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A NATURAL CLASSIFYING SPACE FOR
COHOMOLOGY WITH COEFFICIENTS IN A

FINITE CHAIN COMPLEX

RASMUS EJLERS MØGELBERG

Abstract. We provide a natural classifying space for coho-
mology with coefficients in a finite chain complex.

1. Introduction

The notion of cohomology with coefficients in a chain complex
extends the notion of ordinary cohomology with coefficients in a
group. It was first introduced in [1] where it was proved that if X
is a space and B is a chain complex of abelian groups, there is an
isomorphism:

Hn(X;B) ∼=
∏
m

Hm(X, Hm−n(B)).

This proves that
∏

n K(Hn−m(B), n) is a classifying space for this
cohomology theory. However, the isomorphism above is not natural
in the coefficient complex. We shall provide a natural classifying
space for cohomology with coefficients in a finite chain complex.

In the case of a finite chain complex of the form A
h−→ B we

define K(A h−→ B,n) to be the homotopy fiber of the map

K(h, n) : K(A,n) → K(B, n).
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200 R. E. MØGELBERG

In general we define K(B0 → . . . → Bk, n) to be the homotopy
fiber of the map

K(B0 → . . . → Bk−1, n) → K(0 → . . . → 0 → Bk, n)

defined inductively by functoriality of the definition of K(B0 →
. . . → Bk−1, n). We shall prove that this defines a natural classify-
ing space. This inductive construction gives the restriction to finite
chain complexes. We will, however, be able to deal with chains of
the form B0 → B1 → . . . .

In the next three sections, we recapitulate cohomology with co-
efficients in a chain complex and define the notion of a natural clas-
sifying space. In section 5, we describe a long exact sequence that
provides the natural connection between cohomology with coeffi-
cients in a finite chain and cohomology with coefficients in shorter
chains. This provides means for induction.

In section 6, we prove equivalence of cellular and singular co-
homology, which is important, since the isomorphism Hn(X, A) ∼=
[X, K(A,n)] in ordinary cohomology is defined using cellular coho-
mology.

In section 7, we extend the Eilenberg-MacLane functor to the
case of finite chains, and in the last three sections, we extend the
definition of the natural transformation [−,K(−, n)] → Hn(−,−)
and prove that it defines an equivalence of functors.

The author is grateful to Ronnie Brown for helpful email commu-
nication, and to Jesper Michael Møller and Hans Jørgen Munkholm
for help and encouragement.

2. Cohomology with coefficients in a chain complex

Definition 2.1. Let (A, ∂A) and (B, ∂B) be chain complexes of
abelian groups. We define the cochain complex Hom(A, B) by set-
ting

Hom(A,B)p =
∏
n

Hom(An, Bn−p)

with differential δ : Hom(A,B)p → Hom(A,B)p+1 given by δf =
∂Bf − (−1)pf∂A.

It is easily verified that this does in fact define a cochain complex.
The definition of this differential was first given in [4].
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Definition 2.2. A finite chain complex is a finite sequence of
abelian groups and homomorphisms

B0
h0→ B1 → . . .

hr−1→ Br

such that hi ◦ hi−1 = 0.

The class of finite chain complexes becomes a subcategory of
the category of chain complexes under the inclusion that maps the
finite complex

B0
h0→ B1 → . . .

hr−1→ Br

to the infinite chain complex which has B0 to Br in dimensions 0
to r and 0 in all other dimensions.

We define the length of a finite complex to be the number of
nontrivial groups in it. That is, the length of B0 → . . . → Br is
r + 1.

The following definition is due to R. Brown [1].

Definition 2.3. Let (A, ∂A) and (B, ∂B) be chain complexes. We
define the cohomology of A with coefficients in B to be

Hn(A; B) = Hn(Hom(A,B)).

Remark 2.4. If B0 is an abelian group, we can view B0 as a
finite chain complex. This way Definition 2.3 extends ordinary
cohomology.

One may easily prove:

Proposition 2.5. There exists an isomorphism

Hn(A; B0 → . . . → Bk) ∼= Hn+1(A; 0 → B0 → . . . → Bk)

that is natural in both variables.

