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APPROXIMATE SEQUENCES AND
HAUSDORFF DIMENSION

TAKAHISA MIYATA AND TADASHI WATANABE

ABSTRACT. In this paper, we introduce a new approach using
normal sequences and approximate sequences to study Haus-
dorff dimension for compact metrizable spaces. Using this
approach, for each r > 0, we construct a Cantor set X, with
Hausdorff dimension r in the cube [0,1]", where N is the
least integer that is greater than or equal to igg; (r+1)+1.

1. INTRODUCTION

For each subset F' of R™ and for each s > 0, the s-dimensional
Hausdorff measure of F' is defined as H*(F') = %in% H$(F') where for

each § > 0,

(1.1) H3(F) = inf > _|U]®
Uesd

where the infimum is taken over all countable (possibly finite) cover-
ings i of F' by open balls U with radius at most d. Here |U| denotes
the diameter of the set U. The Hausdorff dimension of F' is defined
as dimp F' = sup{s : H*(F) = oo} (= inf{s : H*(F) = 0}) [2].
The present paper concerns Hausdorff dimension for non-Euclidean
spaces. More precisely, we develop a systematic approach using
normal sequences and approximate sequences to study Hausdorft
dimension for compact metrizable spaces.

2000 Mathematics Subject Classification. Primary: 54E35, 54E40; Sec-
ondary: 28A78, 28A80, 54F45, 54C56.
Key words and phrases. approximate sequence, Cantor set, Hausdorff di-
mension, normal sequence.
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In the theory of inverse systems, in order to study properties
of X, one expands the space X into an inverse system X whose
limit is X and investigates X. It is known that the notion of
approximate sequence is a useful tool for studying the properties
of spaces and maps. An approximate sequence is an approximate
system with the index set being the set of natural numbers. An
approximate system is a generalization of an inverse system, and
it was first introduced by Sibe Mardesi¢ and Leonard R. Rubin [4]
to deal with more general spaces than compact metrizable spaces.
(See also [9], [15] for more general versions and [4], [5], [6], [7], [14],
[16] for its applications).

Hausdorff dimension is not topologically invariant since for any
r > 0 there is a Cantor set with Hausdorff dimension r. However,
under an appropriate setting, the notion of approximate sequence
becomes a useful tool for studying Hausdorff dimension. In this
paper we introduce a new way of using approximate sequences in
the study of Hausdorff dimension.

There are two reasons for using approximate sequences. First
of all, motivated by the construction of a metric by P. Alexandroff
and P. Urysohn [1] (see also [13, Theorem 2-16]), for each compact
metrizable space X and for each approximate resolutionp : X — X
of X with an approximate sequence X = (Xj, 4, p; it1), we can de-
fine a new metric djp that induces the original topology. Secondly,
for any map f : X — Y between spaces (even compact metrizable
spaces), if approximate sequences X and Y are chosen in advance
so that their limits are the spaces X and Y, respectively, then there
is a system of maps between X and Y whose limit is f [8],[15].
Those facts are quite useful. For example, Lipschitz maps between
spaces with metrics induced by approximate resolutions are char-
acterized by some properties on approximate sequences [10], and
the notion of box-counting dimension of spaces with such metrics
is also studied by approximate sequences [11].

A little more simplified setting can be given by normal sequences.
Given a compact metrizable space X and a normal sequence U =
{; : i € N} on X, there exist a trivial approximate sequence
X = (X;, 44, piit+1), where X; = X for all ¢, and p; ;11 = idx,
and an approximate resolution p = (p;) : X — X of X, where
p; = idx. Thus, given a normal sequence U with some reasonable
property on a compact metrizable space X, one obtains a metric dy
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on X. Considering U as a “ruler” for X, one can study geometric
properties of the metric space (X, dy).

This paper consists of three primary parts. In section 3 (the
first primary part), given a o-compact metrizable space X with a
normal sequence U, we define the Hausdorff measure Hg(F) and
the Hausdorff dimension dimjj F' for any subsets F' of X and inves-
tigate their properties. The Hausdorff dimension which is defined
in this way coincides with the usual Hausdorff dimension for sub-
sets of Euclidean spaces as a special case if some particular normal
sequence is taken (Theorem 3.3). Fundamental properties, such
as the subset and sum theorems, hold for our Hausdorff dimension
(Theorem 3.5). For normal sequences U and V on metrizable spaces
X and Y, respectively, one can speak of Lipschitz maps with re-
spect to the metrics dy and dy. Indeed, they were characterized by
a property on the normal sequences U and V [10]. We show that
our Hausdorff dimension is Lipschitz invariant (Corollary 3.8).

