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OPEN COVERS AND SYMMETRIC OPERATORS

VERA USHEVA AND STEPHEN WATSON

Abstract. We show that despite the infinitary nature of
discreteness, the theorem of Stone-Michael can be proved en-
tirely outside the topological context as an essentially finitary
and combinatorial theorem.

1. Introduction

We associate a natural asymmetric operator with each open cover
of a topological space. If each open cover has a star refinement, then
in a natural way the induced symmetric operator also admits star
refinements. Surprisingly the existence of a σ-discrete refinement
of an open cover then corresponds to the existence of a σ-disjoint
refinement of the induced symmetric operator. Thus the classical
theorem proved by Stone and Michael that if every open cover has
a star refinement which is an open cover, then every open cover has
a σ-discrete open refinement which covers, has a finitary combina-
torial counterpart in this language of symmetric operators. That is
we show that despite the infinitary nature of discreteness the theo-
rem of Stone-Michael can be proved entirely outside the topological
context, as an essentially finitary and combinatorial theorem: If a
class of symmetric operators admits star refinements, then every
operator in that class has a σ-disjoint refinement which covers in
that class. The original topological theorem can then still be de-
rived as a special case.
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2. Preliminaries

Definition 2.1. Suppose A and B are subfamilies of P(X). Then
B is said to be a refinement of A if for every B ∈ B there exists
a A ∈ A such that B ⊂ A. The family B is said to be a precise
refinement of A if B and A are indexed by the same index set S
and for every s ∈ S Bs ⊂ As.

Definition 2.2. Let A = {As : s ∈ S} be a subfamily of P(X).
The star of a set Y ⊂ X with respect to A is the set St(Y,A) =
∪{As : Y ∩As 6= ∅}.

Definition 2.3. The family B = {Bt : t ∈ T} is said to be a star
refinement of the family A = {As : s ∈ S} if for every t ∈ T there
exists s ∈ S such that St(Bt,B) ⊂ As.

Definition 2.4. The family B is said to be barycentric refinement
of the family A = {As : s ∈ S} if {St(x,B) : x ∈ X} refines A.

We introduce the following definitions and notation.

Definition 2.5. Any mapping G: P(X) → P(X) will be called
an operator on X. The set of all operators on X, will be denoted
O(X).

Definition 2.6. An operator G ∈ O(X) will be called monotone
if G(A) ⊂ G(B) for any A,B ∈ P(X) such that A ⊂ B. The set of
all monotone operators on a given set X will be denoted M(X).

Definition 2.7. An operator G ∈ O(X) will be called pointwise
if it preserves unions, i.e. G(A) = ∪{G(a) : a ∈ A} for any set
A ∈ P(X). The set of all pointwise operators on a given set X will
be denoted Pt(X).

In the following we fix certain notation, which will be of constant
use.
• For any operator G ∈ O(X) and any family A ∈ P2(X) we denote
by G(A) or simply GA the family {G(A) : A ∈ A}. In particular
for any G ∈ O(X) we denote by G also the family {G(x) : x ∈ X}.
• For any two operators G,H ∈ O(X) and any two families A,B ∈
P2(X) denote by G(A) < H(B) the fact that G(A) is a precise
refinement of H(B). In further applications we often refer to the
above notation as inequality between the considered families.
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• For any two operators G,H ∈ O(X) and any two families A,B ∈
P2(X) denote by G(A) ≺ H(B) the fact that G(A) is a refinement
of H(B).
• For any two families A,B ∈ P2(X) indexed by the same index set
S, we denote by A−B the family {(A−B)s : s ∈ S} where (A−B)s =
As\ ∪t<s Bt and < is a well order on the index set S.

3. Pointwise Operators and Pointwise Inverse

Definition 3.1. The operator G is called inverse to the operator
H if x ∈ G(y) if and only if y ∈ H(x) for any two points x and
y in the underlying set. In case that G is inverse to H and G is
pointwise, we refer to it as the pointwise inverse of H.