In [1], the following theorem is proved:

Theorem 2.6. For all chain complexes A, B the groups Hn(A; B)
and

∏
m Hn(A;Hm−n(B)) are isomorphic. The isomorphism is

natural in A.

It is also shown that any such isomorphism cannot be natural
in the chain complex B, so that cohomology with coefficients in a
chain complex cannot be reduced to ordinary cohomology.
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3. Cohomology of spaces

We are now ready to define cohomology of a space.

Definition 3.1. If X is a topological space, let ∆∗(X) denote the
singular chain complex. If B is a chain complex, we define (singular)
cohomology of X with coefficients in B to be

Hn(X; B) = Hn(∆∗(X);B).

If (X,A) is a pair of spaces, we define the relative cohomology with
coefficients in B to be

Hn(X,A;B) = Hn(∆∗(X,A);B)

where ∆∗(X,A) = ∆∗(X)/∆∗(A) is the singular chain complex of
the pair.

We define reduced cohomology of a space using the augmented
singular chain complex.

One may now prove the following theorem:

Theorem 3.2. Singular cohomology with coefficients in a chain
complex is a generalized cohomology theory on the category of topo-
logical spaces. Reduced cohomology with coefficients in a chain
complex is a reduced cohomology theory on the category of CW-
complexes.

The proof of this is standard. For details, see [8].

Remark 3.3. Theorem 2.6 shows that this cohomology theory can-
not satisfy the dimension axiom since

Hn({∗};B) ∼= H−n(B).

4. Natural classifying spaces

In this article we let [X,Y ] denote the homotopy classes of base-
point-preserving maps X → Y .

It is known from [5] that there is a functorial construction of
Eilenberg-MacLane spaces. That is, for each n ≥ 0, we have a
functor K(−, n) from the category of abelian groups to the category
of pointed CW-complexes. For any group A, K(A,n) is a CW-
complex with (n − 1)-skeleton consisting only of the basepoint ∗.
In case A = 0, we have K(0, n) = ∗. In case n = 0, we take K(−, 0)
to be the functor, that to A associates A as a discrete group.
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The functor K(−, n) is a right inverse to the functor πn. This
provides us with a natural isomorphism πnK(A,n) ∼= A.

We also have another natural equivalence,

S : [Σ−,−] → [−,Ω−],

where Σ denotes the reduced suspension.
This natural equivalence induces a natural equivalence

Sl : πn → πn−lΩl

for all l ≥ 0. Using this equivalence, we get an identification

πn−lΩlK(A,n) ∼= A.

Lemma 4.1. Suppose n ≥ l. We can choose a homotopy equiva-
lence,

f : ΩlK(A, n) → K(A,n− l),
such that the following diagram commutes:

πn−l(ΩlK(A,n))

∼=
&&NNNNNNNNNNNN

f∗ // πn−l(K(A, n− l))

∼=
wwppppppppppppp

A

Proof: This follows from the fact that

[K(A,n),K(B, n)] ∼= Hom(A,B). ¤
In the rest of this article, whenever a homotopy equivalence

K(A, n− l) to ΩlK(A,n) is mentioned, we mean a homotopy equiv-
alence satisfying the requirements of Lemma 4.1

Definition 4.2. Suppose hn(−,−) is a cohomology theory, with
coefficients in a chain complex. A natural classifying space for
hn(−,−) is a functor Kn(−) such that there exists a natural equiv-
alence from the functor hn(−,−) to the functor [−,Kn(−)].

Example 4.3. The functor K(−, n) is a natural classifying space
for ordinary reduced cohomology with coefficients in the category
of groups.

The aim of this article is to construct a natural classifying space
for cohomology with coefficients in the category of finite chain com-
plexes.
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5. The long exact sequences

Theorem 5.1. Suppose

B0
h0→ B1 → . . .

hk−1→ Bk

is a finite chain complex. For every chain complex A of abelian
groups, and r ∈ {0, . . . , k− 1} there is a long exact sequence on the
form:

. . . // Hn(A, B0 → . . . Bk)
ψ // Hn(A,B0 → . . . Br)

(hr)∗ //

Hn−r(A, Br+1 → . . . Bk)
φ // Hn+1(A,B0 → . . . Bk) // . . . .