In section 4 (the second primary part), we establish a more
general approximate sequence approach to Hausdorff dimension.
More precisely, given a compact metrizable space X and an ap-
proximate resolution p : X — X with an approximate sequence
X = (X, Y4, piji+1), we define the Hausdorff dimensions for the ap-
proximate resolution p and also for the approximate sequence X.
This approach gives a characterization of the Hausdorff dimension
in the above situation in terms of approximate sequences (Theo-
rem 4.8). More precisely, if p : X — X is some nice approximate
resolution with an approximate sequence X = (X;, $;, p; i+1), each
compact subset F' of X corresponds to an approximate sequence
F = (F;, 8| F;, piit1|Fit1), which is a subsystem of X; i.e., the
coordinate spaces F; are subspaces of X; and the open coverings
and the bonding maps are the restrictions, so that the equalities
dimy (p|F) = dimy F = dim{ F hold where U is the normal se-
quence {p; '4; : i € N}. Tt is also shown that such defined Haus-
dorff dimension for approximate resolutions is bounded above by
the box-counting dimension in the sense of [11] (Theorem 4.4).

Finally, in section 5 (the third primary part), we give an exam-
ple. It is well-known that if X is a compact metrizable space with
covering dimension n, then X can be embedded in [0, 1]?"*1 [3,
Theorem V 2|. Motivated by this result, we consider the follow-
ing problem: For each r > 0, find the least integer N for which
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there exists a Cantor set with Hausdorff dimension r in the cube
[0, 1]N . Using our approximate sequence approach, we show that

N < [%ggg(r +1)+ 1] (Theorem 5.1). Here, for each r > 0, let [r]

denote the least integer that is greater than or equal to r.

2. NORMAL SEQUENCES, APPROXIMATE SEQUENCES, AND
METRICS

Throughout the paper, all spaces are assumed to be metrizable,
and map means continuous function.

For any space X, let Cov(X) denote the family of all open cov-
erings of X. For any 4,0 € Cov(X), U is a refinement of U, in
notation, Y < U, if for each U € U there is V' € U such that
U C V. For any subset A of X and Y € Cov(X), let st(A4,4) =
UIU e - UNA# 0 and WA = {UNA: U ey} If
A = {z}, we write st(x, i) for st({z},4l). For each i € Cov(X), let
st = {st(U,U) : U € U}. Let st' U = st U and st" ™ U = st(st™ U)
for each n € N. For any metric space (X,d), x € X, and r > 0,
let Ug(z,r) = {y € X : d(z,y) < r}, and for each subset A of X,
let |A| denote the diameter of A. For any 4 € Cov(X), two points
xz,2’ € X are U-near, denoted (z,2’) < U, provided z,2" € U for
some U € 4. For any U € Cov(Y), two maps f,g: X — Y between
spaces are U-near, denoted (f,g) < U, provided (f(z),g(z)) <V
for each x € X. For each Y € Cov(X) and U € Cov(Y), let
f) = {f(U): U € 4} and f1(V) = {f~1(V): V € U}. Let
I denote the closed interval [0, 1], and let N denote the set of all
positive integers.

2.1. METRICS INDUCED BY NORMAL SPACES

A family U = {4l; : i € N} of open coverings on a space X is
said to be a normal sequence on X provided stil; 41 < i; for each
i. Let XU denote the normal sequence {U; : L, = ;11,7 € N}
and st U the normal sequence {sti; : i € N}. Also, let U = U
and Y"1 U = X(X"U) for n € N. For any normal sequences U =
{; 1 i € N} and V = {; : i € N}, we write U < V provided
; < %Y, for each i. For each map f : X — Y and for each normal
sequence V = {%; : i € N} on Y, let f~!(V) denote the normal
sequence {f1(%;) : i € N} on X. For any subspace A of X and
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normal sequence U = {4l; : i € N} on X, let U|A denote the normal
sequence {4;|A :i € N} on A.

