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The 2004 Spring Topology and Dynamics Conference was held
March 25–27 at the University of Alabama at Birmingham. Seven
plenary talks, twelve semi-plenary talks, and four parallel special
sessions were held. In this issue, we will report on the areas of
Continuum Theory, General/Set-Theoretic Topology, and Dynam-
ical Systems, in which well-attended special sessions were held. A
report on the Special Session in Geometric Topology/Geometric
Group Theory will be combined with the report of the 2005 con-
ference in a subsequent issue.

Continuum Theory

The Special Session in Continuum Theory attracted a broad
spectrum of researchers from the United States and Mexico and
included speakers from Canada and Poland.

As was the case in previous years, many strong results were pre-
sented in the intersection of continuum theory and dynamical sys-
tems. Indecomposable continua play a pivotal role in this area. On
one hand, continua with no indecomposable subcontinua (such as
dendrites, dendroids, λ-dendroids, hereditarily decomposable con-
tinua) frequently have dynamics similar to real numbers (including
behavior of periodic and recurrent points, the Sarkovskii ordering,
etc.). On the other hand, interesting dynamics often lead to inde-
composable continua in such diverse contexts as Julia sets, positive
entropy homeomorphisms, inverse limits, and even area preserving

1Beginning with this issue, the Problems Section will report on the annual
Spring Topology and Dynamics Conference by publishing a survey of research
in the areas represented at the conference. This will usually be a version of
the “white paper” submitted to the National Science Foundation which has
supported the conference nearly every year in which it has been held.
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dynamical systems. Strong connections to dynamical systems give
special importance to study of inverse limits of [0, 1] (chainable con-
tinua), and in particular, inverse limits of the form ([0, 1], f) for f in
the tent family. (An important question in this last area is whether
two maps in the tent family with homeomorphic inverse limits must
be identical.)

Indecomposable continua also have connections with general
topology and analysis. There have been many recent results on
the pseudo-arc and other hereditarily indecomposable continua and
Bing maps. Additionally, an analytic approach to continuum theory
(through the study of the descriptive complexity of various types
of curves) seems to be very promising.

The study of hyperspaces is another very active area of research
in continuum theory, with several talks devoted to this topic.

Questions on fixed (and periodic) points play a very important
role in continuum theory and are also interesting from a dynamical
systems point of view. Especially interesting is the fundamental
question of whether every non-separating plane continuum has the
fixed point property. (It is even not known if a continuous self map
of such a continuum must have a periodic point.) Recently, two old
fixed point problems (posed by R. H. Bing) were solved, and their
solutions were presented at the conference.

Other selected topics and problems important to continuum the-
ory that were discussed at the conference include the following:

I. Homogeneous Continua. Problems of classification of ho-
mogeneous curves: Is every homogeneous tree-like continuum a
pseudo-arc? Is every hereditarily decomposable homogeneous con-
tinuum a simple closed curve? Is every homogeneous indecompos-
able nondegenerate continuum one-dimensional?

II. Span Zero and Chainability. Does span zero imply chain-
ability? (“Yes” would yield the classification of homogeneous plane
curves.) Is the confluent image of a chainable continuum chainable?

III. Fixed Points. Does every inverse limit of a fixed tree have
the fixed point property? In particular, must any two maps of a
simple triod (a tree) to itself have a coincidence point?

IV. 2-to-1 Maps. Is any tree-like continuum the 2-to-1 image of
a continuum? Can the pseudo-arc map 2-to-1 onto any continuum?
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Is any dendroid the at-most-2-to-1 image of any indecomposable
continuum?

V. Embeddings into the Plane. There is no generally ap-
plicable method of determining if a curve can be embedded into
the plane. The question of embeddability into the plane is central
to the fixed point problem for plane non-separating continua. A
related question asks, “Given a point p in a chainable continuum
X, can X be embedded into the plane with p accessible?”

VI. Dendroids. Can every dendroid be retracted by a small
retraction onto a tree?

Piotr Minc, Janusz Prajs, and Sergio Maciás are to be thanked
for writing the above summary of the Special Session in Continuum
Theory and for assembling the following list of questions posed at
the Problem Session in Continuum Theory.

Problems in Continuum Theory

Below are questions posed at the Problem Session in Continuum
Theory. Included are some remarks of the poser and others.

Question 1. Is each homogeneous, aposyndetic curve either
a simple closed curve or an inverse limit of Menger curves with
covering bonding maps?

Question 2. Is every homogeneous tree-like curve a pseudo-arc?
Question 3. Does every homogenous indecomposable cyclic

curve decompose onto a solenoid with fibers being tree-like homoge-
nous curves or points?

Note: Curve means one-dimensional continuum; X is cyclic pro-
vided that H1(X,Z) 6= 0.

Note: “Yes” to the first three questions yields a classification of
homogeneous curves.

Question 4. Is every homogeneous indecomposable nondegen-
erate continuum one-dimensional?

Question 5. Is every hereditarily decomposable homogeneous
continuum a simple closed curve?
Questions 6 and 7 by Janusz R. Prajs

Question 6. Let X be a homogeneous curve. Must X contain
either an arc or a nondegenerate, proper terminal subcontinuum?
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Question 7. Let X be a homogeneous continuum. Must X con-
tain either an arc or a nondegenerate hereditarily indecomposable
subcontinuum?

Question by R. H. Bing

Question 8. Let X be a planar continuum with the fixed-point
property. Does X × [0, 1] have the fixed point property?

Classical Question

Question 9. Let T be a simple triod (a tree). Do there exist
maps f, g : T → T such that f ◦ g = g ◦ f and f(x) 6= g(x) for each
x ∈ T?

