Topology Proceedings

http://topology.auburn.edu/tp/
Topology Proceedings
Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA
topolog@auburn.edu
0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

NOTES ON g-METRIZABLE SPACES

CHUAN LIU

ABSTRACT. A space is called a g-metrizable space if it is a regular space with a σ -locally finite weak base (see F. Siwiec, "On Defining a Space by a Weak Base"). In this paper, we discuss spaces with a σ -HCP (wHCP) weak base and give answers or partial answers to questions posed by A. V. Arhangel'skii during a seminar in 2004 at Ohio University, by S. Lin in a personal communication, and by Y. Tanaka in " σ -Hereditarily Closure Preserving k-Networks and g-Metrizability."

1. INTRODUCTION

Weak base was introduced by A. V. Arhangel'skii [1] in 1966. Frank Siwiec [14] defined g-metrizable spaces as a spaces with a σ -locally finite weak base. Yoshio Tanaka [16], L. Foged [4], Shou Lin [8], and Chuan Liu and Mu Min Dai [11] have made much contribution on this field. We discuss topological spaces with a σ -HCP (wHCP)weak base and give answers or partial answers to Lin's, Arhangel'skii's and Tanaka's questions.

In this paper all spaces are regular and T_1 ; all mappings are continuous and onto. \mathbb{N} denotes the natural numbers. Readers may refer to [6] for unstated definitions.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54E40; Secondary 54D55. Key words and phrases. g-metrizable space, g-second countable space; weak base, sn-network .

2. g-metrizable spaces

Definition 2.1. Let $\mathcal{P} = \bigcup_{x \in X} \mathcal{P}_x$ be a cover of a space X such that for each $x \in X$,

- (1) \mathcal{P}_x is a network of x in X;
- (2) If $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$.

 \mathcal{P} is called a *weak base* [1] for X if whenever $G \subset X$ satisfying for each $x \in G$ there is $P \in \mathcal{P}_x$ with $P \subset G$, then G is open in X; \mathcal{P} is called an *sn-network* [9] for X if each element of \mathcal{P}_x is a sequential neighborhood of x in X (i.e., every convergent sequence with the limit point x is eventually in the element) for each $x \in X$.

A space X is called a g-metrizable space [14] (resp., an sn-metrizable space [5]) if it has a σ -locally finite weak base (resp., snnetwork), and a space is g-first countable [1], (resp., sn-first countable) if each \mathcal{P}_x is countable. A space is called g-second countable [14] if it has a countable weak base.

A collection $\{C_{\alpha} : \alpha \in I\}$ of subsets of X is called *hereditar*ily closure preserving, HCP (weakly hereditarily closure preserving, wHCP) [3] if for any $J \subset I$, $\{B_{\alpha} : B_{\alpha} \subset C_{\alpha}, \alpha \in J\}$ is closure preserving ($\{x_{\alpha} : x_{\alpha} \in C_{\alpha}, \alpha \in J\}$ is closed discrete).

Tanaka [16] asked the following.

Question 2.2. If X has a σ -HCP weak base, is X g-metrizable?

By slightly modifying Liang-Xue Peng's proof in [13], we can obtain the following.

Lemma 2.3. Suppose that X has a σ -closure preserving weak base, then X is hereditary meta-Lindelöf.¹

Tanaka [16] proved that a Lindelöf space with a σ -HCP weak base is g-second countable and that the following proposition holds under (CH). By using Lemma 2.3, we may omit (CH).

Proposition 2.4. X is g-second countable if and only if X is a separable space with a σ -HCP weak base.

X has property (**) if for any non-isolated point x of X, there is countable subset $D \subset X$ so that $x \in cl(D \setminus \{x\})$. A space X has property (*) [10] if for any non-isolated point x of X, there is

¹Lin informed the author that he also obtained this result.

a non-trivial sequence converging to x. Obviously, a space having countable tightness² or property (*) has property (**).

Lemma 2.5. Let X have a σ -HCP weak base. Then X has property (*) if it has property (**).

Proof: For a non-isolated point $x \in X$, there is a countable subset $D \subset X$ with $x \in cl(D \setminus \{x\})$. By Lemma 2.3, cl(D) is a Lindelöf space. Tanaka [16] proved that every ω_1 -compact space with a σ -HCP weak base is g-first countable. $cl(D \setminus \{x\})$ is a sequential space; X has property (*).

The author [10] proved that X is a g-metrizable space if and only if X has a σ -HCP weak base and property (*); by Lemma 2.5, we have

Theorem 2.6. X is g-metrizable if and only if X has a σ -HCP weak base and property (**).

