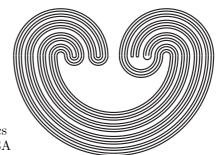
Topology Proceedings



Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

SELECTIVE SCREENABILITY GAME AND COVERING DIMENSION

LILJANA BABINKOSTOVA

ABSTRACT. We introduce an infinite two-person game inspired by the selective version of R. H. Bing's notion of screenability. We show how, for metrizable spaces, this game is related to covering dimension.

1. INTRODUCTION

Let X be a topological space. In [3], R. H. Bing introduced the following notion of *screenability*: For each open cover \mathcal{U} of X there is a sequence $(\mathcal{V}_n : n < \infty)$ such that for each n, \mathcal{V}_n is a family of pairwise disjoint open sets; for each n, \mathcal{V}_n refines \mathcal{U} and $\bigcup_{n<\infty}\mathcal{V}_n$ is an open cover of X. In [1], David F. Addis and John H. Gresham introduced the selective version of screenability: For each sequence $(\mathcal{U}_n : n < \infty)$ of open covers of X there is a sequence $(\mathcal{V}_n : n < \infty)$ such that for each n, \mathcal{V}_n is a family of pairwise disjoint open sets; for each n, \mathcal{V}_n refines \mathcal{U}_n and $\bigcup_{n<\infty}\mathcal{V}_n$ is an open cover of X. It is evident that selective screenability implies screenability.

Selective screenability is an example of the following selection principle which was introduced in [2]: Let S be a set and let \mathcal{A} and \mathcal{B} be families of collections of subsets of the set S.¹ Then $S_c(\mathcal{A}, \mathcal{B})$

13

²⁰⁰⁰ Mathematics Subject Classification. Primary 54D20, 54D45, 55M10, 91A44; Secondary 03E20.

 $Key\ words\ and\ phrases.$ covering dimension, infinite game, screenability, selection principle.

Supported by grant 13-1448/4-02 from the Ministry of Science, Republic of Macedonia.

¹Thus, if \mathcal{U} is a member of \mathcal{A} or of \mathcal{B} , then \mathcal{U} is a collection of subsets of S.

denotes the statement that for each sequence $(\mathcal{U}_n : n < \infty)$ of elements of \mathcal{A} there is a sequence $(\mathcal{V}_n : n < \infty)$ such that

- (1) for each n, \mathcal{V}_n is a family of pairwise disjoint sets;
- (2) for each n, \mathcal{V}_n refines \mathcal{U}_n ; and
- (3) $\cup_{n<\infty} \mathcal{V}_n$ is a member of \mathcal{B} .

With \mathcal{O} denoting the collection of all open covers of topological space X, $S_c(\mathcal{O}, \mathcal{O})$ is selective screenability.

Addis and Gresham noted that countable dimensional metrizable spaces are selectively screenable and asked if the converse is true. Roman Pol, in [7], showed that the answer is no. We will now show that the countable dimensional metric spaces are exactly characterized by a game-theoretic version of selective screenability.

The following game, denoted $G_c(\mathcal{A}, \mathcal{B})$, is naturally associated with $S_c(\mathcal{A}, \mathcal{B})$. Players ONE and TWO play as follows: In the *n*-th inning, ONE first chooses \mathcal{O}_n , a member of \mathcal{A} , and then TWO responds with \mathcal{T}_n which is pairwise disjoint and refines \mathcal{O}_n . A play $(\mathcal{O}_1, \mathcal{T}_1, \dots, \mathcal{O}_n, \mathcal{T}_n, \dots)$ is won by TWO if $\bigcup_{n < \infty} \mathcal{T}_n$ is a member of \mathcal{B} ; else, ONE wins. We can consider versions of different lengths of this game. For an ordinal number k, let $G_c^k(\mathcal{A}, \mathcal{B})$ be the game played as follows: In the *l*-th inning (l < k), ONE first chooses \mathcal{O}_l , a member of \mathcal{A} , and then TWO responds with a pairwise disjoint \mathcal{T}_l which refines \mathcal{O}_l . A play

$$\mathcal{O}_0, \mathcal{T}_0, \cdots, \mathcal{O}_l, \mathcal{T}_l, \cdots l < k$$

is won by TWO if $\bigcup_{l < k} \mathcal{T}_l$ is a member of \mathcal{B} ; else, ONE wins. Thus, the game $\mathsf{G}_c(\mathcal{A}, \mathcal{B})$ is $\mathsf{G}_c^{\omega}(\mathcal{A}, \mathcal{B})$.