Question by Eric McDowell

Question 10. A small-point hyperspace of a metric continuum,
X, is given by Cε(X, d) = {A ∈ C(X) : diam(A) ≤ ε}, where d is
a metric giving the topology on X and ε > 0. Is Cε(X, d) always
countable closed set aposyndetic?

Note: A continuum X is said to be countable closed set aposyn-
detic if for any p ∈ X and any countable closed subset F of X such
that p 6∈ F there exists a subcontinuum M of X such that p ∈ IntM
and M ∩ F = ∅. (See [4, p. 238]. J. T. Goodykoontz, Jr. showed
in 1973 that C(X) is always countable closed set aposyndetic [2].

Questions 11-16 from Wayne Lewis’s talk; most were originally posed
by others.

Question 11. Does there exist a nondegenerate indecompos-
able non-metric continuum with infinitely many composants which
admits a Borel transversal to its composants?

Question 12. If α is a cardinal number with 2 < α < 2ω, does
there exist a non-metric indecomposable continuum with exactly α
composants?

Question 13. Does there exist a nondegenerate hereditarily
indecomposable non-metric continuum with only one composant?

Question 14. For which sets X is the Stone-Čech remainder
βX \X indecomposable?

Question 15. What techniques other than Stone-Čech remain-
ders and inverse limits with uncountably many factors produce non-
metric indecomposable continua?
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Question 16. How many distinct, non-metric pseudo-arcs can
be formed as hereditarily indecomposable continua by inverse limits
of pseudo-arcs with ω1 factors?
Questions 17-22 concern constrained maps.

Question by Sam B. Nadler, Jr. and Lewis E. Ward, Jr.

Question 17. (the big one) Is any tree-like continuum the 2-to-1
image of a continuum?
Questions 18 and 19 by Jo Heath and Van Nall

Question 18. Is any dendroid the at-most-2-to-1 image of any
indecomposable continuum?

Question 19. Is any λ-dendroid the 2-to-1 image of a contin-
uum?
Question by Jerzy Krzempek

Question 20. Is any decomposable continuum the 2-to-1 image
of any indecomposable continuum?
Question by Piotr Minc

Question 21. Is it true that a chainable continuum is heredi-
tarily decomposable if it admits an at-most-2-to-1 map onto a den-
droid?
Question by Jerzy Mioduszewski

Question 22 (A golden oldie). Can the pseudo-arc map 2-
to-1 onto any continuum?

Question 23. Let W be a widely connected set. (A connected
set W is widely connected iff every nondegenerate connected subset
of W is dense in W .) (a) Is βW an indecomposable continuum?
(b) If W is metrizable and separable, does W have a metric com-
pactification which is an indecomposable continuum? (c) If W is
separable and metrizable does W have a metric compactifacation
γW such that for every composant C of γW , C ∩W is (1) totally
disconnected? (2) finite? (3) a singleton?
Question by James T. Rogers, Jr., John C. Mayer, and D. K. (Doug)
Childers

Question 24. Let S be the Sierpiński plane curve, X and Y be
subcontinua of X in the buried (irrational) points of S and assume
that X and Y are equivalently embedded in the plane. Does this
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imply that X and Y are equivalently embedded in S ? (“Yes,” if
X and Y are arcs. The arc case is applied to rational Julia sets.)

Question 25. Let Mk
n (k ≥ 1) be the “intermediate” Menger

continuum. How many homogeneity classes does Mk
n have?

R. D. Anderson: M1
3 has 1 class (the Menger curve is homoge-

neous).
J. Krasinkiewicz: M1

2 (the Sierpiński curve) has 2 classes.
M. Bestvina: Mk

n for n ≥ 2k + 1 has 1 class.
W. Lewis: Mk

n for k + 1 < n < 2k + 1 has more than 1.

Questions 26-28 by Paul Bankston

Question 26. Are co-existential maps always confluent?

Remark: A map of f : X → Y between compacta is co-existential
if there is an ultracopower (Y ∗, p∗, Y ) over Y and a continuous map
g : Y ∗ → X such that f ◦ g = p∗. A precise specification of Y ∗
and p∗ is as follows: First, pick an index set I and an ultrafilter
D ∈ β(I). Next, with p : X × I → X and q : X × I → I the pro-
jection maps, the D-ultracopower of Y is defined to be an inverse
image of D ∈ β(I) under β(q). The (co-diagonal) map p∗ is then
the restriction of β(p) to the ultracopower contained in β(X × I).
This construction where X is an arc and D is a free ultrafilter on
ω was first used by J. Mioduszewski in the mid 1970s to study the
composant structure of β([0, 1)). Later on, M. Smith and J. P. Zhu
used it to construct indecomposable continua in β([0, 1)). (See [3,
pp. 317-352].) At about the same time as Mioduszewski, I inde-
pendently started to study ultracopowers and ultracoproducts in
general. My motivation was largely model-theoretic and category-
theoretic, whence the terminology. (Indeed, one can alternatively
obtain the D-ultracopower of Y by first taking the lattice F (Y ) of
closed subsets of Y , by second taking D-ultracopower F (Y )I/D,
and by third taking the Wallman filter of the ultracopower lattice.
For more details see [1].

Co-existential maps are actually topological analogues of exis-
tential embeddings in model theory. (Imagine one field being alge-
braically closed in another.) Moreover, if f : F (Y ) → F (X) is an
existential embedding, then f induces a co-existential map from X
to Y . Co-existential maps are always weakly confluent. They are
monotone if the image space is locally connected. They need not
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be monotone in general, but all known examples of nonmonotone
co-existential maps are confluent.