Here, the map ψ is induced by projection of chains and the map φ
is induced by inclusion of chains. This sequence is natural in both
A and the coefficient complex.

Remark 5.2. The map (hr)∗ is the map induced by the chain map:

B0
//

²²

. . . // Br−1
//

²²

Br

hr

²²

// 0 //

²²

. . . // 0

²²
0 // . . . // 0 // Br+1

// Br+2
// . . . // Bk

Proof: The chain map i

0 //

²²

. . . // 0 //

²²

Br+1

id
²²

// . . . // Bk

id
²²

B0
// . . . // Br

// Br+1
// . . . // Bk

induces the map

φ : Hn(A; 0 → . . . → 0 → Br+1 → . . . → Bk) →
Hn(A; B0 → . . . → Bk),

and the chain map p

B0
//

id
²²

. . . // Br
//

id
²²

Br+1
//

²²

. . . // Bk

²²
B0

// . . . // Br
// 0 // . . . // 0

induces the map

ψ : Hn(A;B0 → . . . → Bk) → Hn(A;B0 → . . . → Br).
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Since clearly the sequence

0 // Hom(A; 0 → . . . → 0 → Br+1 → . . . → Bk)n
i∗ //

Hom(A;B0 → . . . → Bk)n
p∗ // Hom(A;B0 → . . . Br)n

// 0

is short exact for every n, the long exact sequence follows from the
Snake Lemma and Proposition 2.5.

The only thing left to prove is that the connecting homomor-
phism is in fact the map (hr)∗ . This is done by tracing through
the definition of the connecting map in the Snake Lemma. ¤

The version of the long exact sequence that we will use most is
the case r = k − 1.

Corollary 5.3. Suppose k > n + 1 and X is a space. Then the
map

ψ : H̃n(X, B0 → . . . → Bk) → H̃n(X,B0 → . . . → Bn+1)

is an isomorphism. This map is natural in both variables.

Proof: This follows easily from Theorem 5.1 and Theorem 2.6.
¤

Thus, the only interesting cases of cohomology with coefficients
in a finite complex are the ones with k ≤ n+1, and we can restrict
our attention to those.

Had we done the analysis for Theorem 5.1 in the case of infinite
chains, the arguments from the corollary above would have shown,
that for a general chain complex B, H̃n(X,B) is only affected by
the groups in B in dimension less than or equal to n + 1.

6. Cellular cohomology

Definition 6.1. Let X be a CW-complex, and let C∗(X) denote
the cellular complex of X. We define the cellular cohomology of X
with coefficients in the chain complex B as

Hn
CW (X;B) = Hn(C∗(X);B).

Likewise, we define cellular cohomology of a pair and reduced co-
homology using the cellular complex of the pair and the augmented
cellular complex, respectively.
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Theorem 6.2. Let H̃n(−,−) and H̃n
CW (−,−) denote reduced sin-

gular and cellular cohomology with coefficients in a chain complex.
The functors H̃n(−,−) and H̃n

CW (−,−) are naturally equivalent on
the category of CW-complexes.

Proof: We will first prove that the two functors are equivalent
on the category of simplicial complexes.

Suppose X is a simplicial complex. Each cell of X has an at-
taching map that is a homeomorphism from ∆n to the cell. We
may view this attaching map as an element of ∆n(X). This gives
a chain map

C∗(X) → ∆∗(X)

that induces an isomorphism on homology, and therefore also on
cohomology. This way we obtain an isomorphism

Hn
CW (X; B) → Hn(X;B)

that is natural in X and B as desired. This is an equivalence of
functors on the category of simplicial complexes.