Remark 3.2. Note that the pointwise inverse always exists and is
unique among the pointwise operators.

Definition 3.3. For any operator G define by G−(x) =
{y ∈ X : x ∈ G(y)} a pointwise operator G−, and by G+(A) =
{x ∈ X : G(x) ⊂ A} where A ∈ P(X) an operator G+.

Remark 3.4. Note that G− is the (unique) pointwise inverse of
G and that G+ is not necessarily pointwise, but is monotone. Any
pointwise operator is also monotone.

Proposition 3.5. For any two pointwise operators G and H we
have (GH)− = H−G−.

Proof. Directly from the definition of (GH)−. �

Definition 3.6. An operator G will be called symmetric if G = G−.

Note that if G is symmetric, then x ∈ G(y) if and only if y ∈ G(x)
and that a symmetric operator is necessarily pointwise. If G is an
open cover of X, then defining G(x) = st(x,G) gives a symmetric
operator G. The set of all symmetric operators on a given set will
be denoted Sm(X).

Proposition 3.7. Sm(X) ⊂ Pt(X) ⊂M(X) ⊂ O(X).

Proposition 3.8. For any pointwise operator G the operators GG−

and G−G are symmetric.

Proof. For pointwise operators (G−)− = G. �
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Lemma 3.9. For any pointwise operator G and any two subsets
A and B of the underlying set the intersection A ∩ GG−(B) is
nonempty if and only if the intersection GG−(A) ∩B is nonempty
if and only if G−(A) ∩G−(B) is nonempty.

Proof. The intersection G−(A) ∩ G−(B) is nonempty if and only
if ∃a ∈ A∃b ∈ B∃x such that x ∈ G−(a) ∩ G−(b). But this is
equivalent to ∃a ∈ A∃b ∈ B∃x such that a ∈ G(x) and x ∈ G−1(b),
i.e. ∃a ∈ A∃b ∈ B such that a ∈ GG−1(b), i.e. the intersection
A ∩GG−1(B) is nonempty. �

Remark 3.10. Suppose G is a monotone operator such that
G−(A) ∩ G−(B) 6= ∅ for some A and B. Then GG−(A) ∩ B 6= ∅
and A ∩GG−(B) 6= ∅.

Proposition 3.11. For any operator G the inequality 1 < G im-
plies that 1 < G− and G+ < 1.

Proof. For any x we have x ∈ G(x). Then by the definition of
inverse operator we obtain x ∈ G−(x), that is 1 < G−. To obtain
the other inequality suppose that x ∈ G+(A) for some subset A of
X. By definition that is G(x) ⊂ A. But x ∈ G(x) and so x ∈ A. �

Proposition 3.12. For any pointwise operator G and any sub-
set A of the underlying set the identities G−(Ac) = G+(A)c and
(G−)+(Ac) = G(A)c hold.

Proof. The point x belongs to G−(Ac) if and only if the intersection
G(x) ∩ Ac is nonempty, which is equivalent to x ∈ G+(A)c. The
point x belongs to (G−)+(Ac) if and only if the intersection G−(x)∩
A is empty, which is equivalent to x /∈ G(A). �

4. Cross Multiplication

Proposition 4.1. For any pointwise operator G and any two sub-
sets A and B of the underlying set G(A) ⊂ B if and only if A ⊂
G+(B).

Proof. Note that by definition G(a) ⊂ B if and only if a ∈ G+(B)
and use the fact that G is pointwise. �

We refer to the above Proposition as cross multiplication of G
and G+.
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Corollary 4.2. For any pointwise operator G we have GG+ < 1
and 1 < G+G.

Proposition 4.3. Suppose G and H are pointwise operators. Then
(GH)+ = H+G+.

Proof. For any subsetA of the underlying set we have x ∈ (GH)+(A)
if and only if GH(x) ⊂ A, which by cross multiplication holds if and
only if H(x) ⊂ G+(A) and again by cross multiplication this holds,
if and only if x ∈ H+G+(A). �

Corollary 4.4. Suppose A and B are pointwise operators such that
An < B for some n ∈ N. Then AmB+ < A+p for any m, p ∈ N
such that m+ p = n.