Corollary 2.7. A space X is g-metrizable if and only if X has a σ -HCP weak base and has countable tightness.

Next, we discuss spaces with a σ -wHCP weak base. In [3], it was proved that a k-space with a σ -wHCP base is metrizable, but not every (paracompact) space with a σ -wHCP base is metrizable. Thus, every space with a σ -wHCP weak base need not to be gmetrizable. We don't know if a k-space with a σ -wHCP weak base is g-metrizable or not. But we have following.

Theorem 2.8. (CH) Suppose X is a separable space with a σ -wHCP weak base, then X is g-second countable, hence g-metrizable.

First, let us prove a lemma.

Lemma 2.9. Suppose that X has a σ -wHCP weak base, then X has a σ -wHCP k-network³ and a σ -compact-finite k-network.

Proof: Let $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ is a σ -wHCP weak base. We may assume $\mathcal{B}_n \subset \mathcal{B}_{n+1}$. For each $n \in \mathbb{N}$, let $D_n = \{x \in X : \mathcal{B}_n \text{ is not point-finite at } x\}$. Let $\mathcal{B}'_n = \{B \setminus D_n : B \in \mathcal{B}_n\} \cup \{\{x\} : x \in D_n\}$.

²A space X has countable tightness if whenever $x \in cl(A)$ for $x \in X$ and a subset A of X, there is a countable subset $C \subset A$ such that $x \in cl(C)$.

³A cover \mathcal{P} of subsets of X is a k-network if, whenever $K \subset U$ with K compact and U open in X, there is a finite subfamily $\mathcal{F} \subset \mathcal{P}$ such that $K \subset \cup \mathcal{F} \subset U$.

Then \mathcal{B}'_n is compact-finite for each n. In fact, let K be a compact subset of X; it is easy to see that $K \cap D_n$ is finite. Notice that $\{B \setminus D_n : B \in \mathcal{B}_n\}$ is wHCP and point-finite, and K meets at most finitely many elements of $\{B \setminus D_n : B \in \mathcal{B}_n\}$. Hence, $\mathcal{B}' = \bigcup_{n \in \mathbb{N}} \mathcal{B}'_n$ is a σ -compact-finite network. Any compact subset of X has a countable network; hence, it is metrizable. By Proposition A(3) in [17], \mathcal{B} is a σ -wHCP k-network. Now we prove that \mathcal{B}' is a k-network. Let $K \subset U$ with K compact and U open; there are $m \in \mathbb{N}$ and a finite subfamily \mathcal{P} of \mathcal{B}_m such that $K \subset \cup \mathcal{P} \subset U$. Let $\mathcal{F} = \{P \setminus D_m : P \in \mathcal{P}\} \cup \{\{x\} : x \in K \cap D_m\}$, then $\mathcal{F} \subset \mathcal{B}'_m \subset \mathcal{B}'$ and $K \subset \cup \mathcal{F} \subset U$.

Now we give a proof of Theorem 2.8.

Since X is separable, by (CH), the character of X, $\chi(X) \leq \omega_1$. Let $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n = \bigcup \{\mathcal{P}_x : x \in X\}$ is a σ -wHCP weak base. We may assume $\mathcal{B}_n \subset \mathcal{B}_{n+1}$. First, we prove that X is g-first countable.

For $x \in X$, if $\{x\}$ is open, then X is g-first countable at x. If $\{x\}$ is not open, $\mathcal{B}_n \cap \mathcal{P}_x$ is locally countable at x for $n \in \mathbb{N}$. Suppose not. Let $\{V_\alpha : \alpha < \omega_1\}$ be the local base at x. Notice that for any neighborhood V of x, $V \cap (P \setminus \{x\}) \neq \emptyset$ for $P \in \mathcal{P}_x$. Then, by induction, there are a subset $S = \{x_\alpha : \alpha < \omega_1\}$ of X and a subcollection $\{B_\alpha : \alpha < \omega_1\}$ of $\mathcal{B}_n \cap \mathcal{P}_x$ such that $x_\alpha \in V_\alpha \cap B_\alpha$, where $x_\alpha \neq x$, and the B_α 's are distinct. x is an accumulation of S, so S is not closed. Since \mathcal{B}_n is wHCP, S is a closed discrete subset; this is a contradiction. Hence, X is g-first countable. By Lemma 2.9, X has a σ -compact-finite k-network. Under (CH), a separable, sequential space with a σ -compact-finite k-network is an \aleph_0 -space⁴ [12]. X is a g-first countable, \aleph_0 -space; hence, X is g-second countable [14].