Now suppose X is a CW-complex. Choose a simplicial complex
Y homotopic to X and choose cellular homotopy equivalences f :
X → Y and g : Y → X, that are inverses of each other. Let TX be
the composition

C∗(X)
f∗ // C∗(Y ) // ∆∗(Y )

g∗ // ∆∗(X)

where the middle map is the map defined above. We define the
natural equivalence of functors to be the map induced by TX . There
is a choice of simplicial approximations involved here, but we claim
that this cannot be seen at the level of cohomology.

Consider a different choice of simplicial space Z with maps f ′ :
X → Z and g′ : Z → X, and consider the following diagram:

C∗(Y ) //

(f ′g)∗

²²

∆∗(Y )
g∗

$$JJJJJJJJJ

(f ′g)∗

²²

C∗(X)

f∗
::uuuuuuuuu

(f ′)∗

$$IIIIIIIII
∆∗(X)

C∗(Z) // ∆∗(Z)

g′∗
::ttttttttt
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Since the maps f ′ and f ′gf are homotopic, the left triangle com-
mutes up to chain homotopy. The middle square clearly commutes,
and the right triangle commutes up to chain homotopy as before.
This proves well-definedness.

Naturality is clear. This proves the theorem and the proof can
easily be generalized to relative cohomology (cohomology of pairs)
which takes care of the case of reduced cohomology. ¤

7. The functor K(−, n)

The aim of this section is to extend the functor K(−, n) : Ab →
Top, where Ab is the category of abelian groups, to the category of
finite chain complexes. We will begin with the case of a complex
A

h−→ B. Suppose we have a natural classifying space K(A h−→
B,n). As a consequence of Theorem 5.1, we then have an exact
sequence

. . . // [X, ΩK(A,n)]
ΩK(h,n)∗ // [X, ΩK(B, n)] //

[X, K(A h−→ B,n)] // [X,K(A,n)]
K(h,n)∗ //

[X, K(B,n)] // . . . .

This long exact sequence corresponds to a right exact sequence
of spaces that resembles the Puppe sequence for the map K(h, n).
This motivates the definition of K(A h−→ B, n) to be the homotopy
fiber of K(h, n).

To see that this defines a functor, note that a morphism of com-
plexes

A
h //

φ0

²²

B

φ1

²²
A′

h′ // B′

induces the commutative diagram

K(A,n)
K(h,n) //

K(φ0,n)
²²

K(B, n)

K(φ1,n)
²²

K(A′, n)
K(h′,n) // K(B′, n)
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which induces a map between the homotopy fibers.
We note two important obvious consequences of this definition:

K(A → 0, n) = K(A,n) and K(0 → B,n) = ΩK(B, n).
To define K(−, n) in general, we proceed by induction over the

length of the chain complex. So suppose we have defined K(−, n)
on all chains of length k or shorter, such that

K(0 → B1 → . . . → Bk−1, n) = ΩK(B1 → . . . → Bk−1, n).

Suppose we are given a chain B0 → . . . → Bk. Since we have a
commutative diagram of chains of length k − 1

(B0 → . . . → Bk−2)
(0,...,0,hk−2)

//

²²

(0 → . . . → 0 → Bk−1)

(0,...,0,hk−1)

²²
(0 → . . . → 0) // (0 → . . . → 0 → Bk)

we obtain a commutative diagram

K(B0 → . . . → Bk−2, n)
K((0,...,0,hk−2),n)

//

²²

Ωk−2K(Bk−1, n)

Ωk−2(hk−1,n)
²²

? // Ωk−2K(Bk, n)

which induces a map

K((0, . . . , 0, hk−1), n) : K(B0 → . . . → Bk−1, n) −→ Ωk−1K(Bk, n).

We can now define:

Definition 7.1. K(B0 → . . . → Bk, n) is the homotopy fiber of
the map

K((0, . . . , 0, hk−1), n) : K(B0 → . . . → Bk−1, n) −→ Ωk−1K(Bk, n).

Clearly, we still get K(0 → B1 → . . . → Bk, n) = ΩK(B1 →
. . . → Bk, n) and K(A → 0 → . . . → 0, n) = K(A,n).

