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A CROWDED Q-POINT UNDER CPAgame
prism

ANDRES MILLÁN

Abstract. In this note, we prove that the version CPAgame
prism

of the Covering Property Axiom, which holds in the iter-
ated Sacks model, implies that there exists an ω1-generated
crowded ultrafilter on Q which is also a Q-point. Since no
crowded ultrafilter can be a P -point, this constitutes an in-
teresting example of a Q-point which is not a P -point.

1. Introduction

We will use standard set theoretic notation as in [7]. Let U be a
non-principal ultrafilter on a countable set X. Then, U is a P -point
if for every partition P of X, either U ∩ P 6= ∅ or there exists an
X ∈ U such that X ∩ P is finite for each P ∈ P. U is a Q-point if
for every partition P of X into finite pieces, there exists an X ∈ U
such that |X ∩ P | ≤ 1 for each P ∈ P. Given a non-principal
ultrafilter U on X, we say that B ⊂ U is a basis for U if for every
U ∈ U there exists a B ∈ B such that B ⊂ U . Then, we can define
the character of U as χ(U) = min{|B| : B is a basis for U}. We say
that U is κ-generated if χ(U) = κ.

Consider Q with the subspace topology induced by the usual
topology on R and denote by Perf(Q) the family of its perfect
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subsets. A non-principal filter U on Q is crowded if the family
Perf(Q) ∩ U forms a basis for U . The crowded ultrafilters have
been studied in connection with the remainder of the Stone-Čech
compactification of Q, and their existence follows from the Contin-
uum Hypothesis, Martin’s Axiom for countable posets [5], or from
the equality b = c [4].

In [2], K. Ciesielski and J. Pawlikowski showed that a version
of their Covering Property Axiom called CPAgame

prism, which holds in
the iterated Sacks model, implies that there exists an ω1-generated
crowded ultrafilter on Q, and they noted that no crowded ultrafilter
can be a P -point. This result is interesting because CPA implies
b < c.

The main result of this paper is that CPAgame
prism implies the ex-

istence of an ω1-generated crowded ultrafilter on Q which is also
a Q-point1. Notice that this contradicts the remark by Ciesielski
and Pawlikowski in [2, p. 49] that crowded ultrafilters cannot be
Q-points.

It is a result of Arnold W. Miller [9] that there are no Q-points in
Richard Laver’s model for Borel’s Conjecture [8]. Since the equality
b = c holds in Laver’s model, it is consistent with ZFC that no
crowded ultrafilter on Q is a Q-point.

2. Preliminaries on CPAgame
cube and CPAgame

prism

2.1 Cubes and Prisms

The framework of CPA rests on the concepts of cube and prism.
If C denotes the space 2ω with its usual product topology and X is
a Polish space, then we define

Perf(X) = {C ⊂ X : C is homeomorphic to C}.
A perfect cube in Cω is any set C =

∏
i<ω Ci where Ci ∈ Perf(C) for

every i < ω. If X is a Polish space, then a cube in X is a pair 〈f, P 〉
where f : C → X is a continuous injection and P = f [C] for some
perfect cube C. The following proposition is one of the principal
tools for using CPA, and it is a refinement of a theorem proved
independently by H. G. Eggleston [6] and M. L. Brodskĭı [1].

1Recently the author has proven that CPAgame
prism implies that there is also a

crowded Q-point of character c.
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Proposition 1 (Ciesielski and Pawlikowski [3, Claim 1.1.5]). Con-
sider Cω with its usual topology and its usual product measure. If
G is a Borel subset of Cω, which is either of second category or
of positive measure, then G contains a perfect cube.

The notion of prism is a generalization of that of a cube. If
α < ω1 is a non-zero countable ordinal, let Φprism(α) be the set of
all functions f : Cα → Cα with the property that

f(x) ¹ ξ = f(y) ¹ ξ ⇔ x ¹ ξ = y ¹ ξ

for all ξ < α and x, y ∈ Cα. Put Pα = {range(f) : f ∈ Φprism(α)}
and Pω1 =

⋃
0<α<ω1

Pα. The elements of Pω1 are called the iterated
perfect sets. If X is a Polish space, then a prism on X is a pair
〈f, P 〉 where f : E → X is injective and continuous, E ∈ Pω1 , and
P = f [E].

It is also immediate to observe that if the pair 〈f, P 〉 is a prism,
and f : E → P and E ∈ Pα, then we can assume that f is defined
on the entire Cα.

