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CONNECTED URYSOHN SUBTOPOLOGIES

RICHARD G. WILSON∗

Abstract. We show that each second countable Urysohn
space which is not Urysohn-closed can be condensed onto
a connected Urysohn space and as a corollary we charac-
terize those countable Urysohn spaces which have connected
Urysohn subtopologies. We also answer two questions from
[12] regarding condensations onto connected Hausdorff spaces.

1. Introduction and Preliminary Results

Recall that a space is Urysohn if distinct points have disjoint
closed neighbourhoods and a space is feebly compact if every locally
finite family of open sets is finite. During the 1960’s and 70’s many
papers appeared in which countable connected Urysohn spaces were
constructed (see for example [6],[7],[8] and [9]); such spaces were in
some sense considered oddities. In a previous paper [12], we proved
that each disconnected Hausdorff space with a countable network
can be condensed (that is to say, there is a continuous bijection)
onto a connected Hausdorff space if and only if it is not feebly
compact. Here we prove an analogous result for Urysohn spaces:

2000 Mathematics Subject Classification. Primary 54D05; Secondary 54D10,
54D25.

Key words and phrases. Second countable connected Urysohn space, count-
able network, condensation, Urysohn family, Urysohn filter, Urysohn-closed
space.
∗Research supported by Consejo Nacional de Ciencia y Tecnoloǵıa (CONA-
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A disconnected Urysohn space with a countable network can be
condensed onto a connected Urysohn topology if and only if it is
not Urysohn-closed. In the case of countable spaces, we show a
little more by proving that a countable Urysohn space can be con-
densed onto a connected Urysohn space if and only if it is not feebly
compact. Thus every Urysohn topology on a countable set which
is not feebly compact contains a connected Urysohn subtopology,
showing that in some sense, countable connected Urysohn spaces
exist in abundance.

The closure of a set A in a space (X, τ) will be denoted by clτ (A)
or by cl(A) or A when no confusion is possible. Similarly we use
intτ (A) or int(A) to denote the interior of A in (X, τ). Recall from
[13; Problem 12E] that an open filter on a topological space (X, τ)
is a filter in τ . Following [2], we say that an open filter F is free if it
has no accumulation point, that is to say, ∩{clτ (F ) : F ∈ F} = ∅.
All terms and notation not defined here can be found in [4] or [13].

If D is a dense subspace of a Urysohn space X and x ∈ X \D,
then the trace of the open neighbourhood system at x is a free
open filter F on D. It follows that for each d ∈ D there are disjoint
closed neighbourhoods of x and d and so each d ∈ D has a closed
neighbourhood missing the closure of some element of F . Hence
the following definition from [10]:

A Urysohn filter F on X is an open filter with the property
that if x ∈ X is not a cluster point of F , then there is a closed
neighbourhood U of x and an element F ∈ F such that U ∩F = ∅.
A Urysohn space is said to be Urysohn-closed if it is closed in every
Urysohn space in which it is embedded. The following simple result
from [10] is now obvious:

Theorem 1.1. A Urysohn space is Urysohn-closed if and only if
every Urysohn filter has a cluster point.

Remark 1.2. Clearly, a Urysohn topology which is weaker than a
Urysohn-closed topology is Urysohn-closed and an open and closed
subset of a Urysohn-closed space is Urysohn-closed. However, un-
like the case of an H-closed space, a regular closed subset of a
Urysohn-closed space need not be Urysohn-closed (see [5; Example
5]).
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A Urysohn filter is an open filter, but as noted in the first para-
graph of [10], the concepts are subtly different and the existence of
a free open filter in a Urysohn space does not imply the existence
of a free Urysohn filter (again see [5; Example 5]). The existence of
a free Urysohn filter ensures the existence of a proper Urysohn ex-
tension, but in order to condense onto a connected Urysohn space
we need something more.

For an infinite cardinal κ, a Urysohn family of size κ in X is a
family U of κ mutually disjoint regular closed sets with the property
that if x ∈ X, there is a closed neighbourhood of x which meets
only finitely many elements of U .

