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SELECTIVE SCREENABILITY GAME
AND COVERING DIMENSION

LILJANA BABINKOSTOVA

Abstract. We introduce an infinite two-person game in-
spired by the selective version of R. H. Bing’s notion of screen-
ability. We show how, for metrizable spaces, this game is
related to covering dimension.

1. Introduction

Let X be a topological space. In [3], R. H. Bing introduced the
following notion of screenability : For each open cover U of X there
is a sequence (Vn : n < ∞) such that for each n, Vn is a family of
pairwise disjoint open sets; for each n, Vn refines U and ∪n<∞Vn is
an open cover of X. In [1], David F. Addis and John H. Gresham
introduced the selective version of screenability: For each sequence
(Un : n < ∞) of open covers of X there is a sequence (Vn : n < ∞)
such that for each n, Vn is a family of pairwise disjoint open sets;
for each n, Vn refines Un and ∪n<∞Vn is an open cover of X. It is
evident that selective screenability implies screenability.

Selective screenability is an example of the following selection
principle which was introduced in [2]: Let S be a set and let A and
B be families of collections of subsets of the set S. 1 Then Sc(A,B)
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1Thus, if U is a member of A or of B, then U is a collection of subsets of S.
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denotes the statement that for each sequence (Un : n < ∞) of
elements of A there is a sequence (Vn : n < ∞) such that

(1) for each n, Vn is a family of pairwise disjoint sets;
(2) for each n, Vn refines Un; and
(3) ∪n<∞Vn is a member of B.

With O denoting the collection of all open covers of topological
space X, Sc(O,O) is selective screenability.

Addis and Gresham noted that countable dimensional metriz-
able spaces are selectively screenable and asked if the converse is
true. Roman Pol, in [7], showed that the answer is no. We will
now show that the countable dimensional metric spaces are exactly
characterized by a game-theoretic version of selective screenability.

The following game, denoted Gc(A,B), is naturally associated
with Sc(A,B). Players ONE and TWO play as follows: In the
n-th inning, ONE first chooses On, a member of A, and then TWO
responds with Tn which is pairwise disjoint and refines On. A play
(O1, T1, · · · ,On, Tn, · · · ) is won by TWO if ∪n<∞Tn is a member of
B; else, ONE wins. We can consider versions of different lengths
of this game. For an ordinal number k, let Gk

c (A,B) be the game
played as follows: In the l-th inning (l < k), ONE first chooses Ol,
a member of A, and then TWO responds with a pairwise disjoint
Tl which refines Ol. A play

O0, T0, · · · ,Ol, Tl, · · · l < k

is won by TWO if ∪l<kTl is a member of B; else, ONE wins. Thus,
the game Gc(A,B) is Gω

c (A,B).

2. Main Results

From now on we assume that the spaces we work with are metriz-
able. We will see how selective screenability is related to covering
dimension by showing that

(1) a metrizable space is countable-dimensional if and only if
TWO has a winning strategy in the game Gω

c (O,O) (The-
orem 2.2);

(2) for each nonnegative integer n, a metrizable space X is ≤ n-
dimensional if and only if TWO has a winning strategy in
Gn+1

c (O,O) (Theorem 2.4).
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We will use the following result:

Lemma 2.1 ([6, Theorem 2, p. 226]). Let X be a space and let Y
be a subspace of X. Let (Vi : i ∈ I) be a collection of subsets of Y
open in Y . Then there is a collection (Ui : i ∈ I) of open subsets
of X such that for each i ∈ I, we have Vi = Y ∩ Ui, and for each
finite subset F of I, if ∩i∈F Vi = ∅, then ∩i∈F Ui = ∅.
Theorem 2.2. Let X be a metric space.

(1) If X is countable dimensional, then TWO has a winning
strategy in Gω

c (O,O).
(2) If TWO has a winning strategy in Gω

c (O,O), then X is
countable dimensional.