It is important to note that the previous definitions imply that
perfect cubes are, in particular, iterated perfect sets and therefore,
that cubes are prisms. On the other hand, if 〈g, P 〉 is a prism, where
g : E → P and E ∈ Pα, then there exists an f ∈ Φprism(α) with
E = range(f). In particular, h = g ◦ f : Cα → P is a continuous
injection and the pair 〈h, P 〉 is a cube. Thus, any prism can be
thought of as a cube with a different coordinate system imposed on
it.

2.2 Subcubes and Subprisms

If 〈f, P 〉 is a cube, then we say that Q is its subcube provided
there exists a perfect cube C ⊂ dom(f) such that Q = f [C]. Sub-
prisms are defined similarly but with replacing the perfect cube C
by an iterated perfect set E. Since in the games defined below we
will need to consider singletons in the same position as cubes (or
prisms) as defined above, in what follows, singletons will be consid-
ered as cubes and prisms. If P is a singleton in X, then its only
subcube is P itself.

2.3 Games and Strategies

For a Polish space X, consider the following game GAMEcube(X)
of length ω1 played by two players, Player I and Player II. At each
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stage ξ < ω1 of the game Player I can play an arbitrary cube Pξ

in X (i.e., Pξ either belongs to Perf(X) or is a singleton in X), and
Player II must respond by playing a subcube Qξ of Pξ. The game
〈〈Pξ, Qξ〉 : ξ < ω1〉 is won by Player I provided that

X =
⋃

ξ<ω1

Qξ ;

otherwise, Player II wins.
A strategy for Player II is any function S with the property

that S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) is a subcube of Pξ for every partial
game 〈〈Pη, Qη〉 : η < ξ〉. We say that a game 〈〈Pξ, Qξ〉 : ξ < ω1〉
is played according to a strategy S for Player II provided that
Qξ = S(〈〈Pη, Qη〉 : η < ξ〉, Pξ) for every ξ < ω1. A strategy S for
Player II is a winning strategy provided Player II wins any game
played according to the strategy S. The corresponding notions of
games, strategies, etc., for prisms are defined in a similar way.

2.4 The Axioms

The following principles capture the combinatorial core of the
iterated Sacks model.

CPAgame
cube : c = ω2 and for any Polish space X, Player II has no

winning strategy in the game GAMEcube(X).

CPAgame
prism: c = ω2 and for any Polish space X, Player II has no

winning strategy in the game GAMEprism(X).

These axioms are consequences of a more general principle, sim-
ilar in spirit, called CPA [3]. Their importance comes from the
following result.

Proposition 2 (Ciesielski and Pawlikowski, [2, 3]). CPA holds in
the iterated perfect set model. In particular, CPA is consistent with
ZFC set theory.

3. An ω1-generated crowded Q-point on Q

If the set X = [ω]<ω \ {∅} has the discrete topology, then the
product space X = Xω is a Polish space, and the family of sets
U〈n,a〉 = {x ∈ X : x(n) = a}, where a ∈ [ω]<ω and n < ω, consti-
tutes a subbasis for the product topology. Consider that the set

P = {x ∈ X : {x(k) : k < ω} is a partition of ω}.
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It is important to know that

• P is a Gδ subset of X. Therefore, P is a Polish space with
the relative topology inherited from X.

Lemma 1. Let P be a prism in P and let {An : n < ω} ⊂ [Q]ω be
arbitrary. Then, there exist a subprism Q of P and B ∈ [Q]ω such
that |B ∩ An| = ω for every n < ω, and |x(k) ∩ B| ≤ 1 for every
x ∈ Q and k < ω. Moreover, if P is a cube, then Q is a cube as
well.

Proof: Since |Q| = ω we can suppose that {An : n < ω} ⊂ [ω]ω.
Let 〈Rn : n < ω〉 be an enumeration of {An : n < ω} where each set
appears infinitely often.

Case (a): If P = {z}, then define a sequence 〈bn ∈ ω : n < ω〉
such that bn ∈ Rn \

⋃{z(k) : k < ω & z(k) ∩ {b0, . . . , bn−1} 6= ∅}
for every n < ω. It is easy to see that B = {bn : n < ω} works.

Case (b): If P ∈ Perf(P), let f be a witness function for P . By
our remarks in section 2, we can assume that f acts from Cα onto
P . Thus, P is a cube. It is enough to find its subcube with the
desired properties.

