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INVERSE LIMITS OF TENT MAPS WITHOUT THE
PSEUDO-ORBIT SHADOWING PROPERTY

BRIAN RAINES

Abstract. In this paper we examine the topological struc-
ture of inverse limits generated by tent maps without the
pseudo-orbit shadowing property. We demonstrate strong
connections between the kneading sequence of the map and
the topology of the inverse limit.

1. Introduction and Outline

Inverse limits of unimodal maps of the interval form a wide class
of continua that have received much attention. A useful model
for all of the combinatorially dynamics present in other families
of unimodal maps is the tent map. The tent map is a piecewise-
linear, unimodal map of the interval, [0, 1], that fixes the origin. It
is defined by

Ta(x) =

{
ax if x ≤ 1/2
a(1− x) if x ≥ 1/2,

where a ∈ [
√

2, 2].
We will restrict this map to the interval [T 2

a (1/2), Ta(1/2)], which
is called the core of the map. The reason that we restrict our atten-
tion to this interval is because the interval [Ta(1/2), 1] contributes
nothing to the inverse limit space and the interval [0, T 2

a (1/2)] gives
rise only to a ray that limits onto the subcontinuum generated by
the map restricted to the core. For these reasons, we will consider
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the tent map to be given by

fm(x) =

{
mx+ 2−m if x ≤ 1− 1/m
m(1− x) if x ≥ 1− 1/m,

m ∈ [
√

2, 2], which is the core of the tent map rescaled to the
interval. This is a subset of the family G of gb,c maps, which have
been studied extensively, [6], [7], [9].

These tent map cores form a one parameter family of spaces
many of which have the property that they are (except at some
exceptional points) locally the product of a Cantor set and an
arc. However Barge, Brucks and Diamond showed that most (in
a measure-theoretic sense) of these spaces have a bizarre form of
self-similarity: not only is it the case that every neighborhood con-
tains a homeomorph of the entire space, but every neighborhood
contains a homeomorph of every space occurring in this family of
spaces, [1]. They accomplished this by examining tent maps with
a dense postcritical orbit. It is well known that inverse limits of
tent maps with a finite postcritical orbit have the property that,
except at finitely many points, the space is locally the product of a
Cantor set and an arc. This leaves out the case of an inverse limit
of a tent map with an infinite but sparse postcritical orbit. Very
little has been done to understand the topological structure of the
inverse limit in this case, a notable paper addressing this case is
due to Brucks and Bruin, [3].

We examine a family of tent map cores described by Coven, Kan,
and Yorke in [5] that do not have the pseudo-orbit shadowing prop-
erty. We identify a countable set of points in the inverse limit that
are invariant under any autohomeomorphism and show that one
point, the point in the inverse limit corresponding to the orienta-
tion reversing fixed point, is fixed under any autohomeomorphism.

2. Chainings of Inverse Limits, Turnlinks, and Essential

Turnlinks

A chain, {L1, L2, . . . Ln}, is a finite collection of sets called links
with the property that Li ∩ Lj 6= ∅ if, and only if, |i− j| < 2. If a
chain, C, covers a continuum, X we call it a chaining of X and if
the largest diameter of each of its links is less than some positive
number ε then we call it an ε-chaining of X. If X can be ε-chained
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for all positive numbers ε then we call X chainable and it is well
known that the inverse limit of a chainable continuum is itself a
chainable continuum.

Let C be a chaining of a continuum X. Let L ∈ C. Call the
link L a turnlink provided there exists an adjacent link M and a
refinement, D, of C with subchain {Di}bi=a such that

•
b⋃
i=a

Di ⊂ L ∪M ;

• Da, Db ⊂M\L;
• Di ⊂ L for some a < i < b.

In this case we say that D turns in L. If there exists a positive
number ε such that all ε-chains of X have a turnlink in L then we
call L an essential turnlink. The definition of turnlink and essential
turnlink is due to Bruin, and he proved that the homeomorphic
image of an essential turnlink is again an essential turnlink, [4].

Let A be a set. By A we will mean the closure of A and by A′

we will mean the collection of limit points of A.