2. MAIN RESULTS

From now on we assume that the spaces we work with are metrizable. We will see how selective screenability is related to covering dimension by showing that

- (1) a metrizable space is countable-dimensional if and only if TWO has a winning strategy in the game $\mathsf{G}^{\omega}_{c}(\mathcal{O},\mathcal{O})$ (Theorem 2.2);
- (2) for each nonnegative integer n, a metrizable space X is $\leq n$ -dimensional if and only if TWO has a winning strategy in $G_c^{n+1}(\mathcal{O}, \mathcal{O})$ (Theorem 2.4).

We will use the following result:

Lemma 2.1 ([6, Theorem 2, p. 226]). Let X be a space and let Y be a subspace of X. Let $(V_i : i \in I)$ be a collection of subsets of Y open in Y. Then there is a collection $(U_i : i \in I)$ of open subsets of X such that for each $i \in I$, we have $V_i = Y \cap U_i$, and for each finite subset F of I, if $\cap_{i \in F} V_i = \emptyset$, then $\cap_{i \in F} U_i = \emptyset$.

Theorem 2.2. Let X be a metric space.

- (1) If X is countable dimensional, then TWO has a winning strategy in $\mathsf{G}^{\omega}_{c}(\mathcal{O},\mathcal{O})$.
- (2) If TWO has a winning strategy in $G_c^{\omega}(\mathcal{O}, \mathcal{O})$, then X is countable dimensional.

Proof of (1): Let X be countable dimensional, i.e., $X = \bigcup_{n < \infty} X_n$ where each X_n is zero-dimensional. We will define a Markov strategy (for definition, see [4]) σ for player TWO: For an open cover \mathcal{U} of X and $n < \infty$, \mathcal{U} is an open cover of X_n . Since X_n is zerodimensional, find a pairwise disjoint family \mathcal{V} of subsets of X_n open in X_n such that \mathcal{V} covers X_n and refines \mathcal{U} . By Lemma 2.1, choose a pairwise disjoint family $\sigma(\mathcal{U}, n)$ of open subsets of X refining \mathcal{U} such that each element V of V is of the form $U \cap X_n$ for some $U \in \sigma(\mathcal{U}, n)$. Now TWO plays as follows: In inning 1, ONE plays \mathcal{U}_1 , and TWO responds with $\sigma(\mathcal{U}_1, 1)$, thus covering X_1 . When ONE has played \mathcal{U}_2 in the second inning, TWO responds with $\sigma(\mathcal{U}_2, 2)$, thus covering X_2 , and so on. And in the *n*-th inning, when ONE has chosen the cover \mathcal{U}_n of X, TWO responds with $\sigma(\mathcal{U}_n, n)$, covering X_n . This strategy evidently is a winning strategy for TWO.

Proof of (2): Let σ be a winning strategy for TWO. Let \mathcal{B} be a base for the metric space X. For each n, let \mathcal{B}_n be the family $\{B \in \mathcal{B} : diam(B) < \frac{1}{n}\}$. Consider the plays of the game in which, in each inning, ONE chooses for some n a cover of the form \mathcal{B}_n of X.

Define a family $(C_{\tau} : \tau \in {}^{<\omega}\mathbb{N})$ of subsets of X as

- (1) $C_{\emptyset} = \cap \{ \cup \sigma(\mathcal{B}_n) : n < \infty \};$ (2) for $\tau = (n_1, \cdots, n_k), C_{\tau} = \cap \{ \cup \sigma(\mathcal{B}_{n_1}, \cdots, \mathcal{B}_{n_k}, \mathcal{B}_n) : n < \infty \}$ ∞ }.