Question 27. Do co-existential maps preserve chainability?
Remark: Both monotone and open maps preserve chainability.

A. Lelek’s corresponding question is whether the same is true for
confluent maps.

Question 28. Is every continuous map of a metrizable contin-
uum onto the pseudo-arc co-existential?

Remark: A metrizable continuum Y is said to be in Class(C) iff
every continuous function from any metrizable continuum onto Y
is confluent (Lelek). This class has been characterized as being the
class of hereditarily indecomposable metrizable continua (Lelek and
D. R. Read). Let us refer to our corresponding class of (not neces-
sarily metrizable) continua as Class(CE). Then every continuum
in this class is hereditarily indecomposable, of covering dimension
1. Class(CE) contains continua of all weights; at least one metriz-
able member is nonchainable. What is particularly interesting to
us about this class is that its specification is exactly dual to that
of the class of existentially closed models of a first-order theory in
logic. For example, the existentially closed fields, i.e., those fields
that embed only existentially in other fields, are precisely the alge-
braically closed fields. The existentially closed linear orders are the
dense orders without end-points.
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General/Set-Theoretic Topology

The General/Set-Theoretic Topology session at this conference
illustrated the remarkable diversity of the field via its applications
to and interaction with other areas, such as logic and set theory,
topological dynamics, topological groups and topological algebra,
Banach spaces, real and functional analysis, and descriptive set the-
ory. Emerging new directions include characterizations of complete
Erdös spaces and their applications in topological dynamics, and
fresh attacks on some fundamental “basis problems” for general
topological spaces. The outline below of results reported on at the
conference is divided into sections loosely related to the areas of
interaction.

I. Homeomorphism Groups, Topological Dynamics. One
of the plenary lectures was given by Jan Dijkstra, who, with Jan
van Mill, recently obtained a deep topological characterization of
Erdös space, a space that is well-known in general topology as a
counterexample in dimension theory. They used it in a striking
solution to the difficult problem of describing certain homeomor-
phism groups of classical manifolds. Work continues on a complete
version of Erdös space, which has surfaced in topological dynam-
ics as the endpoint set of the Lelek fan and in the Julia sets of
various functions. Now, through the efforts of Dijkstra and van
Mill, general topology is about to produce topological characteri-
zations of complete Erdös space and similar spaces that may be of
considerable interest in topological dynamics.

II. Logic and Set Theory. Interactions between set-theoretic
topology and logic/set theory were continually on display at the
conference. Justin Moore announced his remarkable solution to
S. Shelah’s “basis problem” for ordered sets. He proved that it fol-
lows from the Proper Forcing Axiom of set theory that there are
5 uncountable linearly ordered sets such that every uncountable
linear order contains a copy of one of these. This has already led
Moore and others to consider applying his methods to a topological
basis problem of G. Gruenhage: Is it consistent that every uncount-
able regular space contains a copy of either an uncountable discrete
space, an uncountable subspace of the real line, or an uncountable
subspace of the Sorgenfrey line? This problem is about 18 years
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old, but up until now, no one has had any meaningful way to ap-
proach the problem. A positive solution would solve a number of
interesting problems on the structure of perfectly normal compacta
and of continuous images of separable metric spaces.

In another plenary lecture, Ken Kunen used the technique of
elementary submodels to obtain a solution to a problem of A. V.
Arhangel’skii on the existence of locally compact linearly Lindelöf
spaces; in this setting, the problem is equivalent to asking for a
subtle kind of limit behavior at a point in a compact Hausdorff
space.

In other talks, Alan Dow obtained an interesting relationship
between the smallest measurable cardinal and maximal realcompact
topologies, and Andrzej Roslanowski discussed several stong ccc
type properties of partially ordered sets used in the set-theoretic
technique of forcing, some natural examples of which come from
interesting topologies on the reals.

III. Real Analysis, Descriptive Set Theory. With Juris
Steprans, Márton Elekes showed that a certain compact null set in
the real line, originally described by P. Erdös and S. Kakutani in
1955 and a fairly well-known example in geometric measure the-
ory, has the property that, in some models of set theory, fewer
than continuum many translations of it cover the line. This an-
swered a question of Gruenhage. Elekes also answered a question of
D. Mauldin by proving that there is no natural invariant Borel mea-
sure for the set of Liouville numbers. Arnold W. Miller answered
a question of M. Scheepers on γ-sets, which are subsets of the real
line with special properties that have relevance for (among other
things) convergence properties of certain function spaces. Michael
Hrušák discussed which cardinals could be the minimal cardinal of
a cover of a separable metric space by nowhere dense sets, relat-
ing this cardinal to known cardinal invariants of the continuum.
Maxim Burke showed that it is consistent that every non-meager
set in a Polish space have relative non-meager intersection with
some nowhere-dense Cantor set.

IV. Banach Spaces, Functional Analysis. Stoyu Barov
(with Dijkstra) studied when sets with convex projections in Hilbert
space `2 are convex. V. V. Uspenskij showed that P. S. Urysohn’s
universal separable metric space is homeomorphic to `2. Peter
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Nyikos showed that locally-finite-in-the-norm families in a sepa-
rable Banach space have weak topology extensions which are norm
locally finite.

V. Topological Algebra, Topological Groups. In an invited
lecture, A. V. Arhangel’skii obtained interesting results concerning
when a topological group has a metrizable remainder in its Stone-
Čech compactification. Jan van Mill characterized the coset spaces
of separable metric topological groups. Gary Gruenhage answered
several questions in the literature on cozero complemented spaces,
a property equivalent to an algebraic property of the ring C(X) of
all continuous real-valued functions on X.

