(H_1^n(\widehat{\mathbf{w}}), H_1^n(\widehat{\mathbf{z}})) \ge .0625.$$

**Case 2.** Suppose  $\pi_X^{i,2}(\widehat{\mathbf{w}}) \neq \pi_X^{i,2}(\widehat{\mathbf{z}})$ . Then  $\widehat{\mathbf{w}}, \widehat{\mathbf{z}} \in Y_2$ . Hence, by Lemma 9, there exists an n such that

$$d(F^n(\widehat{\mathbf{w}}), F^n(\widehat{\mathbf{z}})) = d_{Y_2}(H_2^n(\widehat{\mathbf{w}}), H_2^n(\widehat{\mathbf{z}})) \ge .0625.$$

The fact that X is planar follows from an application of the Anderson-Choquet Embedding Theorem [1] and although not difficult to show, it is tedious and will be left out.



#### References

- R.D Anderson and Gustave Choquet, A plane continuum no two of whose nondegenerate subcontinua are homeomorphic: an application of inverse limits, Proc. Amer. Math. Soc. 10(1959), 347-353.
- [2] R. Devaney, An Introduction to Chaotic Dynamical Systems (Addison-Wesley, Redwood City, CA, 2nd ed., 1989).
- [3] C. Mouron, Tree-like continua do not admit expansive homeomorphisms, Proc. Amer. Math. Soc. 130 (2002), no. 11, 3409–3413
- [4] R.V. Plykin, On the geometry of hyperbolic attractors of smooth cascades, Russian Math. Surveys 39(1974), 85-131.
- [5] R.F. Williams, A note on unstable homeomorphisms, Proc. Amer. Math. Soc. 6(1955), 308-309.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, RHODES COLLEGE, MEMPHIS, TN 38112

*E-mail address*: mouronc@rhodes.edu