Let U = {4, : i € N} be any normal sequence on a space X with
the following property:

(B) For each z € X, {st(z,4;) : i € N} is a base at x.

Following the approach by Alexandroff and Urysohn [1], we de-
fine the metric dy on X as follows:

dy(z,2") = inf{Dy(x,z1) + Dy(z1,22) + - - - + Dy(zn, 2’)}
where the infimum is taken over all points 1, zs, ..., 2, in X, and
9 if (y,2) £ thy;
Du(y, z) = % if (y,2) < but (y,2) £ Uity ;
0 if(y,z) < forallieN.
Then the metric dy has the property

st(z, Uiy3) C Uq,(z, %) C st(z, ;) for each z € X and .
In particular, if U = {4; : ¢ € N} is the normal sequence on a metric
space (X,d) such that 4; = {Uq(z, %) : x € X}, then the metric
dy induces a uniformity which is equivalent to that induced by the
metric d. Moreover, it is proven in [10, Proposition 3.7] that if X
is a convex subset of a normed linear space, and if X is equipped
with the metric d which is induced by the norm, then dy is isometric
up to a constant multiple of the metric d. Here, we say that two
metrics d; and do on a set X are isometric up to a constant multiple
if there is a constant C' > 0 such that d;(z,2') = Cda(z,2’) for

r, 2’ € X.

Example 2.1. Let U = {4l;} be the normal sequence on R? with
W = {Uq(z, %) : x € R?}, where d is the usual metric on R?. Then
the metric dy; is isometric up to a constant multiple of the usual
metric on I. Let X = {(2,0) : 0 <z <1}U{(z,1): 0<x <
1} U{(0,y) : 0 <y <1}, and consider the points O = (0,0),P =
(1,0),Q = (1,1). Then d(O,P) =1 = d(P,Q) in the usual metric
d, but dU\X(Oa P) = 3dU|X(P7 Q)

Throughout the rest of the paper, every normal sequence is as-
sumed to have property (B).
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Proposition 2.2. Let U = {4; : i € N} and V = {; : i € N}
be normal sequences on a space X, and let z,2” € X. Then the
following properties hold:
(1) ifU < V» dU($a l‘/) > dV('Ia .T/);
(2) if dy(z,2') < 1, dsy(z, 2’) = 3dy(z, 2');
(3) if dsyu(z,2") <1, dgyu(z, 2’) < dy(zx,2’') < 3dgu(z, o).
Proof: (1) immediately follows from the definition of dy. To
show (2), let ¢ > 0 be sufficiently small. Then there exist points
r1,T9,..., Tn, € X so that
Dy(z,x1) + Dy(z1,22) + - - - + Dy(an, 2') < dy(z,2’) + /3.
Since dy(z,2’) < 1, Dy(x;, xi41) < 14¢/3 for i = 0,1, ...,n where
xo = x and x,41 = /. So, Dy(w, zit1) = 3,%%2 for some k; > 2,

1
s@—=2 = 3 Du(®i, %it1). Thus,

dsu(z,2') < Dsu(z,z1) +Dsuy(z1,z2) + - - + Dsy(an, 2')
< 3dy(z,2) +e,

and Dsy(z;, zi11) =

and hence, dyy(z,2’) < 3dy(z,2’). For the other inequality, let & >
0 be sufficiently small again. Then there exist points x1, x2, ..., T, €
X so that

Dsy(z,z1) + Dyy(21,22) + - - - + Dyy(an, 2') < dsy(z, 2’) +e.
But dyy(z,2’) < 3dy(z,2’) < 3, so Dyy(zi, xip1) = 3,@2%2 for some
k; > 1, and Dy(x;, zi41) = W = %DZU(xi,xi_i_l). Thus,
3dy(z,2’) < 3Dy(z,z1)+ 3Dy(z1,22) + -+ - + 3Dy(zn, 2)
<dsy(z,2') +e,
and hence, 3dy(z,z’) < dyy(z,2’). This completes the proof of