Gary Gruenhage, with contributions by Alan Dow, Justin Moore,
and Jan van Mill, is to be thanked for writing the above sum-
mary and assembling the following list of problems posed at the
General/Set-Theoretic Problem Session at the conference.

Problems in General and Set-Theoretic Topology

Below are problems posed at the Problem Session in General/Set-
Theoretic Topology. Included are some remarks of the poser and
others. Some problems sent to me (Gruenhage) by email by Justin
Moore and Alan Dow are also included. Please note that the poser
of a problem at the problem session is not necessarily the one who
asked the question originally.

Problems 1 and 2 by Jan van Mill

Problem 1. Is there a non-trivial zero-dimensional homoge-
neous subspace of the real line with the fixed-point property for
homeomorphisms?

Related to Problem 1 is:
Problem 2. Is there a nontrivial compact zero-dimensional

first countable homogeneous space with the fixed-point property
for homeomorphisms?

These questions are rather old and asked many times. I believe
they are interesting since zero-dimensionality and the fixed-point
property are more or less ‘orthogonal’ properties.
Problems 3 – 7 by Justin T. Moore

The solution to the basis problem for linear orders (i.e., PFA
implies that there are five specific uncountable linear orders such
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that every uncountable linear order isomorphically contains one)
is relevant to problems such as the conjecture (L) (no L spaces),
(PFA) every perfect compactum is premetric of degree 2, (PFA)
the uncountable regular spaces have a 3-element basis. Perhaps I
am being a bit ambitious but I would file this in the “promising
new directions” category. As for problems:

Problem 3. Does Martin’s Maximum imply that every compact
space either contains an uncountable discrete set or continuously
maps 2-1 onto a metric space?

Problem 4. Does Martin’s Maximum imply that every hered-
itarily Lindelöf regular space is hereditarily separable?

Problem 5. Does Martin’s Maximum (MM) imply that the
uncountable regular spaces have a 3-element basis?

Problem 6. Do any of the three previous conclusions have
non-trivial consistency strength? In particular, do they imply the
existence of O#?

So far, PFA has been sufficient, but I am starting to suspect that
MM may also be relevant in studying these problems via the new
techniques used in proving a 5-element basis for the uncountable
linear orders from PFA. I have listed the first three problems in the
order that I feel they are most tractable (whatever that means).

Remark by Gruenhage: Whether or not the conclusion of Prob-
lem 3 is consistent with ZFC is originally due to D. Fremlin.
Whether or not the 3-element basis problem for topological spaces
is consistent is originally due to me; I have also noted that if a
positive answer to the 3-element basis problem is consistent with
PFA, this also would give a positive answer to Fremlin’s problem.

Problem 7. If X is compact and X2 is T5, must X be separable?
Remark: MA(ω1) implies “yes”; this could be a nice ZFC fact

though.
Problems 8 – 11 by A. V. Arhangel’skii

A “space” means a “Tychonoff space.” A base B of a space X
is said to be of countable order, if, for every x ∈ X and for every
strictly decreasing sequence η = {Un : n ∈ ω} of elements of B
containing x, η is a local base at x in X.

H. H. Wicke and J. Worrell have established the following re-
markable property of bases of countable order: If a space X has a
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base of countable order locally, then it has it globally. In partic-
ular, every locally metrizable space has a base of countable order.
Hence, ω1 has a base of countable order.

Problem 8. Is every linearly Lindelöf space X with a base of
countable order Lindelöf?

Note that if the answer is “yes,” then every such X is sepa-
rable and metrizable, since every paracompact space with a base
of countable order is metrizable [2]. Note also that every locally
metrizable linearly Lindelöf space is separable metrizable [4].

Problem 9. Is the product of two (of arbitrary countable fam-
ily) of linearly Lindelöf p-spaces linearly Lindelöf?

The product of any countable family of Lindelöf p-spaces is Lin-
delöf, since every Lindelöf p-space admits a perfect mapping onto
a separable metrizable space [1]. However, not every linearly Lin-
delöf locally compact space is Lindelöf, as shown by K. Kunen at
this conference. On the other hand, A. Karpov has proved that the
product of any countable family of Čech-complete linearly Lindelöf
spaces is linearly Lindelöf.

A space X is said to be discretely Lindelöf if the closure of every
discrete subspace in X is Lindelöf. Every discretely Lindelöf space
is linearly Lindelöf.

Problem 10. Is every discretely Lindelöf space Lindelöf?
V. V. Tkachuk, who presented the above problem at the confer-

ence, made the following remark about it. The motivation for this
question is that any discretely Lindelöf space is linearly Lindelöf;
besides, if we introduce “discrete compactness” in an analogous
way, then it will coincide with compactness.

Problem 11. Is every locally compact discretely Lindelöf space
X Lindelöf?

This problem is especially interesting in connection with Kunen’s
result noted above.

Problem by Jan Dijsktra

A space is called almost zero-dimensional if every point has a
neighborhood basis consisting of sets that can be written as inter-
sections of clopen subsets of the space. A space is called cohesive if
every point has a neighborhood that contains no nonempty subset
that is clopen in the space. If a space X is totally disconnected
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then the clopen subsets of the space serve as a basis for a zero-
dimensional Tychonoff topology ζX on the space. Remark 4.8 in
[6] states that for any cohesive, almost zero-dimensional, separable
metric space X the topology ζX has uncountable character at ev-
ery point. The standard example of such a space is Erdös space
E, which consists of the vectors in Hilbert space `2 that have only
rational coordinates.