Let µ be the standard product probability measure on Cα.
We construct, by induction on n < ω, a sequence 〈Kn : n < ω〉

of open subsets of Cα and two sequences, 〈bn ∈ Rn : n < ω〉 and
〈Bn ∈ [ω]<ω : n < ω〉, such that for every n < ω:

(i) bn > max
(
{bi : i < n} ∪⋃

j<n Bj

)
,

(ii) µ(Kn) ≥ 1− 2−(n+2), and
(iii) f(h)(k) ⊆ Bn for every h ∈ Kn, k < ω with bn ∈ f(h)(k).

If this construction is possible, put B = {bn : n < ω}. Then,
clearly |B∩An| = ω. Condition (ii) implies that µ

(⋂
n<ω Kn

) ≥ 1
2 .

Hence, by Proposition 1, there exists a perfect cube C ⊆ ⋂
n<ω Kn.

Then Q = f [C] is a subcube of P and the pair 〈Q,B〉 is as required.
To see this, it is enough to show that |z(k)∩B| ≤ 1 for every z ∈ Q
and k < ω. Let z = f(h) for some h ∈ C. By conditions (i)
and (iii), for every bj ∈ z(k) = f(h)(k) and n > j, we have that
bn /∈ z(k). Therefore, no two elements of B are in the same z(k)
or, in other words, |z(k) ∩B| ≤ 1 for every k < ω.
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Next, we show that the inductive construction is possible. Let
n < ω be such that the appropriate bi, Ki, and Bi are already con-
structed for every i < n. We will construct bn, Kn, and Bn satisfy-
ing (i)–(iii). We pick bn as an arbitrary element of Rn, satisfying (i).
If L = {a ∈ [ω]<ω : bn ∈ a}, then

{
f−1

(
U〈m,a〉

)
: 〈m, a〉 ∈ ω × L

}
is a partition of Cα into clopen sets. Thus, we can find a finite set
S ⊆ ω × L such that Kn =

⋃ {
f−1

(
U〈m,a〉

)
: 〈m, a〉 ∈ S

}
satisfies

condition (ii). Let Bn =
⋃{a : 〈m, a〉 ∈ S for some m < ω}. Then

clearly, Bn is finite. To see that it satisfies (iii), take an h ∈ Kn.
Then f(h) ∈ U〈m,a〉 for some 〈m, a〉 ∈ S. Let k < ω be such that
bn ∈ f(h)(k). Since we have also bn ∈ a = f(h)(m), we conclude
that k = m. So, f(h)(k) = f(h)(m) = a ⊆ Bn. ¤

Fix a p ∈ R \Q. For D ⊂ [Q]ω, let F (D) = F (p,D) be the filter
generated by D ∪ {In : n < ω}, where In = [p− 2−n, p + 2−n] ∩Q.

Lemma 2 (Ciesielski and Pawlikowski [2, Lemma 4.23]). Suppose
that D ⊂ Perf(Q) is a countable family such that F (D) is crowded.
Then, for every prism P in [Q]ω there exists a subprism Q of P
and a Z ∈ Perf(Q) such that F (D ∪ {Z}) is crowded and either

(i) Z ∩ x = ∅ for every x ∈ Q, or else
(ii) Z ⊂ x for every x ∈ Q.

We will need also the following easy fact.

Lemma 3 (Ciesielski and Pawlikowski [2, Fact 4.21]). Every non-
scattered set B ⊂ Q contains a subset from Perf(Q).

Lemma 4. Let D ⊂ Perf(Q) be a countable family such that F (D)
is crowded and let P be a prism in P, then there exists a subprism
Q of P and Z ∈ Perf(Q) such that F (D ∪ {Z}) is crowded and
|Z ∩ x(k)| ≤ 1 for every x ∈ Q.

Proof: Observe that since F (D) is crowded, it is possible to
find a sequence 〈Dn ∈ Perf(Q) : n < ω〉 coinitial in F (D) such that
Dn+1 ⊂ Dn ⊂ In for every n < ω.