The next lemma should be considered in relation to Corollary
5.3.

Lemma 7.2. Suppose k > n + 1. Then there exists a natural
homotopy equivalence

K(B0 → . . . → Bk, n) → K(B0 → . . . → Bn+1, n).
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Proof: It suffices to show that there exists a natural homotopy
equivalence:

K(B0 → . . . → Bk, n) → K(B0 → . . . → Bk−1, n).

If k > n + 1, then Ωk−1K(Bk, n) is null homotopic. So we can
construct a commutative diagram:

K(B0 → . . . → Bk−1, n) // Ωk−1K(Bk, n)

'
²²

K(B0 → . . . → Bk−1, n) // ?

Since both vertical maps here are homotopy equivalences, this map
induces a weak homotopy equivalence between the fibers. That it
is in fact a homotopy equivalence is proved in [2]. Naturality is
clear. ¤

8. A CW-structure on K(B0 → . . . → Bk, n)

We will prove that K(B0 → . . . → Bk, n) is a natural classifying
space using cellular cohomology, so we need a CW-structure on this
space.

Lemma 8.1. The space K(B0 → . . . → Bk, n) is homotopy equiv-
alent to a CW-complex if n ≥ k.

Proof: This lemma can be proven by induction on k using the
facts that the homotopy fiber of a map between CW-complexes
is homotopy equivalent to a CW-complex [7], and the fact that a
pair of homotopy equivalences in a commutative diagram induces
a homotopy equivalence on the homotopy fibers [2]. ¤

For our purpose, however, we need a special CW-structure on
K(B0 → . . . → Bk, n).

Lemma 8.2. K(B0 → . . . → Bk, n) is homotopy equivalent to
a CW-complex X that is obtained from K(Bk, n − k) by attaching
cells of dimension n−k+1 and higher. Furthermore, the homotopy
equivalence is a homotopy equivalence of pairs:

(X,K(Bk, n− k)) → (K(B0 → . . . → Bk, n), ΩkK(Bk, n)).

To prove this we need the following lemma.
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Lemma 8.3. The pair (K(B0 → . . . → Bk, n),ΩkK(Bk, n)) is
(n− k)-connected.

Proof: This is an easy consequence of the long exact sequence of
a fibration. ¤

Now, Lemma 8.2 follows from the Cellular Approximation The-
orem, CW-models, and [6, page 76].

By the definition of K(B0 → . . . → Bk, n), we have a commuta-
tive diagram of maps.

Diagram 8.1

ΩkK(Bk, n) i // K(B0 → . . . Bk, n)

qk

²²

pk // K(B0 → . . . Bk−1, n)

K((0,...,0,hk−1),n)

²²
PΩk−1K(Bk, n)

η // Ωk−1K(Bk, n)

Here, pk and qk are the projections, i is the inclusion, and η is the
map γ 7→ γ(1). Notice that pki is the constant map to ∗ .

If we replace the spaces in the upper line of this diagram with CW
approximations, as given in Lemma 8.2, we get a diagram that only
commutes up to homotopy, but still has pki = ∗ . According to the
Cellular Approximation Theorem, we may also replace pk with a
cellular map that is homotopic to pk through a homotopy that maps
ΩkK(Bk, n) to ∗ at all times. Having done this replacement, we
know that K((0, . . . , 0, hk−1), n) ◦ pk is homotopic to η ◦ qk through
a homotopy that maps ΩkK(Bk, n) to ∗ at all times.

9. The natural transformation

In the following we shall always assume that n ≥ k.
To define the natural transformation

T : [−,K(B0 → . . . → Bk, n)] → H̃n(−, B0 → . . . → Bk)

we will construct an element

ξ ∈ Hn(K(B0 → . . . → Bk, n), B0 → . . . → Bk)

and define T ([f ]) = f∗(ξ). An element in H̃n(X,B0 → . . . → Bk)
is represented by a set of maps (ξ0, . . . , ξk) such that the following
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diagram commutes up to sign:

Cn+1
∂ //

²²

Cn(X)

ξ0
²²

∂ // Cn−1(X)

ξ1
²²

∂ // . . . // Cn−k(X)

ξk

²²
0 // B0

h0 // B1
// . . . // Bk

To be precise, we must have the equations

ξ0 ◦ ∂ = 0(9.1)
∀l : ξl ◦ ∂ = (−1)nhl−1ξl−1 .(9.2)

In the case k = 0, we know that ξ0 is the map that to an
n-cell associates its attaching map, considered as an element of
πn(K(B, n)). Notice that this works for all n ≥ 0.