Clearly, a Urysohn family is locally finite and if the space is
regular, then every locally finite family of open sets gives rise to a
Urysohn family of the same cardinality. Furthermore, the existence
of a Urysohn family implies the existence of a free Urysohn filter
(but the converse is false as we shall see in Example 2.2). To see
this, note that if {Un : n ∈ ω} is a Urysohn family and A ⊆ ω is
infinite, then H = {∪{int(Um) : m ∈ A and m ≥ n} : n ∈ ω}, is a
free Urysohn filter base. We make use of this fact in the sequel.

2. Condensing onto connected Urysohn spaces

The proof of our main result is divided into a number of sub-
sidiary results. Given a Urysohn space with a countable network,
we first condense it onto a second countable Urysohn space which is
not Urysohn-closed; this in its turn can be condensed onto a dense-
in-itself Urysohn space which is not Urysohn-closed and finally onto
a connected Urysohn space.

Lemma 2.1. A Urysohn Lindelöf space which is not Urysohn-
closed has a Urysohn family.

Proof. Let X be a Lindelöf Urysohn space which is not Urysohn-
closed and suppose that G is a free Urysohn filter on X. For each
x ∈ X, choose an open neighbourhood Vx of x and Gx ∈ G, so that
cl(Vx)∩ cl(Gx) = ∅. V = {Vx : x ∈ X} is an open cover of X which
must have a countable subcover, {Vxn : n ∈ ω}. Let Gxn = Fn
and then F = {Fn : n ∈ ω} is a free Urysohn filter base on (X, τ).
With no loss of generality, we may assume that Fn ⊇ Fn+1 for each
n ∈ ω.
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Choose z0 ∈ F0; since z0 is not a cluster point of F and F is
a free Urysohn filter base, there is some Fm1 ∈ F and a regular
closed neighbourhood U0 of z0 such that U0 ∩ Fm1 = ∅; without
loss of generality we assume that U0 ⊆ F 0.

Having chosen elements F0 ⊇ Fm1 ⊇ · · · ⊇ Fmn of F , points
zj ∈ Fmj for each j ∈ {1, . . . , n− 1} and regular closed neighbour-
hoods Uj ⊆ Fmj of zj for each j ∈ {1, . . . , n − 1}, whose closures
are mutually disjoint and with the property that Uj ∩ Fmk = ∅
whenever j < k ≤ n, we proceed as follows: Pick zn ∈ Fmn ; since
zn is not a cluster point of F , there is some mn+1 > mn and a
regular closed neighbourhood Vn of zn such that Vn ∩ Fmn+1 = ∅.
Then Fmn+1 ⊆ Fmn and since Uj ∩ Fmn = ∅ for each j < n, by
setting Un = Vn ∩ Fmn we have that Un ∩ Uk = ∅ for each k < n.
Proceeding in this way, we construct a family U = {Un : n ∈ ω} of
mutually disjoint regular closed sets such that Un ⊆ Fmn for each
n ∈ ω. Since F is a free Urysohn filter base, if x ∈ X, there is some
k ∈ ω and a closed neighbourhood V of x, such that V ∩ F k = ∅.
Clearly then, whenever mn > k, V ∩ Un = ∅ and it follows that U
is a Urysohn family. �

Without the condition of being Lindelöf, the above theorem is
false, even if the space is neither feebly compact nor Urysohn-closed.
The following example is inspired by Example 5 of [5].

Example 2.2. Let K denote the Cantor set, Y = K \ {1} and
let D1, D2 and D3 be three mutually disjoint dense subsets of the
ordered space X = ω1 × Y with the lexicographic order topology
µ, whose union is X. Define a new topology τ on X as follows:
U ∈ τ provided that for each x ∈ U ∩ Dk there is an open µ-
neighbourhood I of x such that I∩Dk ⊆ U if k ∈ {1, 2} or I ⊆ U if
k = 3. It is straightforward to check that (X, τ) is a Urysohn space
which is neither feebly compact nor Urysohn-closed (for example,
the family of all final µ-open intervals of X is a free Urysohn filter
base on (X, τ)) but which possesses no Urysohn family.