3. Tent maps without the pseudo-orbit shadowing

property

Let f : X → X be a mapping of a continuum, X. Let δ be
a positive number. A δ-pseudo-orbit is a sequence {x0, x1, x2 . . . }
such that d(f(xi), xi+1) ≤ δ for all i ≥ 0. Due to considerations
regarding machine-aided approximations of dynamical systems, it is
quite important to know when pseudo-orbits can be approximated
by actual orbits. A sequence, {x0, x1, , x2 . . . }, is said to be ε-
shadowed by another sequence, {y0, y1, y2, . . . }, if d(xi, yi) < ε for
all i ≥ 0. f has the pseudo-orbit shadowing property if for every
ε > 0, there is a δ > 0 such that every δ-pseudo-orbit can be
ε-shadowed by an actual orbit.

Coven, Kan and Yorke proved the following theorems:

Theorem 3.1. [5, Theorem 6.1] For almost every a ∈ [
√

2, 2],
the tent map with parameter a, Ta, has the pseudo-orbit shadowing
property.

Theorem 3.2. [5, Theorem 7.4] The set of parameters for which
Ta does not have the pseudo-orbit shadowing property is locally un-
countable, i.e. its intersection with any open set is uncountable.
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The inverse limits we are considering in this section are a subset
of those without the pseudo-orbit shadowing property. So it is
quite a large collection of maps but clearly overshadowed by its
complement.

The ω-limit set of a point x under a mapping f is

ωf (x) = ∩i∈N{f j(x) : j ≥ i}.

We will denote it by ω(x) when no confusion will arise.
The itinerary of a point x under a unimodal map f with critical

point c, denoted by If (x) is a sequence of symbols, t0, t1, t2, . . .
from {R,L,C} such that

• ti = R if f i(x) > c;
• ti = L if f i(x) < c;
• ti = C if f i(x) = c.

The convention is that we stop recording the itinerary of a point as
soon as the first C occurs, if it ever does. The kneading sequence for
a unimodal map f with critical point c is given by K(f) = If [f(c)].

A point x of the domain of a map is called prefixed if there exists
a positive integer i and a fixed point p of the map f such that
f i(x) = p. A tent map, Ta, has a unique orientation-reversing fixed
point which we will denote by pa or simply by p when no confusion
will arise. The set of parameters, a ∈ [

√
2, 2], for which the critical

point of Ta is prefixed is dense, [5], and all of these parameter values
in [
√

2, 2) have the property that the critical point is mapped to pa.
Such parameter values are called prefixed parameters. The kneading
sequence of a tent map with a prefixed parameter is some finite word
of symbols from {R,L}, call it Wa, followed by an infinite string of
R’s, which we will denote by R∞. So if a is a prefixed parameter
in [
√

2, 2), then K(Ta) = WaˆR∞, where ˆ denotes concatenation
of words.

Coven, Kan and Yorke proved Theorem 3.2 by showing that for
every increasing sequence of positive integers, {ni}∞i=1, and every
prefixed parameter, a, in [

√
2, 2), there is a parameter b close to a

such that
K(Tb) = WaˆRn1 ˆWaˆRn2 ˆ . . .

and that this tent map does not have the pseudo-orbit shadow-
ing property, [5]. It is clear that these tent maps have an infinite
postcritical orbit that is not dense.
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Let f be the core of a tent map with critical point c, orienta-
tion reversing fixed point p, and slope m, such that there exists a
prefixed word, Wa, and an increasing sequence of positive integers
{ni}∞i=1 such that

K(f) = WaˆRn1 ˆWaˆRn2 ˆ . . . .

Let α be the length of Wa.
Notice that since the kneading sequence of f contains subwords

that only contain the symbol R of ever increasing length, the critical
point must get mapped closer and closer to the fixed point, p. This
is because p is repelling and with every application of f intervals
in [c, 1] are stretched by a factor of m. So the interval 〈fα+1(c), p〉,
which is a subset of [c, 1] must have diameter less than 1

mn1 , where
by 〈a, b〉 we mean [a, b] if a < b and we mean [b, a] otherwise. It
follows similarly that the diameter of 〈f (Σi<kni)+k·α+1(c), p〉 is less
than 1

mnk .
Let B be a word from the alphabet {R,L,C}. Denote by AB

the subinterval of [0, 1] of points, x, with the property that If (x)
begins with the word B. If B is an initial segment of another word
C then we will write B ≤ C.