We will show that $X = \bigcup \{ C_{\tau} : \tau \in {}^{<\omega} \mathbb{N} \}$. Suppose, to the contrary, that $x \notin \bigcup \{C_{\tau} : \tau \in {}^{<\omega}\mathbb{N}\}$. Let us choose an n_1 such that $x \notin$ $\sigma(\mathcal{B}_{n_1})$. With n_1, \cdots, n_k chosen such that $x \notin \sigma(\mathcal{B}_{n_1}, \cdots, \mathcal{B}_{n_k})$, let us choose an n_{k+1} such that $x \notin \sigma(\mathcal{B}_{n_1}, \cdots, \mathcal{B}_{n_{k+1}})$, and so on. Then

 $\mathcal{B}_{n_1}, \sigma(\mathcal{B}_{n_1}), \mathcal{B}_{n_2}, \sigma(\mathcal{B}_{n_1}, \mathcal{B}_{n_2}), \cdots$

is a σ -play lost by TWO, contradicting the fact that σ is a winning strategy for TWO.

Also, we will show that each C_{τ} is zero-dimensional. Let $x \in C_{\tau}$ and let $\tau = (n_1, \cdots, n_k)$ be given. Thus, x is a member of $\cap \{ \cup \sigma(\mathcal{B}_{n_1}, \cdots, \mathcal{B}_{n_k}, \mathcal{B}_n) : n < \infty \}$. For each n, choose a neighborhood $V_n(x) \in \sigma(\mathcal{B}_{n_1}, \cdots, \mathcal{B}_{n_k}, \mathcal{B}_n)$. Since for each n we have $diam(V_n(x)) < \frac{1}{n}$, the set $\{V_n(x) \cap C_{\tau} : n < \infty\}$ is a neighborhood basis for x in C_{τ} . Also, we have that each $V_n(x)$ is closed in C_{τ} because of disjointness of TWO's chosen sets. The set $V = \cup \sigma(\mathcal{B}_{n_1}, \cdots, \mathcal{B}_{n_k}, \mathcal{B}_n) \setminus V_n(x)$ is open in X and so $C_{\tau} \setminus V_n(x) = C_{\tau} \cap V$ is open in C_{τ} . Thus, each element of C_{τ} has a basis consisting of clopen sets. \Box

Observe that in the proof of Theorem 2.2 we show:

Corollary 2.3. Let X be a metric space. The following are equivalent.

- (1) TWO has a winning strategy in $G_c^{\omega}(\mathcal{O}, \mathcal{O})$.
- (2) TWO has a winning Markov strategy in $\mathsf{G}^{\omega}_{c}(\mathcal{O},\mathcal{O})$.

The proof of the following theorem uses the ideas in the proof of Theorem 2.2.

Theorem 2.4. Let X be a metric space. The following are equivalent.

- (1) If X is \leq n-dimensional then TWO has a winning strategy in $\mathsf{G}_c^{n+1}(\mathcal{O}, \mathcal{O})$.
- (2) If TWO has a winning strategy in $G_c^{n+1}(\mathcal{O}, \mathcal{O})$, then X is $\leq n$ -dimensional.

From this theorem, we obtain that the metric space X is ndimensional if and only if TWO has a winning strategy in $G_c^{n+1}(\mathcal{O}, \mathcal{O})$ but not in $G_c^n(\mathcal{O}, \mathcal{O})$.

References

 David F. Addis and John H. Gresham, "A class of infinite-dimensional spaces. Part I: Dimension theory and Alexandroff's problem," *Fund. Math.* 101 (1978), no. 3, 195–205.

16

- [2] Liljana Babinkostova, "Selection Principles in Topology" (Macedonian). Ph.D. thesis. University of St. Cyril and Methodius, Macedonia, 2001.
- [3] R. H. Bing, "Metrization of topological spaces," Canad. J. Math. 3 (1951), 175–186.
- [4] Fred Galvin and Ratislav Telgársky, "Stationary strategies in topological games," *Topology Appl.* 22 (1986), no. 1, 51–69.
- [5] Witold Hurewicz and Henry Wallman, *Dimension Theory*. Princeton Mathematical Series, V. 4. Princeton, NJ: Princeton University Press, 1941.
- [6] K. Kuratowski, *Topology. Vol. I.* New edition, revised and augmented. Translated from the French by J. Jaworowski. New York-London: Academic Press; Warsaw: PWN, 1966.
- [7] Roman Pol, "A weakly infinite-dimensional compactum which is not countable-dimensional," Proc. Amer. Math. Soc. 82 (1981), no. 4, 634– 636.

Department of Mathematics; Boise State University; Boise, ID 83725

 $E\text{-}mail\ address: \texttt{liljanab}\texttt{Qmath.boisestate.edu}$