Theorem 2.3. A Urysohn space with a countable network which
is not Urysohn-closed can be condensed onto a second countable
Urysohn space which is not Urysohn-closed.
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Proof. Let (X, τ) be a Urysohn space with a countable network
M = {Mk : k ∈ ω} which is not Urysohn-closed. Since X is
Lindelöf, it follows from Lemma 2.1 that there is a Urysohn family
{clτ (Wn) : n ∈ ω} in X, where Wn ∈ τ for each n. Consider
the family P of all pairs of elements M1,M2 ∈ M such that there
exist open sets U1 ⊇M1 and U2 ⊇M2 whose closures are disjoint.
P 6= ∅, since each pair of distinct points can be separated by open
sets whose closures are disjoint. For each such pair {M1,M2} ∈ P,
choose open sets U1 ⊇ M1, U2 ⊇ M2 with disjoint closures and let
B be the collection of all the Ui so chosen; Since M is countable
it follows that B is countable. Furthermore, for each x ∈ X there
is a closed neighbourhood Ux of x and such that Ux ∩ cl(Wn) = ∅
for all but finitely many n and then there is M ∈ M such that
x ∈ M ⊆ intτ (Ux). For each M ∈ M such that there exists U ∈ τ
with the property that M ⊆ U and clτ (U) ∩ cl(Wn) = ∅ for all
but finitely many n, we choose UM ∈ τ such that M ⊆ UM and
clτ (UM )∩cl(Wn) = ∅ for all but finitely many n; let C be the family
of all such UM chosen in this way. Let σ be the topology on X with
subbase

S = {Wn : n ∈ ω} ∪ {X \ clτ (Wn) : n ∈ ω} ∪ B
∪C ∪ {X \ clτ (U) : U ∈ B} ∪ {X \ clτ (U) : U ∈ C}.

Clearly σ ⊆ τ and since S is countable, it follows that (X,σ)
is second countable. If U ∈ B, then clσ(U) ⊇ clτ (U), but since
X \ clτ (U) ∈ σ it follows that clσ(U) = clτ (U). Now since distinct
points x1, x2 ∈ X have disjoint closed τ -neighbourhoods, V1, V2

respectively, it follows that there are M1,M2 ∈ M such that x1 ∈
M1 ⊆ intτ (V1) and x2 ∈M2 ⊆ intτ (V2). Thus {M1,M2} ∈ P and it
follows that there are U1, U2 ∈ B such that xi ∈Mi ⊆ Ui (i = 1, 2).
However, clσ(Ui) = clτ (Ui) and so U1, U2 have disjoint σ-closures,
implying that (X,σ) is Urysohn. A similar argument applies to
show that {Wn : n ∈ ω} is a Urysohn family in (X,σ) which is thus
not Urysohn-closed. �

Before proceeding, we require some more terminology.
If G = {Gα : α ∈ κ} is a family of free open filter bases on a space

(X, τ) and A = {xα : α ∈ κ} is a subset of X, then we define a
topology on X as follows: U ∈ σ if and only if U ∈ τ and whenever
xα ∈ U then U ⊇ G for some G ∈ Gα. It is easy to check that this
defines a topology σ on X such that σ ⊆ τ and that Gα converges
to xα in (X,σ). Informally, we say that σ is defined by requiring
that Gα converges to xα.



666 R. G. WILSON

Theorem 2.4. A separable Lindelöf Urysohn space (X, τ) which is
not Urysohn-closed can be condensed onto a dense-in-itself Urysohn
space which is not Urysohn-closed.

Proof. By Lemma 2.1, there is a Urysohn family U = {Un : n ∈ ω}
in X. We denote the (countable) set of isolated points of X by
D = {dn : n ∈ ω}. There are two possibilities:
1) If only finitely many of the Un meet D, then infinitely many (and
we assume all) of the Un are dense-in-themselves. Let {Kj : j ∈ ω}
be an infinite family of disjoint infinite subsets of ω and for j ∈ ω
let Gj denote the open filter base