Lemma 3.3. If B and D are words from K(f) with B ≤ D then
AB ⊇ AD. But if B 6≤ D and D 6≤ B then AB ∩AD = ∅.

Proof. The proof is immediate because every point, x, with
D ≤ If (x) also has B ≤ If (x) in the first case, and in the sec-
ond it is clear that there are no points, x, with If (x) having two
distinct initial segments. �

Hence
ARn1 ⊃ ARn2 ⊃ ARn3 ⊃ · · ·AR∞ = {p}.

Also
ARn1 ⊃ ARn1 ˆWa ⊃ ARn1 ˆWaˆRn2

and
ARnj ˆWa

∩ARnk ˆWa = ∅
for all positive integers j 6= k. But notice that

ARnk ˆWa → {p}
as k →∞ because

ARnk ˆWa ⊂ ARnk ⊂
[
p− 1

mnk
, p+

1
mnk

]
.
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This shows that p ∈ ω(c) because

fk∗α+1+
∑k−1
i=1 ni(c) ∈ ARnk ˆWa .

Not only that but p ∈ ω(c)′, the set of limit points of ω(c), because
c is mapped into each ARnk ˆWa infinitely many times and since c is
not periodic under f , it must be the case that it takes a different
value each time it is mapped into that interval. So each interval
contains a point of ω(c). To see that c is mapped infinitely often
into each ARnk ˆWa notice that for every pair of positive integers k
and j with k < j,

fnj−nk(ARnj ˆWa
) ⊆ ARnk ˆWaˆRnj−1 .

Thus for a given positive integer k and for all j > k,

fnj−nk ◦ fk∗α+1+
∑k−1
i=1 ni(c) ∈ ARnk ˆWaˆRnj−1 .

Since

ARnk ˆWa ⊃ ARnk ˆWaˆRnk+1 ⊃ ARnk ˆWaˆRnk+2 ⊃ · · ·

· · · ⊃ ARnk ˆWaˆRnj ⊃ · · ·
and since diam

(
ARnk ˆWaˆRnj

)
→ 0 as j → ∞, it must be the case

that each ARnk ˆWa contains exactly one point from ω(c). There
is another interval of interest, AWa which contains c and a point,
p̂ that is sent to the fixed point and has If (p̂) = Wa ˆR∞. This
implies that

AWa ⊃ AWaˆRn1 ⊃ AWaˆRn2 ⊃ · · · ⊃ AWaˆRni ⊃ · · ·

· · · ⊃ AWaˆR∞ = {p̂}.
Let {p̂i}∞i=1 be a subset of [c, 1] such that f i(p̂i) = p̂. This gives us
an explicit description of the point in ARnk ˆWa that is also in ω(c).
Since

{p̂nk} = ARnk ˆWaˆR∞ ⊂ ARnk ˆWaˆRnj

for all positive integers j, it must be the case that ω(c)∩ARnk ˆWa =
{p̂nk}. Since f(ω(c)) ⊆ ω(c), p̂ ∈ ω(c) and f i(p̂) ∈ ω(c) for all
i ≤ α, remember that fα(p̂) = p. Thus {p̂i}∞i=1∪{f j(p̂)}αj=1 ⊆ ω(c).
Notice that we could have used an argument involving intervals of
points with the same itinerary in order to show that the forward
images of p̂ are in ω(c). From such an argument it follows that
ω(c) = {p̂i}∞i=1 ∪ {f j(p̂)}αj=0 and ω(c)′ = {p}. Thus c 6∈ ω(c).



PSEUDO-ORBIT SHADOWING 597

Lemma 3.4. Let f be the core of a tent map with critical point c.
If x is a point in lim

←
{[0, 1], f} such that there is a natural number N

with the property that for every n ≥ N , there is a positive number
δn with |xn−y| > δn for all y ∈ ω(c), then there is a positive number
ε and an arc, A, in lim

←
{[0, 1], f} containing x with endpoints a and

b such that d(x, a) > ε and d(x, b) > ε. Furthermore, x has a
neighborhood, U , that is homeomorphic to the product of a Cantor
set and an arc.