Problem 12. Is the character (or weight) of ζE equal to 2ℵ0?
Problems 13 and 14 by Strashimir Popvassilev

Call a space X base-base paracompact (J. E. (Ted) Porter) if
X has a base B such that every base B′ ⊆ B has a locally finite
subcover C ⊆ B′.

Problem 13. Is every subspace X of the Sorgenfrey line S base-
base paracompact? Are the irrationals with the topology induced
from S base-base paracompact? What about a Bernstein subspace
of S?

It is known that every Fσ subset of S is base-base paracompact,
as is every Lusin subset, and, under MA, every subset of cardinality
< 2ℵ0 .

The above question is a special case of the following one asked
by Porter.

Problem 14. Is every paracompact Hausdorff space base-base
paracompact?

Remark by Porter: Every base-base paracompact space is a D-
space.
Related problem included by Gary Gruenhage

Problem 15. Must every paracompact Hausdorff space X be
base-paracompact? I.e., must there be a base B with |B| = w(X)
such that every open cover of X has a locally finite refinement by
members of B?

Remark: Base-paracompactness was introduced and studied by
Porter in [10].
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Problem by Melvin Henriksen

The problem that follows was posed to me by J. Nagata at the
conference in Matsue, Japan.

Problem 16. If X is a Tychonoff space, let C(X) denote the set
of all continuous real-valued functions defined on X. Characterize
metrizability of X algebraically in case C(X) is considered as either
a ring, a lattice, or a multiplicative semigroup.

Remarks: (1) One should expect to assume that X is realcom-
pact and hence that each of its closed discrete subspaces has non-
measurable cardinality. (2) The characterization should be internal
involving only algebraic invariants of C(X), but not those of any
larger algebras.

Problems 17 and 18 by Peter J. Nyikos

Here is the first question I posed in the problem session, the way
J. Lawson told it to me last summer:

Problem 17. Begin with the compact-open topology on the
set of continuous functions from NN to N , and take the sequential
modification (in which a set is closed iff it is sequentially closed, i.e.,
contains all limits of sequences converging from it). Is the resulting
space 0-dimensional?

Related questions: Is it regular? If it is regular, is it 0-dimen-
sional? Is its complete regularization (meaning: take the weak
topology generated by continuous real-valued functions) 0-dimen-
sional? All these questions are open; we do not have even con-
sistency results for any of them. It is, however, known that the
two topologies mentioned in Problem 17 are not the same; in fact,
5.12 of [7] gives an example of a clopen subspace in the sequential
modification that is neither open nor closed in the compact-open
topology.

The first few paragraphs of [9] give a very readable informal
account of what this has to do with computer science. It talks
about two kinds of infinite languages for specifying real numbers,
real-valued functions of a real variable, and so on up a hierarchial
line; a nice example of a function on the next step in the hierarchy
is the definite integral of a continuous function f : R → R. The
two approaches have been shown to be equivalent this far up the
hierarchy but the very next step is still open; the two kinds of
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languages are equivalent at this step iff the answer to the last of
the related problems is “Yes”; of course, that would follow from an
affirmative answer to Problem 17.

For an account of some earlier work, already showing how equiv-
alence follows from a “Yes” answer to Problem 17, see [5].

Normann [9] shows that the equivalence continues all the way
up the hierarchy as long as the higher analogues of the last related
problem are true. For each step in the hierarchy there is a certain
cosmic space for which the key question is whether its complete
regularization is 0-dimensional.

Now for something completely different:
Problem 18. Is it consistent that compact homogeneous T5-

spaces are first countable? Could this even be true in ZFC? Is it
true in ZFC that they are of cardinality ≤ c ? (It is true in the
model obtained by adding 2ℵ1 Cohen reals to a model of ZFC. See
[3].)

Related problems: Is every homogeneous compact space of count-
able tightness of cardinality ≤ c? first countable? Arhangel’skii
conjectured “yes” answers in [3].

The Proper Forcing Axiom (PFA) implies “yes” answers to both.
(See [8].)
Problem by Márton Elekes

Problem 19. Characterize the possible order types of the lin-
early ordered subsets of B1[0, 1], where B1[0, 1] is the class of real-
valued Baire class 1 functions defined on [0, 1], partially ordered un-
der the natural pointwise ordering. (That is, f ≤ g iff f(x) ≤ g(x)
for all x ∈ X, so f < g iff f(x) ≤ g(x) for all x ∈ X and f(x) 6= g(x)
for at least one x ∈ X.)

Remarks: The answer to the corresponding problem concerning
C[0, 1] is easy; exactly the real order types are possible (that is,
orders that are order isomorphic to some set of reals). For Borel
functions, in fact for Baire class 2 or higher, even the problem of
well-ordered subsets is independent. A partial answer for Baire
class 1 is that under MA the possible order types of cardinality less
than 2ω are exactly the ones not containing ω1 or ω∗1.
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Problem by Alexander Shibakov

Problem 20. Can there be a Fréchet topological group G and
a compact Fréchet space X such that G×X is not Fréchet?

Such a group G could be chosen to be countable without loss of
generality (if it exists).

Remark by Gruenhage: There are, in ZFC, two Fréchet groups
whose product is not Fréchet, as well as two compact Fréchet spaces
whose product is not Fréchet, but there seem to be no known
counterexamples, even consistent ones, for this problem. And P.
Nyikos reminded me of the relevant information (noting that the
group G would be non-metrizable) that it is an unsolved problem of
V. I. Malykhin whether or not there is in ZFC a countable Fréchet
non-metrizable group.

Problems 21 – 28 by Alan Dow

Problem 21. Is every compact ccc extremally disconnected
image of ω∗ separable (under PFA?)