Proof. By Corollary 4.2 we have BB+ < 1 and so AnB+ < 1. Ap-
ply p-times cross multiplication of A and A+ to obtain the desired
inequality. �

Proposition 4.5. For any pointwise operator G and any monotone
operator H such that G ≺ H we have GG− < HH−.

Proof. Consider arbitrary point z and ω ∈ GG−(z). There exists
a point x ∈ G−(z) such that ω ∈ G(x). Since G ≺ H, there
exists a point y such that G(x) ⊂ H(y). But z ∈ G(x) and so
z ∈ H(y). Then in particular y ∈ H−(z). By monotonicity we
obtain H(y) ⊂ HH−(z). But ω ∈ H(y) and so ω ∈ HH−(z). �

Proposition 4.6. Suppose G is a pointwise operator, A and B
families such that G−(A) < G+(B). Then G−(A−B) is disjoint.

Proof. Consider arbitrary elements (A−B)s and (A−B)t ofA−B. We
can assume that s < t, where < denotes the total ordering relation
on the index set. Since GG−(As) ⊂ Bs, we have GG−(A−B)s ∩
(A−B)t is empty, which implies by Lemma 3.9 that G−(A−B) is
disjoint. �

Lemma 4.7. Suppose {Ai}∞i=1 is a sequence in P2(X) such that
∪ ∪ Ai = X. Then ∪(Ai−Ai+1

) = X.

Proof. For any x ∈ X choose the smallest index s(x) such that
x ∈ Ai,s(x) for some i. Then x ∈ (Ai−Ai+1

)s(x). �
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5. Star and σ-disjoint refinements

Definition 5.1. A class of operators Θ(X) is said to admit star
refinements, if for every S ∈ Θ(X) there exists S′ ∈ Θ(X) such that
(S′)2 < S.

Proposition 5.2. Suppose Θ(X) is a class of monotone operators
> 1 which admits star refinements. Then for every natural number
n ≥ 2 and every S ∈ Θ(X) there exists S′ ∈ θ(X) such that (S′)n <
S.

Proof. Consider any S0 = S ∈ Θ(X) and for every i = 0, . . . , n− 1
choose Si+1 ∈ Θ(X) such that S2

i+1 < Si. Then by monotonicity
S2n
n < S and since S > 1, Snn < S. �

Remark 5.3. Note that the above proposition holds also for mono-
tone operators which are < 1.

Definition 5.4. A class of operators Θ(X) is said to admit
σ-disjoint refinements, if for every S ∈ Θ(X) there exists a cover P
of X, which decomposes as P = ∪Pi and a family {Si : i ∈ ω} in
Θ(X) such that for each i ∈ ω Si+1(Pi) is a disjoint refinement of
S.

Theorem 5.5. Suppose Θ(X) is a class of symmetric operators
> 1 which admits star refinements, then for every S ∈ Θ(X) and
every natural number n ≥ 1 there is a cover P , which decomposes
as P = ∪Pi and a family {Si : i ∈ ω} in Θ(X) such that for each
i, n Sni+1(Pi) is a disjoint refinement of S. Thus ∪Sni+1(Pi) is a
σ-disjoint refinement of S, which is a cover.

Proof. Consider any S = S0 ∈ Θ(X) and for every i ≥ 0 choose
Si+1 ∈ Θ(X) such that S(2n+1)

i+1 < Si. By Theorem 4.4 Sni+1(S+
i S) <

(Sni+1)+(S+
i+1S). Let Pi = S+

i S−S+
i+1S. Then by Lemma 4.7 ( ap-

plied for Ai = S+
i S ) P = ∪Pi is a cover, since ∪A0 = ∪S+

0 S = X.
Furthermore by Proposition 4.6 the family Sni+1(Pi) is disjoint.
Since S+

i+1 < 1, Sni+1(Pi) is a refinement of S. �

6. Barycentric Refinements

Definition 6.1. For any class Θ(X) of pointwise operators let
SΘ(X) be the class of operators of the form GG− for G in Θ(X).
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Remark 6.2. Note that SΘ(X) consists of symmetric operators.

