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A NOTE ON FORD’S EXAMPLE

JAN VAN MILL

Abstract. Ford gave an example of a homogeneous space
that is not a coset space. This example is not metrizable. We
present a separable metrizable space with similar properties.

1. Introduction

Unless stated otherwise, all spaces under discussion are separable
and metrizable.

If G is a topological group acting on a space X then for every
x ∈ X we let γx : X → G be defined by γx(g) = gx. We also let
Gx = {g ∈ G : gx = x} denote the stabilizer of x ∈ X . Then Gx is
evidently a closed subgroup of G.

A space X is a coset space provided that there is a topological
group G with closed subgroup H such that X and G/H = {xH :
x ∈ G} are homeomorphic. Observe that G acts transitively on
G/H and that the natural quotient map π : G → G/H is open. It
is well-known, and easy to prove, that G/Gx is homeomorphic to
X if γx is open. Observe that H ⊆ G is the stabilizer of H ∈ G/H .
So for a space X to be a coset space it is necessary and sufficient
that there be a topological group G acting transitively on X such
that for some x ∈ X (equivalently: for all x ∈ X) the function
γx : G → X is open.
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It is known that many homogeneous spaces are coset spaces.
Ungar [11] proved that if X is homogeneous and locally compact
then X is a coset space. This is a consequence of the Effros Theorem
on transitive actions of Polish groups on Polish spaces (Effros [5];
see also Ancel [1], Hohti [7] and van Mill [9]).

Ford [6] gave an example of a homogeneous Tychonoff space that
is not a coset space. This example is not metrizable. The aim of
this note is to present a (separable metrizable) σ-compact space X
that is not a coset space but on which some (separable metrizable)
topological group acts transitively.

2. The example

Let U be a cover of a space X . If A ⊆ X and f : A → X then
we say that f is limited by U provided that for every x ∈ A there
is an element U ∈ U containing both x and f(x).

Theorem 2.1. Let X be a coset space. Then for every open cover
U of X and every compact K ⊆ X there is an open cover V of X
with the following property: for all V ∈ V and x, y ∈ V there is
a homeomorphism f : X → X such that f(x) = y and f � K is
limited by U.

Proof. Let G be a topological group acting transitively on X such
that for every x ∈ X we have that the function γx : G → X is open.
For x ∈ K let Vx be an open neighborhood of e in G such that
γx[V 2

x ] is contained in an element of U. There is a finite F ⊆ K
such that

K ⊆
⋃

x∈F

γx[Vx].

Let V =
⋂

x∈F Vx, and let W be a symmetric open neighborhood
of e in G such that W 2 ⊆ V . Put V = {γx[W ] : x ∈ X}. Then V

is an open cover of X , and we claim that it is as desired. To this
end, pick arbitrary z, p, q ∈ X such that p, q ∈ γz[W ]. There are
h, g ∈ W such that hz = p and gz = q. Then ξ = gh−1 ∈ W 2

and ξp = q. So it suffices to prove that if α ∈ W 2 and y ∈ K
are arbitrary then there exists U ∈ U containing both y and αy.
Pick x ∈ F such that y ∈ γx[Vx] ⊆ γx[V 2

x ]. There is an element
h ∈ Vx such that hx = y. Since αy = (αh)x ∈ γx[V 2

x ] and γx[V 2
x ] is

contained in an element of U, this completes the proof. �
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Let Q =
∏∞

n=1[−1, 1]n denote the Hilbert cube with admissible
metric

%(x, y) =
∞∑

n=1

2−n|xn − yn|.

For each i let

Wi =
∏

j 6=i

[−1 + 2−i, 1− 2−i]j × {1}i ⊆ Q.

Then Wi is a ‘shrunken’ endface in the i-th coordinate direction.
It was shown by Anderson, Curtis and van Mill [2] that Y =

Q \
⋃∞

i=1 Wi is homogeneous. It can be shown that Y is a coset
space. We will prove that the σ-compact connected and locally
connected space W =

⋃∞
i=1 Wi is also homogeneous, but is not a

coset space.
The following results were proved in Dijkstra [3].
(A) If h is a homeomorphism between compacta in Y then it has

an extension h̄ ∈ H(Q) such that for each i, h̄[Wi] = Wi

([3, Corollary 4.3.7]).
(B) There is g ∈ H(Q) such that for every i, g[Wi] = Wi+1 ([3,

Lemma 4.4.4]).

Theorem 2.2. W is homogeneous, but not a coset space.