Problem 22. If a compact X has a closed Gδ subsets mapping
onto βN , must X map onto βN?

Problem 23. Suppose X is compact of countable tightness, does
there exist a discrete subset D whose closure has full cardinality?
In particular, can X be written as a c-fold union of closures of
discrete sets?

Remark: This is a special case of an old problem of B. A. Efimov.

Problem 24 (Scarborough-Stone). Must the product of ev-
ery family of regular sequentially compact spaces be countably com-
pact?

Remark by Nyikos: Actually, C. T. Scarborough and A. H. Stone
did not include any separation axioms in the statement of their
problem. I obtained a counterexample in the class of Hausdorff
spaces.

Problem 25. Is it consistent that countably compact first-
countable separable regular spaces are compact?

Remark by Nyikos: I have offered $1,000 for a solution to Prob-
lem 25, which originally is due to S. P. Franklin and M. Rajagopalan.

Problem 26. If a normal space X is the countable union of open
metrizable subspaces, must X be metrizable?
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Problem 27. Is it consistent that (normal) first-countable ω1-
collectionwise Hausdorff spaces are collectionwise Hausdorff?

Problem 28. Is the normal Moore space conjecture consistent
with c = ω2?
Problem by Oleg Pavlov

Problem 29. Is there a regular maximal space that is a P -
space?

Recall that X is maximal if X is dense-in-itself but no stronger
topology is. A space answering the question, if it exists, would have
cardinality that is Ulam measurable.
Problems 30 – 32 by Sheldon Davis

A symmetric on a set X is a function d : X ×X → [0,∞) such
that the following are true:

(1) d(x, y) = 0 iff x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X.

A topological space X is symmetrizable iff there is a symmetric
d on X such that a subset U ⊂ X is open iff for each x ∈ U
there exists εx > 0 such that B(x, εx) ⊂ U . As usual, the ball
B(x, εx) = {y ∈ X : d(x, y) < εx}.

There are three old questions about symmetrizable spaces which
remain open in spite of quite a large amount of work.

Problem 30. Is every point of a regular symmetrizable space a
Gδ -set?

This is an old question of E. A. Michael and A. V. Arhangel’skii.
There is a Hausdorff, non-regular, counterexample, obtained by

taking a Tychonoff symmetrizable space with a closed set which is
not a Gδ, and shrinking the closed set to a point (done by Gruen-
hage and Nyikos).

Problem 31. Is there a symmetrizable Dowker space?
If there is a symmetrizable Dowker space, then one can attach

an additional point to it to obtain a regular symmetrizable space
in which that new point is not a Gδ. Almost conversely, R. M.
Stephenson, Jr. has shown that if a point x of a Hausdorff sym-
metrizable space X is not a Gδ, then X\{x} is not countably meta-
compact.

Problem 32. Is it consistent that there are no symmetrizable
L-spaces?
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An old result of S. Nedev shows that there are no symmetriz-
able S-spaces. D. Shakhmatov has constructed a model which con-
tains a symmetrizable L-space. Z. Balogh, D. Burke, and S. Davis
have constructed, in ZFC, a Hausdorff (non-regular) symmetriz-
able space which is hereditarily Lindelöf and not separable.
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Dynamical Systems

The Special Session in Dynamical Systems consisted of 24 lec-
tures. Of the speakers, 10 were graduate students and 3 were recent
(in the last 5 years) PhD’s. In addition, 2 of the plenary speakers (J.
W. Cannon and Michael Handel) and 4 of the semi-plenary speak-
ers (Lukas Geyer, Lex Oversteegen, Kevin M. Pilgrim, and Evelyn
Sander) spoke on topics in Dynamical Systems (widely defined).

Dynamical systems studies evolving systems in the most general
sense. As such, it is central to the analysis of fundamental models
used in all areas of sciences. Topological methods have long been a
basic ingredient in Dynamical Systems and this Special Session con-
tained talks from a variety of sub-areas including (in no particular
order):

Three dimensional flows (Krystyna Kuperberg; Akio Noguchi;
Mike Sullivan)

General topological dynamics (David Richeson; Jim Wiseman;
Stewart Baldwin)

Zero and one-dimensional dynamics (Louis Block; Ethan M.
Coven)

Tilings (Marcy Barge; Charles Holton; Brian F. Martensen;
Megan Smith)

Holomorphic dynamics (Carlos Cabrera; Doug Childers;
Robert L. Devaney; Alexandra Kaffl; Daniel M. Look;
Monica Moreno-Rocha; Johannes Rueckert)

Group actions including superrigidity phenomena (Alex Clark;
Michael Handel; Kamlesh Parwani)

Applications to fluid mechanics (James Halbert; Rafal Komen-
darczyk)

Applications of Dynamical Systems (Problem Session)

We isolate the last four as areas of particular interest and progress.
I. Tilings and Dynamics on Surfaces. Tilings have emerged

in recent years as an exciting nexus, combining ideas and methods
from Dynamics, C∗-Algebras, and Continuum Theory. Progress
on classifying the natural flows on tiling spaces continues (Holton,
Martensen, Smith), and connections to surface dynamics are de-
veloped further (Barge). A thirty-year-old problem of M. Hirsch
asks whether pseudo-Anosov surface homeomorphisms can embed
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into hyperbolic toral endomorphisms. This turns out to reduce to a
concrete and simple question concerning interval exchange transfor-
mations. Progress is announced by Barge as a consequence of con-
structions which embed tiling systems into toral endomorphisms.

II. Holomorphic Dynamics. Holomorphic dynamics contin-
ues to be one of the most active areas within dynamics. New meth-
ods from geometric group theory are being used to provide a uni-
fied approach for studying the dynamics of both rational maps and
group actions on two-spheres arising from Cannon’s program for
the geometrization of three manifolds (Cabrera, Cannon, Geyer,
Pilgrim).