Claim. There are sequences 〈Jk : k < ω〉 of pairwise disjoint
intervals in Q and 〈Sk ⊂ Jk : k < ω〉 of perfect subsets of Q such
that if S =

⋃
k<ω Sk then for every D ∈ F (D) there exists an

n < ω such that S ∩ In ⊂ D.
To see it, define sequences 〈nk : k < ω〉 and 〈Sk ∈ Perf(Q) : k < ω〉

such that Sk ⊂ Dk ∩ Ink
∩ Jk where Jk is a clopen interval such that
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p /∈ clR(Jk). If nk and Sk are already defined pick nk+1 > nk with
Jk ∩ Ink+1

= ∅. Since Dk+1 ∩ Ink+1
∈ F (D) and F (D) is crowded,

we can find a clopen interval Jk+1 such that p /∈ clR(Jk+1) and
Jk+1∩Dk+1 ∩ Ink+1

6= ∅. Define Sk+1 = Jk+1∩Dk+1 ∩ Ink+1
. Then,

Sk+1 ∈ Perf(Q) and Sk+1 ⊂ Dk+1 ∩ Ink+1
. Now, put S =

⋃
k<ω Sk.

Then, S ∈ Perf(Q) and S ∩ Ink
=

⋃
i≥k Si ∩ Ink

=
⋃

i≥k Si ⊂ Dk.
This proves our claim.

Let B be a countable basis for the topology on Q consisting of
clopen sets and consider the family B0 = {B ∈ B : |B ∩ S| = ω}.

If P ∈ Perf(P), apply Lemma 1 to P and {B ∩ S : B ∈ B0} to
find a set T ∈ [S]ω and a subprism Q of P such that

(a) |T ∩ (B ∩ S)| = ω for every B ∈ B0 and
(b) |T ∩ x(k)| ≤ 1 for every x ∈ Q and k ∈ ω.

If P = {x} is a singleton, we put Q = P and apply Lemma 1 to
the family {B ∩ S : B ∈ B0} and to x to obtain a T satisfying (a)
and (b).

In both cases we obtain from (a) that T is dense in S. Since
Sk ∈ Perf(Q) for every n < ω, we conclude that T ∩ Sk is non-
scattered and contains a subset Zk from Perf(Q) for every k < ω.
Hence, if we put Z =

⋃
k<ω Zk, then Z ∈ Perf(Q), Z ∩ Ik ⊂ Dk for

every k < ω, and |Z∩x(k)| ≤ 1 for every x ∈ Q and every k < ω. To
see that F (D∪{Z}) is crowded, note that Z ∩Dnk

⊂ S ∩ Ink
⊂ Dk

for every k < ω. ¤

Theorem 3. CPAgame
prism implies that there exists an ω1-generated

crowded Q-point on Q.

Proof: For Y = [Q]ω ∪ P, consider the topology τ on Y whose
open sets are those U ⊂ Y such that U ∩ [Q]ω and U ∩ P are open
in [Q]ω and P, respectively. Then 〈Y, τ〉 is a Polish space. Note
that [Q]ω and P are clopen in Y with this topology. Every prism
P ∈ Perf(Y) must intersect either [Q]ω or P. Since every non-empty
clopen set in a prism is its subprism (see [3], or use Proposition 1),
we can suppose, without any loss of generality, that either P ∈
Perf([Q]ω) or P ∈ Perf(P). Of course, every singleton is in either
[Q]ω or P. Therefore, given a prism P in Y and a countable family
D ⊂ Perf(Q) such that F (D) is crowded, we define Z(D, P ) ∈
Perf(Q) and a subprism Q(D, P ) of P either as in Lemma 4 if
P ⊂ [Q]ω or as in Lemma 2 if P ⊂ P.
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Consider the following strategy S for Player II:

S(〈〈Pη,, Qη〉 : η < ξ〉, Pξ) = Q(Z({Zη : η < ξ}), Pξ),

where sets Zη are defined inductively by Zη = Z({Zζ : ζ < η}, Pη).
By CPAgame

prism strategy, S is not a winning strategy for Player II.
Hence, there is a game 〈〈Pξ, Qξ〉 : ξ < ω1〉 played according to S for
which Player II loses; so Y =

⋃
ξ<ω1

Qξ.
Let U = F ({Zξ : ξ < ω1}). To see it is an ultrafilter, note that

if x ∈ [Q]ω then there exists a ξ < ω1 such that x ∈ Qξ. But
then, either Zξ ⊂ x or Zξ ∩ x = ∅. Therefore, either x or its
complement is in U . This proves that U is an ultrafilter and that
〈Zξ : ξ < ω1〉 ⊂ Perf(Q) is a basis for U . Therefore, U is crowded.
Since no crowded ultrafilter can be principal, it follows that U is
also non-principal. To see that U is a Q-point, pick an x ∈ P.
Then there exists a ξ < ω1 such that x ∈ Qξ. Thus, Zξ ∈ U and
|Zξ ∩ x(k)| ≤ 1 for every k < ω. ¤
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