{∪{int(Um) : m ∈ Kj and m ≥ n} : n ∈ ω}.
As noted in the remark at the end of Section 1, each Gj is a free
Urysohn filter base and we define a new topology σ on X by
requiring that Gj+1 converge to dj ; that is to say, U ∈ τ is a
σ-neighbourhood of dj if and only if U ⊇ G for some G ∈ Gj+1. It
is straightforward to check that (X,σ) is a dense-in-itself space and
we will show that it is Urysohn. To this end, note that if A ⊆ X
is such that A misses all but finitely many elements of U , then
clτ (A) = clσ(A); we make use of this fact repeatedly in the sequel.
Suppose that x, z ∈ X; there are three cases to consider.
(a) If x, z 6∈ clτ (D), then there are disjoint closed τ -neighbourhoods
U, V ⊆ X \D of x, z respectively and also closed τ -neighbourhoods
S and T of x and z respectively, which for some m ∈ ω are disjoint
from ∪{Un : n ≥ m}. It follows that U ∩ S and V ∩ T are disjoint
σ-closed neighbourhoods of x and z respectively.
(b) If x ∈ clτ (D) and z 6∈ clτ (D), then we can choose τ -open
neighbourhoods U and V of x and z respectively such that

(i) clτ (U) ∩ clτ (V ) = ∅,
(ii) clτ (V ) ∩D = ∅, and
(iii) for some m ∈ ω,

clτ (U) ∩ (∪{Un : n ≥ m}) = clτ (V ) ∩ (∪{Un : n ≥ m} = ∅.
Let A = {n ∈ ω : dn ∈ U} and then we claim that W1 =

U ∪ ∪{int(Un) : n ∈ Kj for some j ∈ A and n ≥ m} and W2 = V
are σ-neighbourhoods of x and z respectively whose σ-closures are
disjoint. Clearly W1,W2 ∈ σ and by (ii) and (iii), clτ (V ) =clσ(V )
and clτ (U) =clσ(U).
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Finally, note that clσ(∪{int(Un) : n ∈ Kj for some j ∈ A and
n ≥ m}) = clτ (∪{int(Un) : n ∈ Kj for some j ∈ A and n ≥ m})∪
clσ({dj : j ∈ A}) = clτ (∪{int(Un) : n ∈ Kj for some j ∈ A and
n ≥ m})∪ clσ(U ∩D) = clτ (∪{int(Un) : n ∈ Kj for some j ∈ A and
n ≥ m})∪ clτ (U ∩D) ⊆ clτ (∪{int(Un) : n ∈ Kj for some j ∈ A and
n ≥ m}) ∪ clτ (U) and the result follows from (i).
(c) If x, z ∈ clτ (D), then we choose open τ -neighbourhoods U and
V of x and z respectively whose τ -closures are disjoint and such
that for some m ∈ ω,

clτ (U) ∩ (∪{Un : n ≥ m}) = clτ (V ) ∩ (∪{Un : n ≥ m} = ∅.
Let A = {n ∈ ω : dn ∈ U} and B = {n ∈ ω : dn ∈ V }. It follows
that

U ∪ ∪{int(Un) : n ∈ Kj for some j ∈ A},

V ∪ ∪{int(Un) : n ∈ Kj for some j ∈ B}
are open σ-neighbourhoods of x and z respectively whose σ-closures
are disjoint. We omit the details which are similar to the previous
case.

Finally note that (X,σ) is not Urysohn-closed, since
{Um : m ∈ K0} is a Urysohn family in (X,σ).
2) If, on the other hand, infinitely many of the Un meet D, then by
choosing an ∈ D ∩Un, we obtain an infinite open and closed discrete
subset A = {an : n ∈ ω} ⊆ D. Define a new topology η on X by
requiring that (A, η|A) be homeomorphic to the rationals, Q. It is
clear that η ⊆ τ and that (X, η) is a separable Lindelöf Urysohn
space which is not Urysohn-closed since (A, η|A) is an open and
closed subspace homeomorphic to the rationals. Let {Vn : n ∈ ω}
be a Urysohn family in (A, η|A); case 1) now applies and we are
done. �

If in the proof of the previous theorem, the topology τ has a
countable network (hence is Lindelöf and separable), then so does
σ. Thus we have proved:

Corollary 2.5. Every Urysohn space with a countable network
which is not Urysohn-closed can be condensed onto a dense-in-
itself Urysohn space with a countable network which is not Urysohn-
closed.