We define the set (ξ0, . . . , ξk) inductively. Suppose the maps
(ξ′0, . . . , ξ

′
k−1) are defined. We define

(ξ0, . . . , ξk) = (p∗k(ξ
′
0), . . . , p

∗
k(ξ

′
k−1), ξk)

where ξk is the map known from ordinary cohomology using the
fact that

Cn−k(K(B0 → . . . → Bk, n)) = Cn−k(K(Bk, n− k)).

Another way to desribe ξi : Cn−i(K(B0 → . . . → Bk, n)) → Bi

is that if σ is the attaching map of an n− i cell, then ξi associates
to this cell the element

pi+1 ◦ . . . pk ◦ σ ∈ πn−i(K(Bi, n− i)).

Notice that since the CW-approximation used for

K(0 → . . . → 0︸ ︷︷ ︸
l

→ B, n) = ΩlK(B,n)

is in fact K(B, n− l) in this case, the transformation

T : [−, ΩlK(B, n)] → Hn(−, 0 → . . . → 0︸ ︷︷ ︸
l

→ B) = Hn−l(−, B)

reduces to the transformation known from ordinary cohomology.
Thus, we have:

Proposition 9.1. For n ≥ l the restriction of T to CW-complexes
and abelian groups:

T : [−,ΩlK(−, n)] → H̃n−l(−,−)
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is an equivalence of functors.

In what follows, we will prove several things about the definition
of T . First of all, we need to prove that ξ = (ξ0, . . . , ξk) is a cycle, so
that T will be well-defined. This is done by proving that it satisfies
(9.1) and (9.2).

The second thing we need to prove is that we have defined a
transformation that is natural in the coefficient variable. This is
the requirement that will prove that K(B0 → . . . → Bk, n) is a
natural classifying space.

The last thing we need to prove is that the transformation T is
in fact an equivalence.

Lemma 9.2. The set (ξ0, (−1)nξ1, . . . , (−1)nkξk) with ξ0, . . . , ξk as
defined above is a cycle.

Proof: The proof will be by induction on k. The case k = 0 is
known from ordinary cohomology.

For the induction step, suppose (ξ′0, (−1)nξ′1, . . . , (−1)(k−1)nξ′k−1)
is a cycle. We need to prove that the element

(p∗k(ξ
′
0), (−1)np∗k(ξ

′
1), . . . , (−1)(k−1)np∗k(ξ

′
k−1), (−1)nkξk)

satisfies (9.1) and (9.2). Most of the equations follow trivially from
the induction hypothesis. The only one left to prove is

ξk∂ = hk−1p
∗
k(ξ

′
k−1).

Suppose σ is an (n − k + 1)-cycle of K(B0 → . . . → Bk, n)
represented by its characteristic map σ : Dn−k+1 → K(B0 → . . . →
Bk, n). Then p∗k(ξ

′
k−1)(σ) is by definition the element

pk ◦ σ ∈ πn−k+1(Ωk−1K(Bk−1, n)) ∼= Bk−1 .

Since the identification πn−k+1(Ωk−1K(Bk−1, n)) ∼= Bk−1 comes
from the natural transformation from πn−k+1(Ωk−1K(−, n)) to the
identity functor, hk−1 ◦ p∗k(ξ

′
k−1)(σ) is the element

Ωk−1K(hk−1, n) ◦ pk ◦ σ ∈ πn−k+1(Ωk−1K(Bk, n)) ∼= Bk .