We don't know if we can omit (CH) or not in the above theorem.

Question 2.10. Is a separable space with a σ -wHCP weak base g-second countable?

We define iterates of the operator seq cl inductively for a space X as follows:

- (1) seq $cl^0(S) = S;$
- (2) seq $cl(S) = \{x : x \text{ is a limit point of } S\};$

⁴A space with a countable k-network.

- (3) if α is an ordinal, let seq $cl^{\alpha+1}(S) = seq cl(seq cl^{\alpha}(S));$
- (4) if α is a limit ordinal, let seq $cl^{\alpha} = \bigcup_{\beta < \alpha} seq \ cl^{\beta}(S)$.

We define iterates of the operator seq cl inductively for a space X as follows; seq $cl^0(S) = S$; seq $cl(S) = \{x : x \text{ is a limit point of } S\}$; if α is an ordinal, let seq $cl^{\alpha+1}(S) = \text{seq } cl(\text{seq } cl^{\alpha}(S))$; if α is a limit ordinal, let seq $cl^{\alpha} = \bigcup_{\beta < \alpha} \text{seq } cl^{\beta}(S)$. If X is sequential space, the sequential order of X is the least ordinal α so that for every subset S of X we have $cl(S) = \text{seq } cl^{\alpha}(S)$. A subset D of X is ω_1 -compact if any subset of D with cardinality ω_1 has a cluster point.

Lemma 2.11. Let X have a σ -wHCP weak base. If $A \subset X$ is ω_1 -compact, then seq cl(A) is ω_1 -compact.

Proof: Assume to the contrary that there is a discrete subset $\{x_{\alpha} : \alpha < \omega_1\}$ in seq $cl(A) \setminus A$. For $\alpha < \omega_1$, let $\{x_n(\alpha)\} \subset A$ be a sequence converging to x_{α} . Let $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ be a σ -wHCP weak base of X. We may assume $\mathcal{B}_n \subset \mathcal{B}_{n+1}$. For each α , there is $B_{\alpha} \in \mathcal{B}$ such that $x_{\alpha} \in B_{\alpha}$, B_{α} contains a tail of $\{x_n(\alpha)\}$, and all $B_{\alpha} \cap \{x_{\beta} : \beta \neq \alpha\} = \emptyset$. Without loss of generality, we assume B_{α} contains $\{x_n(\alpha)\}$ and $B_{\alpha} \in \mathcal{B}_n$ for some n.

Case 1. $|\{x_n(\alpha) : n \in \mathbb{N}, \alpha < \omega_1\}| = \omega_1$.

By induction, there is an uncountable subset $S = \{x_{\beta} : \beta < \omega_1\}$ of $\{x_n(\alpha) : n \in \mathbb{N}, \alpha < \omega_1\}$ such that $x_{\beta} \in B_{\beta}$ and $B_{\beta} \neq B_{\gamma}$ if $\beta \neq \gamma$. Since \mathcal{B}_n is wHCP, $S \subset A$ is closed discrete; this is a contradiction.

Case 2. $|\{x_n(\alpha) : n \in \mathbb{N}, \alpha < \omega_1\}| \neq \omega_1.$

There exists an α_0 such that infinitely many B_{α} 's contain a subsequence of $\{x_n(\alpha_0)\}$. Suppose not. For every $\alpha < \omega_1$, there is $m(\alpha)$ such that $\{B_{\alpha} : \alpha < \omega_1\}$ is point-finite at $x_{m(\alpha)}(\alpha)$. Since $|\{x_{m(\alpha)}(\alpha) : n \in \mathbb{N}, \alpha < \omega_1\}| \neq \omega_1$ and $x_{m(\alpha)}(\alpha) \in B_{\alpha}$, $\{B_{\alpha} : \alpha < \omega_1\}$ is not point-finite at some $x_{m(\alpha)}(\alpha)$; this is a contradiction. Thus, infinitely many B_{α} 's contain a subsequence of $\{x_n(\alpha_0)\}$, then $\{x_n(\alpha_0)\}$ has a subsequence that is discrete, a contradiction. Hence, seq cl(A) is ω_1 -compact. \Box

Theorem 2.12. Let X be a separable space with a σ -wHCP weak base. If the sequential order of X is countable, then X is g-second countable.

