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OPEN COVERS AND SYMMETRIC OPERATORS

VERA USHEVA AND STEPHEN WATSON

ABSTRACT. We show that despite the infinitary nature of
discreteness, the theorem of Stone-Michael can be proved en-
tirely outside the topological context as an essentially finitary
and combinatorial theorem.

1. INTRODUCTION

We associate a natural asymmetric operator with each open cover
of a topological space. If each open cover has a star refinement, then
in a natural way the induced symmetric operator also admits star
refinements. Surprisingly the existence of a o-discrete refinement
of an open cover then corresponds to the existence of a o-disjoint
refinement of the induced symmetric operator. Thus the classical
theorem proved by Stone and Michael that if every open cover has
a star refinement which is an open cover, then every open cover has
a o-discrete open refinement which covers, has a finitary combina-
torial counterpart in this language of symmetric operators. That is
we show that despite the infinitary nature of discreteness the theo-
rem of Stone-Michael can be proved entirely outside the topological
context, as an essentially finitary and combinatorial theorem: If a
class of symmetric operators admits star refinements, then every
operator in that class has a o-disjoint refinement which covers in
that class. The original topological theorem can then still be de-
rived as a special case.
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2. PRELIMINARIES

Definition 2.1. Suppose A and B are subfamilies of P(X). Then
B is said to be a refinement of A if for every B € B there exists
a A € A such that B C A. The family B is said to be a precise
refinement of A if B and A are indexed by the same index set S
and for every s € S B; C As.

Definition 2.2. Let A = {45 : s € S} be a subfamily of P(X).
The star of a set Y C X with respect to A is the set St(Y, A) =
U{4; : Y N A # 0}

Definition 2.3. The family B = {B; : t € T'} is said to be a star
refinement of the family A = {A, : s € S} if for every ¢t € T there
exists s € S such that St(By, B) C As.

Definition 2.4. The family B is said to be barycentric refinement
of the family A = {4, : s € S} if {St(x,B) : v € X} refines A.

We introduce the following definitions and notation.

Definition 2.5. Any mapping G: P(X) — P(X) will be called
an operator on X. The set of all operators on X, will be denoted

O(X).

Definition 2.6. An operator G € O(X) will be called monotone
if G(A) C G(B) for any A, B € P(X) such that A C B. The set of
all monotone operators on a given set X will be denoted M(X).

Definition 2.7. An operator G € O(X) will be called pointwise
if it preserves unions, i.e. G(A) = U{G(a) : a € A} for any set
A € P(X). The set of all pointwise operators on a given set X will
be denoted Pt(X).

In the following we fix certain notation, which will be of constant
use.
e For any operator G € O(X) and any family A € P?(X) we denote
by G(A) or simply GA the family {G(A) : A € A}. In particular
for any G € O(X) we denote by G also the family {G(x) : x € X}.
e For any two operators G,H € O(X) and any two families A, B €
P?(X) denote by G(A) < H(B) the fact that G(A) is a precise
refinement of H(B). In further applications we often refer to the
above notation as inequality between the considered families.
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e For any two operators G, H € O(X) and any two families A, B €
P2(X) denote by G(A) < H(B) the fact that G(A) is a refinement
of H(B).

e For any two families A, B € P?(X) indexed by the same index set
S, we denote by A_p the family {(A_p), : s € S} where (A_p)s =
As\ Uies By and < is a well order on the index set S.

3. POINTWISE OPERATORS AND POINTWISE INVERSE

Definition 3.1. The operator G is called inverse to the operator
H if z € G(y) if and only if y € H(x) for any two points x and
y in the underlying set. In case that G is inverse to H and G is
pointwise, we refer to it as the pointwise inverse of H.

Remark 3.2. Note that the pointwise inverse always exists and is
unique among the pointwise operators.

Definition 3.3. For any operator G define by G (z) =
{y € X : 2 € G(y)} a pointwise operator G~, and by G1(4) =
{x € X :G(z) C A} where A € P(X) an operator G™.

Remark 3.4. Note that G~ is the (unique) pointwise inverse of
G and that G™ is not necessarily pointwise, but is monotone. Any
pointwise operator is also monotone.

Proposition 3.5. For any two pointwise operators G and H we
have (GH)” =H G™.

Proof. Directly from the definition of (GH)™. O
Definition 3.6. An operator G will be called symmetricif G = G™.

Note that if G is symmetric, then z € G(y) if and only if y € G(z)
and that a symmetric operator is necessarily pointwise. If G is an
open cover of X, then defining G(z) = st(x,G) gives a symmetric
operator G. The set of all symmetric operators on a given set will
be denoted Sm(X).

Proposition 3.7. Sm(X) C Pt(X) C M(X) C O(X).

Proposition 3.8. For any pointwise operator G the operators GG~
and G~ G are symmetric.