Proof of (1): Let X be countable dimensional, i.e., X = ∪n<∞Xn

where each Xn is zero-dimensional. We will define a Markov strat-
egy (for definition, see [4]) σ for player TWO: For an open cover
U of X and n < ∞, U is an open cover of Xn. Since Xn is zero-
dimensional, find a pairwise disjoint family V of subsets of Xn open
in Xn such that V covers Xn and refines U . By Lemma 2.1, choose a
pairwise disjoint family σ(U , n) of open subsets of X refining U such
that each element V of V is of the form U∩Xn for some U ∈ σ(U , n).
Now TWO plays as follows: In inning 1, ONE plays U1, and TWO
responds with σ(U1, 1), thus covering X1. When ONE has played
U2 in the second inning, TWO responds with σ(U2, 2), thus covering
X2, and so on. And in the n-th inning, when ONE has chosen the
cover Un of X, TWO responds with σ(Un, n), covering Xn. This
strategy evidently is a winning strategy for TWO.

Proof of (2): Let σ be a winning strategy for TWO. Let B be
a base for the metric space X. For each n, let Bn be the family
{B ∈ B : diam(B) < 1

n}. Consider the plays of the game in which,
in each inning, ONE chooses for some n a cover of the form Bn of
X.

Define a family (Cτ : τ ∈ <ωN) of subsets of X as
(1) C∅ = ∩{∪σ(Bn) : n < ∞};
(2) for τ = (n1, · · · , nk), Cτ = ∩{∪σ(Bn1 , · · · ,Bnk

,Bn) : n <
∞}.

We will show that X = ∪{Cτ : τ ∈ <ωN}. Suppose, to the contrary,
that x 6∈ ∪{Cτ : τ ∈ <ωN}. Let us choose an n1 such that x 6∈
σ(Bn1). With n1, · · · , nk chosen such that x 6∈ σ(Bn1 , · · · ,Bnk

),
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let us choose an nk+1 such that x 6∈ σ(Bn1 , · · · ,Bnk+1
), and so on.

Then
Bn1 , σ(Bn1), Bn2 , σ(Bn1 ,Bn2), · · ·

is a σ-play lost by TWO, contradicting the fact that σ is a winning
strategy for TWO.

Also, we will show that each Cτ is zero-dimensional. Let x ∈
Cτ and let τ = (n1, · · · , nk) be given. Thus, x is a member of
∩{∪σ(Bn1 , · · · ,Bnk

,Bn) : n < ∞}. For each n, choose a neigh-
borhood Vn(x) ∈ σ(Bn1 , · · · ,Bnk

,Bn). Since for each n we have
diam(Vn(x)) < 1

n , the set {Vn(x) ∩ Cτ : n < ∞} is a neighbor-
hood basis for x in Cτ . Also, we have that each Vn(x) is closed
in Cτ because of disjointness of TWO’s chosen sets. The set V =
∪σ(Bn1 , · · · ,Bnk

,Bn)\Vn(x) is open in X and so Cτ \Vn(x) = Cτ∩V
is open in Cτ . Thus, each element of Cτ has a basis consisting of
clopen sets. ¤

Observe that in the proof of Theorem 2.2 we show:

Corollary 2.3. Let X be a metric space. The following are equiv-
alent.

(1) TWO has a winning strategy in Gω
c (O,O).

(2) TWO has a winning Markov strategy in Gω
c (O,O).

The proof of the following theorem uses the ideas in the proof of
Theorem 2.2.

Theorem 2.4. Let X be a metric space. The following are equiv-
alent.

(1) If X is ≤ n-dimensional then TWO has a winning strategy
in Gn+1

c (O,O).
(2) If TWO has a winning strategy in Gn+1

c (O,O), then X is
≤ n-dimensional.

From this theorem, we obtain that the metric space X is n-
dimensional if and only if TWO has a winning strategy in Gn+1

c (O,O)
but not in Gn

c (O,O).
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