Combining this result with Theorem 2.3 we obtain:
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Corollary 2.6. A Urysohn space with a countable network which
is not Urysohn-closed can be condensed onto a second countable
dense-in-itself Urysohn space which is not Urysohn-closed.

In [12] it was shown that each non-compact regular
Lindelöf space with a Gδ-diagonal can be condensed onto a con-
nected Hausdorff space and the question was asked as to whether
every non-compact regular Lindelöf space (or each non-H-closed
Lindelöf T2-space) can be condensed onto a connected Hausdorff
space. These are parts of Problems 3.10 and 3.11 of [12]. The fol-
lowing very simple example shows that the condition of separability
in Theorem 2.4 cannot be omitted and at the same time answers
both of the above questions in the negative.

Example 2.7. Let C be the one-point compactification of a dis-
crete space of cardinality κ > 2c and let (X, τ) be the disjoint
topological union of a countable discrete space N and C. Then
X is a regular Lindelöf space which cannot be condensed onto a
dense-in-itself Hausdorff space.

Proof. Suppose that σ is a Hausdorff topology on X weaker than τ .
First note that since |X| > 2c, (X,σ) is not separable and hence N is
not dense in (X,σ). But then, A = X \ clσ(N) is a non-empty open
subset of (C, σ|C). However, since (C, τ |C) is compact Hausdorff,
it follows that (C, τ |C) = (C, σ|C) and so the open set A contains
isolated points, showing that (X,σ) is not dense-in-itself. �

The space X above is neither first countable nor separable and
so the following questions (the first of which constitutes part of
Problems 3.10 and 3.11 of [12]) remain open.

Problem 2.8. Can every non-compact regular (respectively, non-
H-closed Hausdorff) first countable Lindelöf space be condensed
onto a connected Hausdorff space?

Problem 2.9. Can every non-compact regular (respectively, non-
H-closed Hausdorff) separable Lindelöf space be condensed onto a
connected Hausdorff space?

With regard to the latter problem, we note that an argument
similar to that of Theorem 2.4, can be used to condense a non-
H-closed, separable Lindelöf Hausdorff space onto a dense-in-itself
space with the same properties.
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The next theorem should be compared with that of Theorem 3.4
of [12], where a connected second countable Hausdorff subtopology
was constructed.

Theorem 2.10. A second countable Urysohn space (X, τ) which
is dense-in-itself but not Urysohn-closed can be condensed onto a
connected second countable Urysohn space.

Proof. Since (X, τ) is not Urysohn-closed, by Lemma 2.1 there ex-
ists a Urysohn family U = {Un : n ∈ ω} in (X, τ). Furthermore, by
Corollary 2.2 of [1] each set intτ (Un) has a countable dense regular
subspace Qn which, since it is dense-in-itself, must be homeomor-
phic to the rationals Q whose metric topology we denote by µ.

Denote by hn some homeomorphism from Qn onto Q. Let ρ be
a connected second countable Urysohn topology on ω (for example
that of [9]). Given T ∈ µ and W ⊆ ω, we define

O(T,W ) = ∪{intτ (clτ (h−1
n [T ])) : n ∈W}.

For each T ∈ µ and W ∈ ρ, it is immediate that O(T,W ) ∈ τ .
We denote ∪{Un : n ∈ ω} by Z and define a topology σ on X as
follows:

σ = {U ∈ τ : for all x ∈ U ∩ intτ (Z) there exist
T ∈ µ and W ∈ ρ such that x ∈ O(T,W ) ⊆ U}.

