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NOTES ON g-METRIZABLE SPACES

CHUAN LIU

Abstract. A space is called a g-metrizable space if it is a reg-
ular space with a σ-locally finite weak base ( see F. Siwiec,“On
Defining a Space by a Weak Base”). In this paper, we discuss
spaces with a σ-HCP (wHCP) weak base and give answers
or partial answers to questions posed by A. V. Arhangel’skii
during a seminar in 2004 at Ohio University, by S. Lin in a
personal communication, and by Y. Tanaka in “σ-Hereditarily
Closure Preserving k-Networks and g-Metrizability.”

1. Introduction

Weak base was introduced by A. V. Arhangel’skii [1] in 1966.
Frank Siwiec [14] defined g-metrizable spaces as a spaces with a
σ-locally finite weak base. Yoshio Tanaka [16], L. Foged [4], Shou
Lin [8], and Chuan Liu and Mu Min Dai [11] have made much
contribution on this field. We discuss topological spaces with a
σ-HCP (wHCP)weak base and give answers or partial answers to
Lin’s, Arhangel’skii’s and Tanaka’s questions.

In this paper all spaces are regular and T1; all mappings are
continuous and onto. N denotes the natural numbers. Readers
may refer to [6] for unstated definitions.
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2. g-metrizable spaces

Definition 2.1. Let P =
⋃

x∈X Px be a cover of a space X such
that for each x ∈ X,

(1) Px is a network of x in X;
(2) If U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px.
P is called a weak base [1] for X if whenever G ⊂ X satisfying

for each x ∈ G there is P ∈ Px with P ⊂ G, then G is open in
X; P is called an sn-network [9] for X if each element of Px is a
sequential neighborhood of x in X (i.e., every convergent sequence
with the limit point x is eventually in the element) for each x ∈ X.

A space X is called a g-metrizable space [14] (resp., an sn-metri-
zable space [5]) if it has a σ-locally finite weak base (resp., sn-
network), and a space is g-first countable [1], (resp., sn-first count-
able) if each Px is countable. A space is called g-second countable
[14] if it has a countable weak base.

A collection {Cα : α ∈ I} of subsets of X is called hereditar-
ily closure preserving, HCP (weakly hereditarily closure preserving,
wHCP) [3] if for any J ⊂ I, {Bα : Bα ⊂ Cα, α ∈ J} is closure
preserving ({xα : xα ∈ Cα, α ∈ J} is closed discrete).

Tanaka [16] asked the following.

Question 2.2. If X has a σ-HCP weak base, is X g-metrizable?

By slightly modifying Liang-Xue Peng’s proof in [13], we can
obtain the following.

Lemma 2.3. Suppose that X has a σ-closure preserving weak base,
then X is hereditary meta-Lindelöf.1

Tanaka [16] proved that a Lindelöf space with a σ-HCP weak
base is g-second countable and that the following proposition holds
under (CH). By using Lemma 2.3, we may omit (CH).

Proposition 2.4. X is g-second countable if and only if X is a
separable space with a σ-HCP weak base.

X has property (**) if for any non-isolated point x of X, there
is countable subset D ⊂ X so that x ∈ cl(D\{x}). A space X
has property (*) [10] if for any non-isolated point x of X, there is

1Lin informed the author that he also obtained this result.
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a non-trivial sequence converging to x. Obviously, a space having
countable tightness2 or property (*) has property (**).

Lemma 2.5. Let X have a σ-HCP weak base. Then X has property
(*) if it has property (**).

Proof: For a non-isolated point x ∈ X, there is a countable subset
D ⊂ X with x ∈ cl(D\{x}). By Lemma 2.3, cl(D) is a Lindelöf
space. Tanaka [16] proved that every ω1-compact space with a σ-
HCP weak base is g-first countable. cl(D\{x}) is a sequential space;
X has property (*). ¤

The author [10] proved that X is a g-metrizable space if and only
if X has a σ-HCP weak base and property (*); by Lemma 2.5, we
have

Theorem 2.6. X is g-metrizable if and only if X has a σ-HCP
weak base and property (**).