Proof: Let $D \subset X$ with $|D| = \omega$, cl(D) = X. Since the sequential order of X is countable, $X = \bigcup_{n \in \mathbb{N}} \text{seq } cl^n(D)$. D is ω_1 -compact, and seq $cl^n(D)$ is ω_1 -compact for each n by Lemma 2.11; hence, X is ω_1 -compact. Let $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ be a σ -wHCP weak base of X. For $x \in X$, if x is not an isolated point, then $\mathcal{B} \cap \mathcal{P}_x$ is locally countable at x. Suppose not. There is $n \in \mathbb{N}$ such that $\mathcal{B}_n \cap \mathcal{P}_x$ is not locally countable at x. By induction, we can select an uncountable subset $\{x_\alpha : \alpha < \omega_1\}$ and an uncountable subfamily $\{B_\alpha : \alpha < \omega_1\} \subset \mathcal{B}_n$ such that $\{x, x_\alpha\} \subset B_\alpha, x_\alpha \neq x_\beta$ if $\alpha \neq \beta$. $\{x_\alpha : \alpha < \omega\}$ is discrete; this is a contradiction because X is ω_1 -compact. Hence, X is g-first countable.

X is ω_1 -compact and has a σ -wHCP k-network by Lemma 2.9; hence, X is an \aleph_0 -space [7]. Thus, X is g-second countable [14]. \Box

It is well known that g-metrizable spaces are not preserved by perfect mappings. Arhangel'skii [2], in a topology seminar at Ohio University, asked the following question:

Question 2.13. Let X be a topological space; if every perfect image of X is g-metrizable, is X metrizable?

We shall give an affirmative answer to this question; in fact, we may prove a slightly stronger version.

The sequential fan $S_{\omega}{}^{5}$ is a perfect image of the Arens' space $S_{2}{}^{6}$. It is well known that S_{ω} is not g-first countable.

Theorem 2.14. Let X be a g-metrizable space. If every perfect image of X has a σ -wHCP weak base, then X is metrizable.

Proof: First, we prove that a space Y with a σ -wHCP weak base $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ does not contain a copy of S_{ω} . Suppose not. There is a non-trivial sequence $\{y_n\}$ converging to a point $y \in Y$ that is not an isolated point and Y is not g-first countable at y. There is $n \in \mathbb{N}$ and infinitely many weak neighborhoods of y in \mathcal{B}_n , each containing a tail of $\{x_n\}$. Since \mathcal{B}_n is wHCP, there is a subsequence L of $\{x_n\}$ such that L is discrete. This is a contradiction.

 $^{{}^{5}}S_{\omega}$ is a space obtained from the topological sum of ω many convergent sequences by identifying all limit points to a single point.

 $^{{}^{6}}S_{2} = (\mathbb{N} \times \mathbb{N}) \cup \mathbb{N} \cup \{\infty\}$ is the space with each point of $\mathbb{N} \times \mathbb{N}$ isolated. A basic neighborhood of $n \in \mathbb{N}$ consists of all sets of the form $\{n\} \cup \{(m, n) : m \geq k\}$. And U is a neighborhood of ∞ if and only if $\infty \in U$ and U is a neighborhood of all but finitely many $n \in \mathbb{N}$.

Since no perfect image of X contains a copy S_{ω} , then X contains no copy of S_2 . X is a sequential space and every point is a G_{δ} -set; hence, X is a Fréchet-Urysohn space [15]. Since every Fréchet-Urysohn, g-metrizable space is metrizable [14], then X is metrizable.

Lin [9] introduced sn-networks to generalize weak bases (it is easy to see that a weak base is an sn-network). An sn-network is a weak base if the topological space is a sequential space. Many results on g-metrizable spaces can be generalized in terms of sn-networks [5]. Dai and the author [11] proved the following.

Theorem 2.15. Let X be a k-space with a σ -HCP k-network, then X is g-metrizable if X contains no copy of S_{ω} .

In a personal communication with the author, Lin asked if we can generalize the above theorem as follows:

Question 2.16. Let X have a σ -HCP k-network. Does X have a σ -locally finite sn-network if it contains no copy of S_{ω} ?

We give a negative answer to the question.

Example 2.17. There is an \aleph_0 -space that contains no copy of S_{ω} , but it is not sn-first countable.

Proof: Let $X = \{\infty\} \cup \{x_i(n) : i \in \mathbb{N}, n \in \mathbb{N}\}$, and let $\{f_\alpha : \alpha < 2^\omega\}$ be all maps from \mathbb{N} to \mathbb{N} . Endow X with topology as follows: each $\{x_i(n)\}$ is open for $i \in \mathbb{N}, n \in \mathbb{N}$; the neighborhood of ∞ is $X \setminus \bigcup \{x_{f(n)}(n) : f \in \mathcal{F} \in \{f_\alpha : \alpha < 2^\omega\}^{<\omega}\}$. It is easy to see that $x_i(n) \to \infty$ for each $n \in \mathbb{N}$ and any convergent sequence in X is contained in the finite union of $\{\{x_i(n)\} : n \in \mathbb{N}\}$.