Obviously, σ ⊂ τ and we omit the straightforward verification
that σ is indeed a topology. We proceed to prove that (X,σ) is a
Urysohn space. To this end, suppose x, y are distinct elements of
X.
1) x, y ∈ Z. If x ∈ Un and y ∈ Um, where m 6= n, then there
are mutually disjoint closed ρ-neighbourhoods W1,W2 of n and
m respectively, and open τ -neighbourhoods U, V ∈ τ of x, y re-
spectively, whose closures are disjoint. Furthermore, since U is a
Urysohn family, we can assume that U ∩Z ⊆ Un and V ∩Z ⊆ Um.
Then U ′ = hn[U ∩Qn] and V ′ = hm[V ∩Qm] are open subsets of Q
and the sets U ∪O(U ′, intρ(W1)) and V ∪O(V ′, intρ(W2)) are dis-
joint σ-neighbourhoods of x and y respectively whose closures are
disjoint. If on the other hand, x, y ∈ Un for some n ∈ ω, then there
are neighbourhoods U, V ∈ τ of x, y respectively whose closures are
disjoint and again we assume that U ∩ Z ⊆ Un ⊇ V ∩ Z. Defining
U ′ and V ′ as before we have that U ∪O(U ′, ω) and V ∪O(V ′, ω) are
disjoint σ-neighbourhoods of x and y respectively whose closures
are disjoint.
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2) x ∈ Z, say x ∈ Un, and y ∈ X \ Z. There exist neighbourhoods
U, V ∈ τ of x, y respectively whose closures are disjoint and have the
properties that U ∩Z ⊆ Un, V ∩Um = ∅ for all m and clτ (V ) meets
only finitely many of the sets Um, say A = {m : Um ∩ V 6= ∅}. We
choose an open neighbourhoodW of n in (ω, ρ) whose closure misses
the finite set A \ {n}. Then as before, defining U ′ = hn[U ∩Qn] we
have that U ∪ O(U ′,W ) and V are open sets in (X,σ) containing
x, y respectively and whose closures are disjoint.
3) If x, y ∈ X \ Z, then choose τ -open sets U and V such that
clτ (U) ∩ clτ (V ) = ∅ and such that A = {n : U ∩ Un 6= ∅},
B = {n : V ∩ Un 6= ∅} are both finite and U ∩ int(Un) = ∅ =
V ∩ int(Un) for all n. Since both A and B are closed subsets of
(ω, ρ) it follows that clσ(U) = clτ (U) and clσ(V ) = clτ (V ) are the
required disjoint closed neighbourhoods of x and y respectively.

For each q ∈ Q, consider the set Yq = {h−1
n [q] : n ∈ ω}. It is clear

that (Yq, σ|Yq) is homeomorphic to (ω, ρ) and hence is connected.
Since the space (ω, ρ) is countable, connected and Urysohn, it fol-
lows from [11; Lemma 1] that it is not Urysohn-closed and hence
we can find an infinite Urysohn familyW = {Wn : n ∈ ω} in (ω, ρ).
It is then clear that the infinite family

V = {Vn = clσ(O(Q, intρ(Wn))) : n ∈ ω}
is a Urysohn family in (X,σ).

Enumerate a countable dense subset of X\Z as {xn :n∈ω, n>0}
and let {Kn : n ∈ ω} be an infinite family of mutually disjoint
infinite subsets of ω. For each n, {Vj : j ∈ Kn} is a Urysohn
family in (X,σ) and let Gj be the free Urysohn filter with base
{∪{intσ(Vn) : n ∈ Kj and n ≥ m} : m ∈ ω}. Define a topology ν
on X by requiring that Gj converge to xj .

We omit the, by now familiar, proof that (X, ν) is a Urysohn
space and we claim that (X, ν) is connected. To see this, note that
for each q ∈ Q, x1 ∈ clν(Yq) and hence S = ∪{Yq : q ∈ Q} ∪ {x1} is
connected. However, S is dense in (X, ν) and so this latter space
is connected. Finally note that {Vj : j ∈ K0} is a Urysohn family
in (X, ν) and hence this latter space is a Urysohn space with a
countable network which is not Urysohn-closed. Applying Theorem
2.3, (X, ν) can be condensed onto a second countable connected
Urysohn space. �

Combining Theorem 2.10 and Corollary 2.6 we have:
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Theorem 2.11. A disconnected Urysohn space with a countable
network can be condensed onto a connected second countable
Urysohn space if and only if it is not Urysohn-closed.