Corollary 2.7. A space X is g-metrizable if and only if X has a
σ-HCP weak base and has countable tightness.

Next, we discuss spaces with a σ-wHCP weak base. In [3], it
was proved that a k-space with a σ-wHCP base is metrizable, but
not every (paracompact) space with a σ-wHCP base is metrizable.
Thus, every space with a σ-wHCP weak base need not to be g-
metrizable. We don’t know if a k-space with a σ-wHCP weak base
is g-metrizable or not. But we have following.

Theorem 2.8. (CH) Suppose X is a separable space with a σ-
wHCP weak base, then X is g-second countable, hence g-metrizable.

First, let us prove a lemma.

Lemma 2.9. Suppose that X has a σ-wHCP weak base, then X
has a σ-wHCP k-network3 and a σ-compact-finite k-network.

Proof: Let B = ∪n∈NBn is a σ-wHCP weak base. We may assume
Bn ⊂ Bn+1. For each n ∈ N, let Dn = {x ∈ X : Bn is not point-
finite at x}. Let B′n = {B\Dn : B ∈ Bn} ∪ {{x} : x ∈ Dn}.

2A space X has countable tightness if whenever x ∈ cl(A) for x ∈ X and a
subset A of X, there is a countable subset C ⊂ A such that x ∈ cl(C).

3A cover P of subsets of X is a k-network if, whenever K ⊂ U with K
compact and U open in X, there is a finite subfamily F ⊂ P such that K ⊂
∪F ⊂ U .
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Then B′n is compact-finite for each n. In fact, let K be a compact
subset of X; it is easy to see that K ∩ Dn is finite. Notice that
{B\Dn : B ∈ Bn} is wHCP and point-finite, and K meets at most
finitely many elements of {B\Dn : B ∈ Bn}. Hence, B′ = ∪n∈NB′n
is a σ-compact-finite network. Any compact subset of X has a
countable network; hence, it is metrizable. By Proposition A(3)
in [17], B is a σ-wHCP k-network. Now we prove that B′ is a
k-network. Let K ⊂ U with K compact and U open; there are
m ∈ N and a finite subfamily P of Bm such that K ⊂ ∪P ⊂ U . Let
F = {P\Dm : P ∈ P} ∪ {{x} : x ∈ K ∩Dm}, then F ⊂ B′m ⊂ B′
and K ⊂ ∪F ⊂ U . ¤

Now we give a proof of Theorem 2.8.

Since X is separable, by (CH), the character of X, χ(X) ≤ ω1.
Let B = ∪n∈NBn = ∪{Px : x ∈ X} is a σ-wHCP weak base. We
may assume Bn ⊂ Bn+1. First, we prove that X is g-first countable.

For x ∈ X, if {x} is open, then X is g-first countable at x. If {x}
is not open, Bn ∩ Px is locally countable at x for n ∈ N. Suppose
not. Let {Vα : α < ω1} be the local base at x. Notice that for
any neighborhood V of x, V ∩ (P\{x}) 6= ∅ for P ∈ Px. Then,
by induction, there are a subset S = {xα : α < ω1} of X and a
subcollection {Bα : α < ω1} of Bn ∩ Px such that xα ∈ Vα ∩ Bα,
where xα 6= x, and the Bα’s are distinct. x is an accumulation of
S, so S is not closed. Since Bn is wHCP, S is a closed discrete
subset; this is a contradiction. Hence, X is g-first countable. By
Lemma 2.9, X has a σ-compact-finite k-network. Under (CH), a
separable, sequential space with a σ-compact-finite k-network is
an ℵ0-space4 [12]. X is a g-first countable, ℵ0-space; hence, X is
g-second countable [14].

We don’t know if we can omit (CH) or not in the above theorem.

Question 2.10. Is a separable space with a σ-wHCP weak base
g-second countable?

We define iterates of the operator seq cl inductively for a space
X as follows:

(1) seq cl0(S) = S;
(2) seq cl(S) = {x : x is a limit point of S};

4A space with a countable k-network.
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(3) if α is an ordinal, let seq clα+1(S) = seq cl(seq clα(S));
(4) if α is a limit ordinal, let seq clα = ∪β<αseq clβ(S).