It is clear from definitions that the map

K((0, . . . , 0, hk−1), n) : K(B0 → . . . → Bk−1, n) → Ωk−1K(Bk, n)

restricted to Ωk−1K(Bk−1, n) is Ωk−1K(hk−1, n), and thus we know
that hk−1◦p∗k(ξ′k−1)(σ) is represented by the map K(hk−1, n)◦pk◦σ.
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Since Diagram 8.1 commutes up to a homotopy, which is the
constant map to ∗ on K(B0 → . . . → Bk, n)(n−k)× I, we have that
the same element is represented by the map

η ◦ qk ◦ σ ∈ πn−k+1(Ωk−1K(Bk, n)) ∼= Bk .

On the other side of the equation we have ξk∂σ which is the el-
ement represented by the map ∂σ = σ|Sn−k : Sn−k → ΩkK(Bk, n).
Using the natural transformation

S−1 : πn−kΩ → πn−k+1

we get that the same element is represented by

S−1(∂σ) ∈ πn−k+1(Ωk−1K(Bk, n)).

Now, all we need to complete the proof is a homotopy from
S−1(∂σ) to η ◦ qk ◦ σ inside Ωk−1K(Bk, n). Let

F : Dn−k+1 × I/Dn−k+1 × {0} → Ωk−1K(Bk, n)

be defined as F (x, t) = (qk ◦ σ(x))(t). Then

F |Dn−k+1×{1} = η ◦ qk ◦ σ

and
F |Sn−k×I = S−1(∂σ).

So F provides the desired homotopy. ¤
Thus, if ξ = (ξ0, . . . , (−1)nkξk), we can define a natural transfor-

mation

T : [−,K(B0 → . . . → Bk, n)] → H̃n(−, B0 → . . . → Bk)

by setting T ([f ]) = f∗(ξ). Since our goal was to define a natural
classifying space, the next step is to prove that this transformation
is natural in the coefficient variable.

We have to prove that if φ : (B0 → . . . → Bk) −→ (B′
0 → . . . →

B′
k) is a chain map then the following diagram commutes for all X:

[X, K(B0 → . . . → Bk, n)]
K(φ,n)∗ //

T
²²

[X,K(B′
0 → . . . → B′

k, n)]

T
²²

H̃n(X,B0 → . . . → Bk)
φ∗ // H̃n(X, B′

0 → . . . → B′
k)
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Since all maps in this diagram are natural transformations, it suf-
fices to prove that

φ∗T ([id]) = TK(φ, n)∗([id]).

Lemma 9.3. The transformation T is natural in the coefficient
variable.

Proof: The proof will be by induction on k. The case k = 0
is known from ordinary cohomology. In this case we can actually
prove that if

ξ : Cn(K(A, n)) → A

and
η : Cn(K(B,n)) → B

are the maps that give the natural transformation, then

h ◦ ξ = η ◦K(h, n)∗ .

We shall prove that this identity holds in general by induction.
For the induction, suppose

ξ′ = (ξ′0, . . . , (−1)n(k−1)ξ′k−1)

and
η′ = (η′0, . . . , (−1)n(k−1)η′k−1)

are the elements giving the transformation in the cases of the chains
B0 → . . . → Bk and B′

0 → . . . → B′
k, respectively. We shall use

the names φ = (φ0, . . . , φk−1) and φ̄ = (φ0, . . . , φk). The induction
hypothesis will be that

φ ◦ ξ′ = η′ ◦K(φ, n)∗ .

We define

ξ = (p∗k(ξ
′
0), . . . , (−1)n(k−1)p∗k(ξ

′
k−1), (−1)nkξk)

and
η = (p∗k(η

′
0), . . . , (−1)n(k−1)p∗k(η

′
k−1), (−1)nkηk)

as usual. We need to prove that

φ̄ ◦ ξ = η ◦K(φ̄, n)∗ .

Let us first concentrate on the first k − 1 places above. Suppose
l ∈ {1, . . . , k − 1}. We need to prove that

φl ◦ ξ′l ◦ (pk)∗ = ηl ◦ (pk)∗K(φ̄, n)∗ .
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If we can prove that

pk ◦K(φ̄, n) = K(φ, n) ◦ pk,

the equation will follow from the induction hypothesis, but the
latter equation follows from the definitions.