Proof. It remains only to show that a disconnected Urysohn-closed
space (X, τ) cannot be condensed onto a connected Urysohn space.
However, if U is an open and closed subset of (X, τ), then by
Remark 1.2, U and X \ U are Urysohn-closed and hence each is
closed in any weaker Urysohn topology. �

The space (X, τ) of Example 2.2 is first countable but neither fee-
bly compact nor Urysohn-closed; however, we do not know whether
it can be condensed onto a connected Urysohn space. However, we
have:

Example 2.12. The space ω1 with the order topology can not
be condensed onto a connected (or even a dense-in-itself) Urysohn
space.

Proof. Let µ denote the order topology on ω1; if σ ⊂ µ is a Urysohn
topology on ω1 strictly weaker than µ, then there is some α ∈ ω1

such that the open filter U of all open σ-neighbourhoods of α does
not contain the open filter of all µ-neighbourhoods of α. We will
show that (ω1, σ) is Urysohn-closed and to this end, without loss
of generality, we assume that µ and σ coincide on ω1 \ {α}. Since
(ω1, σ) is a Urysohn space, U is a Urysohn filter in (ω1, σ) and hence
is a Urysohn filter base in (ω1, µ). Since α is the unique cluster
point of U in (ω1, σ), the only possible cluster point of U in (ω1, µ)
is again α. However, since every initial closed interval of (ω1, µ)
is compact, it follows that every open filter with a unique cluster
point in (ω1, µ) which contains a bounded set, must converge. Thus
every element of U must be unbounded. Let G be any free open
filter on (ω1, σ). Again, since initial closed intervals of (ω1, σ) are
compact, G can contain no bounded set and hence all elements of
G are unbounded; but then, if G ∈ G and U ∈ U it follows that
clσ(G) ∩ clσ(U) ⊇ clµ(G) ∩ clµ(U) 6= ∅, since closed unbounded
subsets of (ω1, µ) are not disjoint and so G is not a Urysohn filter.
Thus (ω1, σ) is Urysohn-closed and since each successor ordinal β ∈
ω1 distinct from α is isolated, it follows that (ω1, σ) is disconnected.
The result now follows by an argument identical to that used in the
proof of Theorem 2.11. �
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We note in passing that in the above example, if there is some
U ∈ U which contains no final interval, then (ω1, σ) is an example of
a Urysohn-closed space which is neither regular nor H-closed. By
way of a contrast, it was shown in [3] that (ω1, µ) can be condensed
onto a connected Hausdorff space.

The techniques used in this section to condense a second count-
able space (X, τ) onto a connected Urysohn space depend on the ex-
istence of a countably infinite Urysohn family in (X, τ). If w(X) =
κ > ω, then to apply the same methods, a Urysohn family of size
κ would appear to be needed. This leads to the following problem
which we state rather informally:

Problem 2.13. If X is a Urysohn space of weight κ, find conditions
under which X possesses a Urysohn family of size κ.

3. The countable case

Recall that a (Hausdorff) space is H-closed if it is closed in every
Hausdorff space in which it is embedded. It is well-known (and
may easily be deduced from the results in [4; 3.12.5]) that Lindelöf
(hence countable and second countable) Hausdorff spaces are
H-closed if and only if they are feebly compact.

In general, a second countable Urysohn-closed space is not
H-closed (the first example was given in [5]), but for countable
spaces the following result was proved in [11]:

Theorem 3.1. A countable Urysohn space is Urysohn-closed if and
only if it is H-closed.

Corollary 3.2. A countable Urysohn space is Urysohn-closed if
and only if it is feebly compact.

Furthermore, it follows from [11; Lemma 1] that a countable
Urysohn-closed space must have a dense set of isolated points and
hence cannot be dense-in-itself. Thus a countable Urysohn space
can be condensed onto a connected Urysohn space only if it is not
Urysohn-closed and we have proved:

Theorem 3.3. A countable Urysohn space can be condensed onto
a connected (first countable) Urysohn space if and only if it is not
feebly compact.

Phrased another way,



CONNECTED URYSOHN SUBTOPOLOGIES 673

Corollary 3.4. A Urysohn topology on a countable set contains a
(first countable) connected Urysohn subtopology if and only if it is
not feebly compact.
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