Proof. Let N be large enough to satisfy the assumption of the
lemma. Notice that we can make N large enough also to guarantee
that xn 6∈ orb(c) for all n ≥ N . To see this assume that for all N
there is a value n ≥ N such that xn ∈orb(c). This implies that c
is either periodic or preperiodic which implies that orb(c) ⊆ ω(c).
This would contradict the assumption that for n ≥ N , xn is at least
δn-far away from points in ω(c). Since ω(c)∪orb(c) = orb(c) where
A denotes the closure of A, for all n ≥ N there exists a positive
number γn such that |xn−y| > γn for all y ∈ orb(c) and all n ≥ N .

Notice that [xn − γn, xn + γn] = [an, bn] = An is an arc in [0, 1]
containing xn but missing orb(c). Thus every preimage of An misses
orb(c), and more importantly, misses {0, 1}. Thus every preimage
of An contains a preimage of xn in its interior. For every m < n,
let Am = fn−m(An) and for every m > n let Am be the component
of fn−m(An) that contains xm. Notice that f |Ai is monotone for
every i, hence lim

←
{Ai, f |Ai ,} is an arc in the inverse limit containing

x with endpoints a and b. Furthermore, d(x, a) > |xn−an|
2n = γn

2n and
similarly d(x, b) > γn

2n .
To see that x has such a neighborhood U , notice that by taking

an inverse limit along any path of the components of inverse images
of An we generate an arc in the inverse limit space. Since f is the
core of a tent map, we have two choices of inverse image infinitely
often along this path of inverse images of An. This demonstrates
that π−1

n (An) ∩ lim
←
{[0, 1], f} is a product of a Cantor set and an

arc. �

The proof of the next lemma can be found in [10].
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Lemma 3.5. If f is the core of a tent map with critical point c
and x ∈ lim

←
{[0, 1], f} has the property that for all n ∈ N, πn(x) =

xn ∈ ω(c) then every chaining of lim
←
{[0, 1], f} contains an essential

turnlink containing x.

Combining these two lemmas with the previous analysis of the
ω-limit set of the critical point for the family of tent maps under
consideration, we have the following theorem.

Theorem 3.6. Let Wa be a word from {L,R}, and let {ni}∞i=1 be
an increasing sequence of positive integers. Let fm be the core of a
tent map with critical point c such that

K(fm) = WaˆRn1 ˆWaˆRn2 . . . .

Then lim
←
{[0, 1], fm} is a continuum with a countable set that is

invariant under any autohomeomorphism and a point, p =
(pm, pm, . . . ), that is fixed under any autohomeomorphism.

Proof. It is clear from the previous discussion that ω(c) is a count-
able set, so the collection of points

A = {x ∈ lim
←
{[0, 1], fm} : xn ∈ ω(c) for all n ∈ N}

is countable. By Lemma 3.5 and by the fact that the homeomorphic
image of an essential turnlink is an essential turnlink, [4], it follows
that this set is invariant under any autohomeomorphism.

The point p = (pm, pm, . . . ) ∈ lim
←
{[0, 1], fm} has the property

that for every ε > 0, Bε(p) meets A. Clearly this is the only point
in the inverse limit with this property. Hence p is fixed under any
autohomeomorphism. �

It is also of interest to know the structure of the set of endpoints
for such inverse limit spaces. In “Endpoints of Inverse Limit Spaces
and Dynamics,” Barge and Martin prove that the inverse limit
of a core of a tent map will have a non-empty set of endpoints
if, and only if, the critical point is recurrent, i.e. c ∈ ω(c), [2].
We saw quite clearly that c 6∈ ω(c) for the collection of tent map
cores with kneading sequences of the form described in Theorem
3.6. Thus even though lim

←
{[0, 1], fm} has many points invariant

under autohomeomorphisms and even a point that is fixed under
all autohomeomorphisms, lim

←
{[0, 1], fm} has no endpoints.
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