The last thing we need to prove is that

φk ◦ ξk = ηk ◦K(φ̄, n)∗ .

Notice that on K(B0 → . . . → Bk, n)(n−k) = ΩkK(Bk, n) we have
that K(φ̄, n) is just ΩkK(φk, n). This reduces the equation to the
one known from ordinary cohomology. ¤

10. The main theorem

By now we have defined a natural transformation, that we would
like to be an equivalence. Consider the following:

Diagram 10.1

[X, ΩK(B0 → . . . → Bk−1, n)] T //

ΩK(hk−1,n)

²²

H̃n−1(X,B0 → . . . → Bk−1)

(hk−1)∗
²²

[X, ΩkK(Bk, n)] T //

i∗
²²

H̃n−k(X, Bk)

φ
²²

[X, K(B0 → . . . → Bk, n)]

p∗
²²

T // H̃n(X,B0 → . . . → Bk)

ψ
²²

[X, K(B0 → . . . → Bk−1, n)]

K((0,...,0,hk−1),n)

²²

T // H̃n(X, B0 → . . . → Bk−1)

(hk−1)∗
²²

[X, Ωk−1K(Bk, n)] T // H̃n−k+1(X,Bk)

The diagram should be interpreted using identifications of the
form:

ΩkK(Bk, n) = K(0 → . . . → 0︸ ︷︷ ︸
k

→ Bk, n)
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and
H̃n−k(X, Bk) = H̃n(X, 0 → . . . → 0︸ ︷︷ ︸

k

→ Bk).

Lemma 10.1. Diagram 10.1 commutes.

Proof: This is a consequence of the fact that T is a natural
transformation. ¤

If we replace all instances of X in Diagram 10.1 by ΣX, we
know that all maps involved are homomorphisms; therefore, we may
apply the Five Lemma to this diagram and prove that T induces
an isomorphism by induction.

Theorem 10.2. The functors [−,ΩK(−, n + 1)] and H̃n(−,−),
taking the first variable in the category of pointed CW-complexes
and the second in the category of finite chain complexes of abelian
groups, are naturally equivalent.

Proof: By induction on Diagram 10.1 we know that the maps

T : [ΣX, ΩlK(B0 → . . . → Bk, n)] → H̃n−l(ΣX, B0 → . . . → Bk)

are isomorphisms as long as n− k − l ≥ 0 (l can be zero).
This proves that the functors [Σ−,K(−, n)] and H̃n(Σ−,−) are

naturally equivalent functors defined on chains of length at most
n + 1.

It follows easily from the Meyer-Vietoris sequence that the func-
tors H̃n+1(Σ−,−) and H̃n(−,−) are equivalent. Using this equiv-
alence and the equivalence

[−, ΩK(−, n + 1)] ∼= [Σ−,K(−, n + 1)],

we get a natural equivalence of functors

[−, ΩK(−, n + 1)] ∼= H̃n(−,−)

defined on chains of length at most n + 2. Now suppose k > n + 2.
Then we have natural homotopy equivalences

ΩK(B0 → . . . → Bk, n + 1) ' K(0 → B0 → . . . → Bk, n + 1) '
K(0 → B0 → . . . → Bn+1, n + 1) ' ΩK(B0 → . . . → Bn+1, n + 1)

by Lemma 7.2, and since Corollary 5.3 gives a natural equivalence

H̃n(−, B0 → . . . → Bk) ∼= H̃n(−, B0 → . . . → Bn+1),
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the equivalence of functors holds in the case of arbitrary finite
chains. This concludes the proof. ¤

If we allow the chains to be infinite in one direction, that is, allow
chains on the form

B0 → B1 → . . . ,

then the fact that the groups Bk for k > n + 1 do not affect H̃n

shows that K(B0 → . . . → Bn+1, n) is a natural classifying space
for cohomology with coefficients in B0 → B1 → . . . .
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