Previously known connections between this field and other disci-
plines, such as continuum theory, continue to be developed further.
Major results in this vein include the following.

Wandering triangles exist (A. Blokh/Oversteegen). A prob-
lem concerning the dynamics of polynomials posed by
Thurston and open for 20 years is resolved.

Combinatorial encoding of dynamics on Sierpiński carpets
and gaskets (Devaney, et al.). Abstract models for dynamics
are extended from polynomials to certain families of rational
maps.

Surprising applications of complex dynamics, such as to problems
in gravitational lensing (Geyer), continue to be found.

III. Superrigidity Phenomena. Using new methods, such as
the notion of distortion of group elements, progress continues to be
made on the vastly ambitious Zimmer Program: classifying ergodic
measure preserving group actions on manifolds. Loosely, a pair
(G,M) is superrigid in a dynamical sense if any such action of G
on M factors through an action which is in some sense uninteresting
or trivial. Results include:

(J. Franks/Handel.) Suppose f is a diffeomorphism of a
closed, oriented surface S which preserves a Borel measure
µ. If f is a distortion element in the group of such dif-
feomorphisms which are isotopic to the identity, then the
dynamics of f is severely restricted. Applications include
super-rigidity-type results for almost simple groups with
distortion elements. Question: is there a surface-dynamics
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proof that there are no distortion elements in the group of
rigid motions of S2?

(Parwani.) Any smooth action of SLn(Z) where n > 2 on
an r-dimensional mod 2 homology sphere factors through
a finite group action if r < n − 1. This result supports a
recent conjecture of B. Farb and P. Shalen, which is that for
such n and r the conclusion holds for actions on arbitrary
compact manifolds.

IV. Applications of Dynamics. Dynamics has always been
intimately connected to applications. Indeed, it has its origins in
the analysis of solutions of differential equations and the study of
iterative algorithms like Newton’s method. The session and its
problem session covered a diverse collection. Coven spoke about
connections between the combinatorics of DNA sequences and the
dynamics of cellular automata. Two speakers (Halbert and Komen-
darczyk) and one problem (by Phil Boyland) concerned the analy-
sis of fluid flows as dynamical systems. Another problem (by Brian
Raines) connected inverse limit spaces to economic models which
allowed branching into alternative futures. In his semi-plenary talk,
Geyer pointed to an application of complex dynamics to gravita-
tional lensing.

Kevin Pilgrim, Phil Boyland, and Beverly Diamond are to be
thanked for writing the above summary and assembling the fol-
lowing list of problems posed at the Dynamical Systems Problem
Session at the conference.

Problems in Dynamical Systems

Below are problems posed at the Problem Session in Dynamical
Systems. Included are some remarks of the poser and others.

Problem by Alexander Blokh, John Mayer, and Lex Oversteegen

Problem 1. (Invariant laminations (in the sense of
Thurston). What ω-limit sets can occur for wandering N -gons
in laminations of the unit disk?

Blokh and G. Levin gave bounds for the number of such polygons
and for the number of sides of such polygons in terms of the degree
d [4]. Later, they showed that if there exists a wandering polygon
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P , there must exist at least one recurrent critical leaf whose ω-
limit set coincides with that of the polygon [5]. Also, Blokh showed
that if a cubic lamination has a wandering triangle then it must
have exactly two critical leaves which are both recurrent and have
the same limit set [3]. D. Childers (1) gives upper bounds on the
number of wandering polygons and the number of sides in terms of
the number of recurrent critical leaves, and (2) shows that if P is
a wandering N -gon then in the topological Julia set ω(P ) = ω(ci)
for N − 1 distinct recurrent critical leaves ci [7].

Problem by David Richeson and Jim Wiseman

Problem 2 (Equivalence of expanding properties). Let X
be a noncompact, locally compact metric space and f : X → X be a
homeomorphism. How are the following properties of the dynamical
system (X, f) related? Expanding (E) (with respect to some com-
patible metric); Positively expansive (PE) (with respect to some
compatible metric); Topologically positively expansive (TPE)?

A homeomorphism f is called expanding if there exist ε > 0
and λ > 0 such that 0 < d(x, y) < ε implies that d(f(x), f(y)) >
λd(x, y); f is called positively expansive if there exists ρ > 0 such
that for any distinct x, y ∈ X there exists n ≥ 0 with d(fn(x), fn(y))
> ρ; f is topologically positively expansive if, given any open neigh-
borhood U ⊂ X × X of the diagonal ∆, there exists a closed
neighborhood N ⊂ U with the properties N ⊂ Int(F (N)) and
Inv(N) = ∆ (here F = f × f and Inv denotes the maximal invari-
ant subset).

When X is a compact space all three notions are equivalent (and
imply that X is finite). (See [11], [12], and [2] for proofs and ref-
erences.) What if X is not compact? We know that TPE =⇒ PE:
every TPE homeomorphism is PE with respect to some compatible
metric ([12]). Also, PE6 =⇒ TPE: there is an example of a space
X and a homeomorphism f : X → X such that f is PE but not
TPE ([12]). It is easy to see that E =⇒ PE. We conjecture that
E =⇒ TPE =⇒ PE and PE6 =⇒ TPE6 =⇒ E. In particular:

Conjecture 1: E =⇒ TPE: every E homeomorphism is TPE.