We define iterates of the operator seq cl inductively for a space
X as follows; seq cl0(S) = S; seq cl(S) = {x : x is a limit point
of S}; if α is an ordinal, let seq clα+1(S) = seq cl(seq clα(S)); if α
is a limit ordinal, let seq clα = ∪β<αseq clβ(S). If X is sequential
space, the sequential order of X is the least ordinal α so that for
every subset S of X we have cl(S) =seq clα(S). A subset D of X
is ω1-compact if any subset of D with cardinality ω1 has a cluster
point.

Lemma 2.11. Let X have a σ-wHCP weak base. If A ⊂ X is
ω1-compact, then seq cl(A) is ω1-compact.

Proof: Assume to the contrary that there is a discrete subset
{xα : α < ω1} in seq cl(A)\A. For α < ω1, let {xn(α)} ⊂ A
be a sequence converging to xα. Let B = ∪n∈NBn be a σ-wHCP
weak base of X. We may assume Bn ⊂ Bn+1. For each α, there is
Bα ∈ B such that xα ∈ Bα, Bα contains a tail of {xn(α)}, and all
Bα ∩ {xβ : β 6= α} = ∅. Without loss of generality, we assume Bα

contains {xn(α)} and Bα ∈ Bn for some n.
Case 1. |{xn(α) : n ∈ N, α < ω1}| = ω1.
By induction, there is an uncountable subset S = {xβ : β < ω1}

of {xn(α) : n ∈ N, α < ω1} such that xβ ∈ Bβ and Bβ 6= Bγ

if β 6= γ. Since Bn is wHCP, S ⊂ A is closed discrete; this is a
contradiction.

Case 2. |{xn(α) : n ∈ N, α < ω1}| 6= ω1.
There exists an α0 such that infinitely many Bα’s contain a sub-

sequence of {xn(α0)}. Suppose not. For every α < ω1, there
is m(α) such that {Bα : α < ω1} is point-finite at xm(α)(α).
Since |{xm(α)(α) : n ∈ N, α < ω1}| 6= ω1 and xm(α)(α) ∈ Bα,
{Bα : α < ω1} is not point-finite at some xm(α)(α); this is a con-
tradiction. Thus, infinitely many Bα’s contain a subsequence of
{xn(α0)}, then {xn(α0)} has a subsequence that is discrete, a con-
tradiction. Hence, seq cl(A) is ω1-compact. ¤

Theorem 2.12. Let X be a separable space with a σ-wHCP weak
base. If the sequential order of X is countable, then X is g-second
countable.
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Proof: Let D ⊂ X with |D| = ω, cl(D) = X. Since the sequential
order of X is countable, X = ∪n∈Nseq cln(D). D is ω1-compact,
and seq cln(D) is ω1-compact for each n by Lemma 2.11; hence, X
is ω1-compact. Let B = ∪n∈NBn be a σ-wHCP weak base of X. For
x ∈ X, if x is not an isolated point, then B∩Px is locally countable
at x. Suppose not. There is n ∈ N such that Bn ∩Px is not locally
countable at x. By induction, we can select an uncountable subset
{xα : α < ω1} and an uncountable subfamily {Bα : α < ω1} ⊂ Bn

such that {x, xα} ⊂ Bα, xα 6= xβ if α 6= β. {xα : α < ω} is discrete;
this is a contradiction because X is ω1-compact. Hence, X is g-first
countable.

X is ω1-compact and has a σ-wHCP k-network by Lemma 2.9;
hence, X is an ℵ0-space [7]. Thus, X is g-second countable [14]. ¤

It is well known that g-metrizable spaces are not preserved by
perfect mappings. Arhangel’skii [2], in a topology seminar at Ohio
University, asked the following question:

Question 2.13. Let X be a topological space; if every perfect
image of X is g-metrizable, is X metrizable?

We shall give an affirmative answer to this question; in fact, we
may prove a slightly stronger version.