(1) X has a countable k-network. $\{\{x_i(n)\}: i \in \mathbb{N}, n \in \mathbb{N}\} \cup \{\{x_i(n): i > m\} \cup \{\infty\}: m \in \mathbb{N}, n \in \mathbb{N}\}\$ is a countable cs^{*}-network⁷ for X. Since X is countable, then each point of X is a G_{δ} -set; hence, X has a countable k-network by Proposition B(1) in [17].

(2) X contains no copy of S_{ω} . Let $g : \mathbb{N} \to \mathbb{N}$ be a surjection. It is obvious that $\{x_i(n) : i \leq g(n), n \in \mathbb{N}\}$ is not closed in X; therefore, X contains no copy of S_{ω} .

⁷A cover \mathcal{P} is a cs*-network of X if whenever σ is a sequence converging to a point x and $x \in U$ with U open, then for some $P \in \mathcal{P}$, $x \in P \subset U$, and P contains a subsequence of σ .

(3) X is not sn-first countable. Suppose not. Let $\{P_n : n \in \mathbb{N}\}$ be a decreasing countable sn-network at ∞ . For each $n \in \mathbb{N}, x_i(n) \to \infty$, pick $x_{i_n}(n) \in P_n$, then $x_{i_n}(n) \to \infty$. This is a contradiction because $X \setminus \{x_{i_n}(n)\}$ is an open neighborhood of ∞ .

Acknowledgment. The author would like to thank the referee for many valuable comments.

References

- A. V. Arhangel'skii, "Mappings and spaces," Russian Math. Surveys 21 (1966), 115–162.
- [2] _____, Seminar on Topology. Ohio University, 2004.
- [3] D. Burke, R. Engelking, and D. Lutzer, "Hereditarily closure-preserving collections and metrization," Proc. Amer. Math. Soc. 51 (1975), 483–488.
- [4] L. Foged, "On g-metrizability," Pacific J. Math. 98 (1982), no. 2, 327-332.
- [5] Yin Ge, "On spaces with a σ-locally-finite universal cs-network," Questions Answers Gen. Topology 18 (2000), no. 1, 93–96.
- [6] G. Gruenhage, "Generalized Metric Spaces." Handbook of Set-Theoretic Topology. Ed. Kenneth Kunen and Jerry E. Vaughan. Amsterdam: North-Holland, 1984. 423–501.
- [7] Shou Lin, "A study of pseudobases," Questions Answers Gen. Topology 6 (1988), no. 1, 81–97.
- [8] _____, "On g-Metrizable Spaces," (Chinese) Chinese Ann. Math. Ser. A 13 (1992), no. 3, 403–409.
- [9] _____, "A note on the Arens' space and sequential fan," *Topology Appl.* 81 (1997), no. 3, 185–196.
- [10] Chuan Liu, "Notes on weak bases," Questions Answers Gen. Topology 22 (2004), 39–42.
- [11] Chuan Liu and Mu Min Dai, "g-metrizability and S_{ω} ," Topology Appl. 60 (1994), no. 2, 185–189.
- [12] Chuan Liu and Yoshio Tanaka, "Spaces Having σ-Compact-Finite k-Networks, and Related Matters," *Topology Proc.* 21 (1996), 173–200.
- [13] Liang-Xue Peng, "The Hereditarily MetaLindelöf Property of k-Spaces with σ -HCP Closed k-Network," *Topology Proc.* **26** (2001-2002), no. 1, 307–310.
- [14] Frank Siwiec, "On defining a space by a weak base," Pacific J. Math. 52 (1974), 233–245.
- [15] Yoshio Tanaka, "Metrizability of certain quotient spaces," Fund. Math. 119 (1983), no. 2, 157–168.
- [16] _____, "σ-hereditarily closure-preserving k-networks and g-metrizability," Proc. Amer. Math. Soc. 112 (1991), no. 1, 283–290.

[17] _____, "Theory of k-networks," Questions Answers Gen. Topology 12 (1994), no. 2, 139–164.

Department of Mathematics; Ohio University-Zanesville; Zanesville, Ohio 43701

 $E\text{-}mail \ address: \texttt{liuc1}\texttt{Qohio.edu}$