Proof. For pointwise operators (G7)~ = G. O
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Lemma 3.9. For any pointwise operator G and any two subsets
A and B of the underlying set the intersection A N GG~ (B) is
nonempty if and only if the intersection GG~ (A) N B is nonempty
if and only if G~ (A) NG~ (B) is nonempty.

Proof. The intersection G~ (A) N G™(B) is nonempty if and only
if 3o € A3b € B3z such that z € G~ (a) N G~ (b). But this is
equivalent to 3a € A3b € B3z such that a € G(z) and 2 € G1(b),
i.e. Ja € AF € B such that a € GG™1(b), i.e. the intersection
AN GG~(B) is nonempty. O

Remark 3.10. Suppose G is a monotone operator such that
G (A) NG (B) # 0 for some A and B. Then GG~ (A)NB # ()
and ANGG™(B) # 0.

Proposition 3.11. For any operator G the inequality 1 < G im-
plies that 1 < G~ and G < 1.

Proof. For any x we have x € G(x). Then by the definition of
inverse operator we obtain z € G™ (), that is 1 < G™. To obtain
the other inequality suppose that # € G*(A) for some subset A of
X. By definition that is G(z) C A. But z € G(z) andsox € A. O

Proposition 3.12. For any pointwise operator G and any sub-
set A of the underlying set the identities G~ (A°) = G(A)" and
(G7)T(A°) = G(A) hold.

Proof. The point z belongs to G~ (A€) if and only if the intersection
G(z) N A€ is nonempty, which is equivalent to 2 € G*(A4)°. The

point x belongs to (G~) T (A¢) if and only if the intersection G~ (z)N
A is empty, which is equivalent to x ¢ G(A). O

4. CrROSS MULTIPLICATION

Proposition 4.1. For any pointwise operator G and any two sub-
sets A and B of the underlying set G(A) C B if and only if A C
G*(B).

Proof. Note that by definition G(a) C B if and only if a € G*(B)
and use the fact that G is pointwise. O

We refer to the above Proposition as cross multiplication of G
and G™.
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Corollary 4.2. For any pointwise operator G we have GGt < 1
and 1 < GTG.

Proposition 4.3. Suppose G and H are pointwise operators. Then
(GH)T =HTG™T.

Proof. For any subset A of the underlying set we have z € (GH)"(A)
if and only if GH(z) C A, which by cross multiplication holds if and
only if H(z) C G*(A) and again by cross multiplication this holds,
if and only if x € HT G (A). O

Corollary 4.4. Suppose A and B are pointwise operators such that
A"™ < B for some n € N. Then A™B* < A™P for any m,p € N
such that m +p =n.

Proof. By Corollary 4.2 we have BBT < 1 and so A"B* < 1. Ap-
ply p-times cross multiplication of A and A to obtain the desired
inequality. O

Proposition 4.5. For any pointwise operator G and any monotone
operator H such that G < H we have GG~ < HH™.

Proof. Consider arbitrary point z and w € GG~ (z). There exists
a point x € G (z) such that w € G(x). Since G < H, there
exists a point y such that G(x) C H(y). But z € G(x) and so
z € H(y). Then in particular y € H™(z). By monotonicity we
obtain H(y) C HH™ (z). But w € H(y) and so w € HH™ (2). O

Proposition 4.6. Suppose G is a pointwise operator, A and B
families such that G~ (A) < GT(B). Then G~ (A_p) is disjoint.

Proof. Consider arbitrary elements (A_p)s and (A_p); of A_g. We
can assume that s < t, where < denotes the total ordering relation
on the index set. Since GG™(As) C Bs, we have GG™(A_p)s N
(A_p)¢ is empty, which implies by Lemma 3.9 that G~ (A_p) is
disjoint. O

Lemma 4.7. Suppose {A;}2, is a sequence in P*(X) such that
UUA; =X. Then U(Ai—AiH) =X.

Proof. For any z € X choose the smallest index s(x) such that
T € A; 4y for some i. Then z € (Ai_4,,,)s(a)- O
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5. STAR AND 0-DISJOINT REFINEMENTS

Definition 5.1. A class of operators ©(X) is said to admit star
refinements, if for every S € ©(X) there exists S’ € ©(X) such that
(9?2 < S.

Proposition 5.2. Suppose O(X) is a class of monotone operators
> 1 which admits star refinements. Then for every natural number
n > 2 and every S € O(X) there exists S’ € 0(X) such that ()" <
S.

Proof. Consider any Sy = S € ©(X) and for every i =0,...,n — 1
choose S;+1 € ©(X) such that S?,; < S;. Then by monotonicity
S2" < S and since S > 1, S” < S. O

Remark 5.3. Note that the above proposition holds also for mono-
tone operators which are < 1.