Conjecture 2: TPE6 =⇒ E: there is a space X and a homeomor-
phism f : X → X such that f is TPE, but f is not E with respect
to any compatible metric.
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Problem by Philip Boyland

Problem 3 (Time-periodic Euler fluid flows). Let f :
M2 → M2 be a Ck-diffeomorphism, α : M2 → R be a Cr function
such that α ◦ f = α, i.e., the orbits of f are contained in the level
sets of α. Find sufficient conditions for the topological entropy of
f to vanish.

One such condition is the following: r = 1, k = 1 + ε, and α has
finitely many critical points. In applications, one knows only that
the measure of the critical set is zero.

A variant: Let f : M3 → M3 be a Ck diffeomorphism, Y a Cr-
invariant vector field, i.e., f∗Y = Y . Relate dynamical properties
of Y to those of f . For example, does the vanishing of the entropy
of y (e.g., when y = ∇φ) imply the vanishing of the entropy of f?

Problems 4 and 5 by R. F. Williams

Problem 4 (Indecomposable continua in smooth dynam-
ics). There exist n-dimensional continua M arising in dynamics
such that (i) each point of M has a neighborhood U which is a
product of an n-disk and a Cantor set, (ii) each such disk lies in a
topologically smoothly embedded homeomorphic copy of Rn which
is dense in U .

When n = 1 this implies that M is indecomposable. For n =
2, this is no longer the case. Is there a way of treating this in
terms of continuum theory? I have tried, without much success; in
particular, a problem with the following is that it perhaps implies,
via induction on the dimension of M, that M is a bundle over a
torus, with fiber a Cantor set, which would be false.

Conjecture: For n = 2, M is a bundle over S1 with indecompos-
able fibers.

A solution to the conjecture implies that one can inductively
understand such M .

(J. Rogers) Is there a Siegel disk G of a rational map such that
the boundary of G is an indecomposable continuum? Does there
exist a rational map with a Siegel disk G such that the prime ends
of G form a nontrivial decomposition of the boundary of G?

Problem 5 (Dimension raising maps). Is there a map f :
D2 → X which raises the dimension of every subcontinuum?
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Problem by Marcy Barge

Problem 6 (Interval exchange maps). Suppose that T : I →
I is an interval exchange transformation. Does there exist an open
interval J ⊂ I and an integer n > 0 such that T |T i(J) is continuous
for j = 0, 1, . . . , n− 1 but Tn(J) ∩ J 6= ∅?

An affirmative answer would imply that pseudo-Anosov surface
homeomorphisms cannot embed into Anosov toral endomorphisms.
Problem by Stewart Baldwin

Problem 7 (Equivalence of regular measure spaces). The
Oxtoby-Ulam theorem asserts that if λ, µ are two Borel probability
measures on S2 such that (i) points have measure zero, and (ii)
nonempty open sets have positive measure, then µ = f∗(λ) for
some homeomorphism f : S2 → S2.

Can similar theorems be found for indecomposable continua, e.g.,
Knaster continua? One such require composants to have zero mea-
sure, and other conditions to account for the lack of homegeneity.
Problem by Evelyn Sander

Problem 8 (Explosion points). Let fλ be a real one-param-
eter family of dynamical systems on X. A pair (λ∗, x) is called
an explosion point if (i) λ > λ∗ =⇒ x is chain recurrent and
(ii) λ < λ∗ =⇒ x has a neighborhood consisting of non-chain-
recurrent points [1]. (Alternatively, this definition can be made
using nonwandering points rather than chain recurrent points [10].)

J. Palis and F. Takens have conjectured that explosions in planar
systems are due to tangencies and saddle-node bifurcations [10]; the
statement fails in three dimensions [8]. What about noninvertible
maps in one real dimension?
Problem by Kevin M. Pilgrim

Problem 9 (Finitely presented dynamics). Following
D. Fried [9], we say that a dynamical system (X, f) is finitely gen-
erated provided there exists a subshift of finite type σ : Σ → Σ and
a continuous map π : Σ → X such that f ◦ π = π ◦ σ; it is finitely
presented if in addition the equivalence relation ∼⊂ Σ × Σ given
by x ∼ y ⇐⇒ π(x) = π(y), as a dynamical system equipped with
the map σ × σ :∼→∼, is conjugate to a subshift of finite type.

Question: Which quadratic invariant laminations are finitely
presented (as dynamical systems on their corresponding quotient
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spaces)? In particular, are there any examples whose minor leaf is
irrational?
Problem by Robert L. Devaney

Problem 10 (Sierpiński carpet Julia sets). Consider the
family fλ(z) = zn + λ/zm, λ ∈ C, n,m ≥ 2, (n,m) 6= (2, 2). For λ
near zero the Julia sets are homeomorphic to a product of a Cantor
set and a quasicircle. Let Q be the connected hyperbolic component
containing the origin in this family. Is ∂Q a Jordan curve?
Problem by Ethan M. Coven

Problem 11 (Dynamics of cellular automata). Consider
one-sided cellular automata, i.e., sliding block codes without mem-
ory, defined on the space of all one-sided sequences from a finite
alphabet. For simplicity, consider only a two-symbol alphabet and
maps which are “linear in the first variable.” An example is given
by (xi)∞i=0 7→ (xi + xi+1xi+2)∞i=0, arithmetic in Z/2Z.

The problem is to say something intelligent about the dynamics
of such maps.

All such maps have dense periodic points (see [6]) and preserve
Bernoulli (1

2 , 1
2)-measure. Except for maps which are also “linear

in the last variable,” little more is known about their dynamics.
(For a counterexample to the last statement, see the papers of A.
Maass.) The example above is the simplest which is linear in the
first but not the last variable. Its topological entropy is unknown
and it is unknown whether is is topologically transitive.
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