The sequential fan Sω
5 is a perfect image of the Arens’ space S2

6.
It is well known that Sω is not g-first countable.

Theorem 2.14. Let X be a g-metrizable space. If every perfect
image of X has a σ-wHCP weak base, then X is metrizable.

Proof: First, we prove that a space Y with a σ-wHCP weak base
B = ∪n∈NBn does not contain a copy of Sω. Suppose not. There
is a non-trivial sequence {yn} converging to a point y ∈ Y that is
not an isolated point and Y is not g-first countable at y. There
is n ∈ N and infinitely many weak neighborhoods of y in Bn, each
containing a tail of {xn}. Since Bn is wHCP, there is a subsequence
L of {xn} such that L is discrete. This is a contradiction.

5Sω is a space obtained from the topological sum of ω many convergent
sequences by identifying all limit points to a single point.

6S2 = (N ×N) ∪ N ∪ {∞} is the space with each point of N × N isolated.
A basic neighborhood of n ∈ N consists of all sets of the form {n} ∪ {(m, n) :
m ≥ k}. And U is a neighborhood of ∞ if and only if ∞ ∈ U and U is a
neighborhood of all but finitely many n ∈ N.



NOTES ON g-METRIZABLE SPACES 213

Since no perfect image of X contains a copy Sω, then X con-
tains no copy of S2. X is a sequential space and every point is
a Gδ-set; hence, X is a Fréchet-Urysohn space [15]. Since every
Fréchet-Urysohn, g-metrizable space is metrizable [14], then X is
metrizable. ¤

Lin [9] introduced sn-networks to generalize weak bases (it is easy
to see that a weak base is an sn-network). An sn-network is a weak
base if the topological space is a sequential space. Many results on
g-metrizable spaces can be generalized in terms of sn-networks [5].
Dai and the author [11] proved the following.

Theorem 2.15. Let X be a k-space with a σ-HCP k-network, then
X is g-metrizable if X contains no copy of Sω.

In a personal communication with the author, Lin asked if we
can generalize the above theorem as follows:

Question 2.16. Let X have a σ-HCP k-network. Does X have a
σ-locally finite sn-network if it contains no copy of Sω?

We give a negative answer to the question.

Example 2.17. There is an ℵ0-space that contains no copy of Sω,
but it is not sn-first countable.

Proof: Let X = {∞} ∪ {xi(n) : i ∈ N, n ∈ N}, and let {fα : α <
2ω} be all maps from N to N. Endow X with topology as follows:
each {xi(n)} is open for i ∈ N, n ∈ N; the neighborhood of ∞ is
X\ ∪ {xf(n)(n) : f ∈ F ∈ {fα : α < 2ω}<ω}. It is easy to see that
xi(n) → ∞ for each n ∈ N and any convergent sequence in X is
contained in the finite union of {{xi(n)} : n ∈ N}.

(1) X has a countable k-network. {{xi(n)} : i ∈ N, n ∈ N} ∪
{{xi(n) : i > m} ∪ {∞} : m ∈ N, n ∈ N} is a countable cs*-
network7 for X. Since X is countable, then each point of X is a
Gδ-set; hence, X has a countable k-network by Proposition B(1) in
[17].

(2) X contains no copy of Sω. Let g : N → N be a surjection.
It is obvious that {xi(n) : i ≤ g(n), n ∈ N} is not closed in X;
therefore, X contains no copy of Sω.

7A cover P is a cs*-network of X if whenever σ is a sequence converging to
a point x and x ∈ U with U open, then for some P ∈ P, x ∈ P ⊂ U , and P
contains a subsequence of σ.
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(3) X is not sn-first countable. Suppose not. Let {Pn : n ∈ N} be
a decreasing countable sn-network at ∞. For each n ∈ N, xi(n) →
∞, pick xin(n) ∈ Pn, then xin(n) → ∞. This is a contradiction
because X\{xin(n)} is an open neighborhood of ∞. ¤
Acknowledgment. The author would like to thank the referee for
many valuable comments.
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