Definition 6.3. A class of pointwise operators Θ(X) is said to
admit barycentric refinements if for every S ∈ Θ(X), there exists
T ∈ SΘ(X) such that T ≺ S.

Theorem 6.4. Suppose Θ(X) is is a class of pointwise operators
> 1 which admits barycentric refinements. Then:

(i) SΘ(X) admits star refinements.
(ii) For every S ∈ Θ(X) and every natural number n ≥ 2 there

exists S′ ∈ SΘ(X) such that (S′)n ≺ S.
(iii) For every S ∈ Θ(X) and every natural number n ≥ 2 there

exists a cover P which decomposes as ∪Pi and a family of
operators {Si : i ∈ ω} in SΘ(X) such that Sni+1(Pi) is disjoint
refinement of S.

Proof. Let S ∈ SΘ(X). Then S = GG− for some G ∈ Θ(X). Since
Θ(X) admits barycentric refinements there exists an S′ ∈ SΘ(X)
such that S′ ≺ G. Then by Proposition 4.5 (S′)2 < S and so SΘ(X)
admits star refinements. For part ii consider any S ∈ Θ(X). Since
Θ(X) admits barycentric refinements there exists a T ∈ SΘ(X)
such that T ≺ S. But by part i and Proposition 5.2 there exists
T′ ∈ SΘ(X) such that (T′)n < T, and so (T′)n ≺ S. Part iii follows
by Theorem 5.5 applied to SΘ(X). �

Remark 6.5. Note that 6.4.ii ( for n = 2 ) is weaker than star
refinements - 5.1.

7. Open Operators

Definition 7.1. For any topological space X a pointwise operator
G on X will be called open if 1 < G and G(x) is open for any x ∈ X.
The set of all open operators on X will be denoted by T (X).

Theorem 7.2. A topological space X has the property that every
open cover of X has an open barycentric refinement which covers
if and only if T (X) admits barycentric refinements.

Proof. Suppose A is an open operator of X. Let A =
{A(x) : x ∈ X}. Let B be a given open barycentric refinement
of A which covers. Let B be an open operator such that B(x) ∈ B
for every x ∈ X. Then BB− ≺ A. �
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Corollary 7.3. (Classical) If X is a topological space such that
every open cover of X has an open star refinement, then every
open cover has an open symmetric star refinement.

Proof. Apply Theorem 6.4.ii to T (X) for n = 3, and note that for
symmetric open operators S, S3(x) = St(S(x),S). �

Proposition 7.4. An open family A is discrete ( resp. locally
finite ) if and only if there exists an open operator G such that
G−A is disjoint ( resp. point finite ).

Proof. The family A is not discrete ( resp. not locally finite ) if and
only if for every open operator G there exists a point x and a set
of indexes I of cardinality 2 ( resp. ≥ ω ) such that G(x) ∩Ai 6= ∅
for every i ∈ I, which by cross multiplication holds if and only if
x ∈ G−(Ai) for every i ∈ I, i.e. for every open operator G the
family G−A is not disjoint ( resp. not point finite ). �

Theorem 7.5. Suppose X is a topological space such that every
open cover has an open star refinement. Then every open cover
has an open σ-discrete refinement, which is a cover.

Proof. By Theorem 7.2 T (X) admits barycentric refinements, and
so by Theorem 6.4.iii for every S ∈ T (X) there exists a cover
P = ∪Pi and a family {Si : i ∈ ω} in ST (X) such that S2

i+1(Pi)
is a disjoint refinement of S. But by Proposition 7.4 Si+1(Pi) is a
discrete refinement of S, and so ∪Si+1(Pi) is σ-discrete and covers.

�
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