Definition 5.4. A class of operators O(X) is said to admit
o-disjoint refinements, if for every S € O(X) there exists a cover P
of X, which decomposes as P = UP; and a family {S; : ¢ € w} in
©(X) such that for each i € w S;11(F;) is a disjoint refinement of
S.

Theorem 5.5. Suppose O(X) is a class of symmetric operators
> 1 which admits star refinements, then for every S € ©(X) and
every natural number n > 1 there is a cover P, which decomposes
as P = UP; and a family {S; : i € w} in O(X) such that for each
i,n SP 1 (P;) is a disjoint refinement of S. Thus USY, (F;) is a
o-disjoint refinement of S, which is a cover.

Proof. Consider any S = Sy € O(X) and for every ¢ > 0 choose

Sit1 € O(X) such that S < S;. By Theorem 4.4 S%,,(S}S) <

(87 )T(S;4S). Let Py = SjS_SZ_ilS. Then by Lemma 4.7 ( ap-
plied for A; = SFS) P = UP; is a cover, since U4y = US;S = X.
Furthermore by Proposition 4.6 the family S7,,(F;) is disjoint.

Since S, < 1, Sy, (P;) is a refinement of S. O

6. BARYCENTRIC REFINEMENTS

Definition 6.1. For any class ©(X) of pointwise operators let
Se(X) be the class of operators of the form GG~ for G in ©(X).
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Remark 6.2. Note that Sg(X) consists of symmetric operators.

Definition 6.3. A class of pointwise operators O(X) is said to
admit barycentric refinements if for every S € ©(X), there exists
T € Se(X) such that T < S.

Theorem 6.4. Suppose ©(X) is is a class of pointwise operators
> 1 which admits barycentric refinements. Then:

(i) Se(X) admits star refinements.

(ii) For every S € ©(X) and every natural number n > 2 there
exists S' € So(X) such that (S")* < S.

(iii) For every S € O(X) and every natural number n > 2 there
exists a cover P which decomposes as UP; and a family of
operators {S; 1 i € w} in Sg(x) such that ST, | (P;) is disjoint
refinement of S.

Proof. Let S € Sg(X). Then S = GG~ for some G € O(X). Since
O(X) admits barycentric refinements there exists an S’ € Sg(X)
such that S’ < G. Then by Proposition 4.5 (S')? < S and so Sg(X)
admits star refinements. For part ii consider any S € ©(X). Since
©(X) admits barycentric refinements there exists a T € Sg(X)
such that T < S. But by part i and Proposition 5.2 there exists
T’ € So(X) such that (T)" < T, and so (T')" < S. Part iii follows
by Theorem 5.5 applied to Sg(X). O

Remark 6.5. Note that 6.4.ii ( for n = 2 ) is weaker than star
refinements - 5.1.

7. OPEN OPERATORS

Definition 7.1. For any topological space X a pointwise operator
G on X will be called openif 1 < G and G(z) is open for any = € X.
The set of all open operators on X will be denoted by 7 (X).

Theorem 7.2. A topological space X has the property that every
open cover of X has an open barycentric refinement which covers
if and only if T(X) admits barycentric refinements.

Proof. Suppose A is an open operator of X. Let A =
{A(z) : x € X}. Let B be a given open barycentric refinement
of A which covers. Let B be an open operator such that B(x) € B
for every x € X. Then BB™ < A. O



660 VERA USHEVA AND STEPHEN WATSON

Corollary 7.3. (Classical) If X is a topological space such that
every open cover of X has an open star refinement, then every
open cover has an open symmetric star refinement.

Proof. Apply Theorem 6.4.ii to 7 (X) for n = 3, and note that for
symmetric open operators S, S3(z) = St(S(x), S). O

Proposition 7.4. An open family A is discrete ( resp. locally
finite ) if and only if there exists an open operator G such that
G~ A is disjoint ( resp. point finite ).

Proof. The family A is not discrete ( resp. not locally finite ) if and
only if for every open operator G there exists a point x and a set
of indexes I of cardinality 2 ( resp. > w ) such that G(z) N A; # 0
for every ¢ € I, which by cross multiplication holds if and only if
x € G7(A;) for every ¢ € I, i.e. for every open operator G the
family G~ A is not disjoint ( resp. not point finite ). O

Theorem 7.5. Suppose X is a topological space such that every
open cover has an open star refinement. Then every open cover
has an open o-discrete refinement, which is a cover.

Proof. By Theorem 7.2 7 (X) admits barycentric refinements, and
so by Theorem 6.4.iii for every S € 7T (X) there exists a cover
P = UP; and a family {S; : i € w} in S7(X) such that S?,;(P)
is a disjoint refinement of S. But by Proposition 7.4 S;1(F;) is a
discrete refinement of S, and so US;4+1(P;) is o-discrete and covers.

O
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