Proof. Let x, y ∈ W , say x ∈ Wi and y ∈ Wj . We may assume
without loss of generality that j = max(i, j). Let α = g−j , where
g is as in (B). The disjoint collection Hilbert cubes

{α[W1], . . . , α[Wj]}
is contained in Y . Since Q is homogeneous, we may select h ∈
H(

⋃j
k=1 α[Wk ]) such that:

(1) h ◦ α[Wk ] = Wk if k 6∈ {i, j},
(2) h ◦ α[Wi] = Wj , h ◦ α[Wj ] = Wi and h ◦ α(x) = α(y).

By (A) we may extend h to an element h̄ ∈ H(Q) such that for
every i, h̄[Wi] = Wi. Now put β = α−1 ◦ h̄ ◦ α. Then β[W ] = W
and β(x) = y. Hence W is homogeneous.

We next prove that W does not satisfy the conclusion of Theo-
rem 2.1, i.e., W is not a coset space.

The Sierpiński Theorem states that no continuum is the count-
able infinite union of disjoint nonempty compacta, [10, A.10.6].
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This easily implies that any homeomorphism of W permutes the
collection {Wi : i ∈ N}. Let ε = 1/8. Since the diameter of Wi is
equal to 2 − 21−2i, any homeomorphism α of W which moves the
points of W1 less than ε has the property that α[W1] = W1. Now
let V be any neighborhood in W of x = (0, 0, 0, . . .) ∈ W1. Pick
i ≥ 2 for which there exists y ∈ V ∩ Wi. Each homeomorphism f
of W such that f(x) = y has the property that f [W1] = Wi and
consequently moves a point of W1 more than ε. This is clearly as
desired. �

The results in this section suggest the following question.

Question 2.3. Let X be a space which is homogeneous and and
has the following property: for every open cover U of X and every
compact K ⊆ X there is an open cover V of X such that for all
V ∈ V and x, y ∈ V there is a homeomorphism f : X → X with
f(x) = y and f � K is limited by U. Is X a coset space?

Observe that Q is a compactification of W with the following
property: for all x, y ∈ W there exists h ∈ H(Q) such that h(x) = y
and h[W ] = W . This implies that there is a topological group G
acting transitively on W . Simply let

G = {g ∈ H(Q) : g[W ] = W}.
Here H(Q) is the group of homeomorphisms of Q endowed with the
(separable metrizable) compact-open topology. So there are spaces
on which some group acts transitively but that are not coset spaces.

3. More questions

If X is a coset space then some topological group acts transi-
tively on X , and if X admits a transitive group action then X is
homogeneous. We saw that a transitive group action need not im-
ply that the space under consideration is a coset space. This leaves
the following basic problem open.

Question 3.1. Let X be a homogeneous space. Is there a topological
group G acting transitively on X?

See also Question 3 of Ancel [1]. Observe that this question is
non-trivial since all spaces and hence all topological groups under
discussion are separable and metrizable. We believe that the answer
to it is in the negative, but we have no idea how to construct a
counterexample.
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A sufficient condition for a transitive action is the existence of a
‘homogeneous’ compactification (as we observed in §2, Q is such a
compactification of W ). This suggests the following question.

Question 3.2. Let X be a homogeneous space. Is there a compactifi-
cation γX of X such that for all x, y ∈ X there is a homeomorphism
h : γX → γX such that h(x) = y and h[X ] = X?

Observe that ‘yes’ to Question 3.2 implies ‘yes’ to Question 3.1.
The Čech-Stone compactification βX is a compactification of X

which has the property that every homeomorphism f : X → X
extends to a homeomorphism βf : βX → βX . However, βX is
not metrizable if X is a non-compact separable metrizable space.
Let Q denote the space of rational numbers. It was shown by van
Douwen [4] that βQ is the unique compactification γQ of Q hav-
ing the property that every homeomorphism of Q can be extended
to a homeomorphism of γQ. This explains why in Question 3.2
we do not ask for a compactification with the property that all
homeomorphisms extend.

4. Remarks

We finish this note by making a few remarks. By ‘space’ we mean
here Tychonoff space. Compactifications such as the ones asked for
in Question 3.2 surface at several places in the literature. If G is a
topological group acting on a space X then X admits a compact-
ification γX such that the action of G on X can be extended to
an action of G on γX if and only if the so-called right-uniformly
continuous functions on X separate the points and the closed sub-
sets of X (such a compactification is called equivariant). See de
Vries [13] for details. Observe that for an equivariant compactifica-
tion γX we have that for every g ∈ G the homeomorphism x 7→ gx
of X can be extended to the homeomorphism y 7→ gy of γX . For
locally compact G acting on X an equivariant compactification of
X exists (de Vries [13]). Similarly if the action is transitive, the
group is ℵ0-bounded and the space is of the second category. See
Uspenskĭı [12] for details (I am indebted to Michael Megrelishvili for
informing me about this result). As was shown by Megrelishvili [8],
not all actions can be ‘equivariantly compactified’, even if the group
and the space under consideration are both Polish.
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