(2).
(3) follows from (1), (2), and the fact that ¥stU < U <stU. O

2.2. APPROXIMATE SEQUENCES AND RESOLUTIONS

An inverse sequence (X, p; i+1) consists of spaces X, called coor-
dinate spaces, and maps p; i+1 : Xiy1 — X;, @ € N. We write p;; for
the composite Dii+1Pi+1,542 " Dj—1,5 if 7 < j, and let p; = 1X2., and
call the maps p;; bonding maps. An approzimate inverse sequence
(approximate sequence, in short) X = (X, ;, p;it+1) consists of an
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inverse sequence (X;,p;;+1) and Y; € Cov(X;), i € N, and must
satisfy the following condition:

(AI) For each i € N and U € Cov(X;), there exists i > i such

that U;» < pi_i,%il for ¢/ >4’

An approzimate map p = (p;) : X — X of a compact space X
into an approximate sequence X = (X;,4l;, p; ;+1) consists of maps
pi : X — X for i € N, called projection maps, such that p; = p;;p;
for i < j, and it is an approximate resolution of X if it satisfies the
following two conditions:

(R1) For each ANR P, U € Cov(P) and map f : X — P, there
exist ¢ € N and a map ¢ : X; — P such that (gp;, f) < U,
and

(R2) for each ANR P and U € Cov(P), there exists U’ € Cov(P)
such that whenever i € N and g, ¢’ : X; — P are maps with
(g9pi, 'pi) < U, then (gpiir, ¢'piir) < U for some i’ > i.

The following is a useful characterization.

Theorem 2.3 (]9, Theorem 2.8]). An approzimate map p = (p;) :
X — X = (X4, 4, piit1) is an approzimate resolution of X if and
only if it satisfies the following two conditions:

(B1) For each 8t € Cov(X), there exists ig € N such that p; '4l; <
M for i > g, and

(B2) for each i € N and Y € Cov(X;), there exists ig > i such
that py (X)) C st(pi(X),YN) for i > ip.

An approximate resolution p = (p;) : X — X is said to be
normal if the family U = {p;'4; : i € N} is a normal sequence.
Note that property (B1) implies that the normal sequence U has
property (B). Hence, each normal approximate resolution p induces
a metric dy, which will be denoted by d.

Theorem 2.4 ([9]). Every compact space X admits a normal ap-
prozimate resolution p = (p;) : X — X = (X4, 8, piit1) such that
all coordinate spaces X; are finite polyhedra.

Proof: By [15, Theorem 3.15], there is an approximate resolution
p=(pi): X = X = (X;,4i,pii+1) of X such that all coordinate
spaces X; are finite polyhedra. Let § € Cov(X) be such that
st{ < p;'4y. Then by (B1) there is i1 > 1 so that pi_llilil < Al
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and so st pi_llilil < pl_lill. By the same argument, we can find a
subsequence iy, so that p’ = (p;,) : X — X' = (Xi,, Uiy, Piy i) 18
a normal approximate resolution of X. [l

Throughout the paper, every normal approrimate resolution is
assumed to have the property of Theorem 2.4.

Remark 2.5. The notion of approximate system was first intro-
duced by Mardesi¢ and Rubin [4] in a more general setting. Instead
of requiring commutativity p;jp;r = pi for ¢ < j < k, it requires
only approximate commutativity, i.e., p;jp;r and p;, are different
but controlled by some number. The most general treatment of
inverse systems, which is for studying arbitrary topological spaces
and maps, is found in [9]. However, since our primary concern
is compact metrizable spaces, it suffices to use simpler definitions
than the original ones. Our notion of approximate resolution is also
a special case of the corresponding notion in [15].

3. HAUSDORFF DIMENSION

Let X be a space with a normal sequence U = {{l; : i € N}. In
what follows, by an open covering of a subset F' of X, we mean
a covering of F' by sets open in X. We assume that the normal
sequence U satisfies the following condition:

(3.1) N =0 for i # j.

For each subset F' of X and for each i € N, let Covy ;(F') denote
the set of all open coverings {Uy, : k € A} of F indexed by a finite
or countably infinite set A such that each k € A admits m > ¢ with
Up € thy,. If {Uy : k € A} € Covyi(F), (3.1) guarantees that for
each k € A such m is uniquely determined, and this m is denoted
by o(Ug; U, ). For each s > 0, we then define

. 1 s
H%,Z(F) = inf {Z <30’(Uk,]U,’L)) : {Uk ik S A} € COVUJ(F)} s

keA

and
Hyy(F) = lim Hyy,(F).

Then Hy ;(F) < (%)tis Hyy;(F) for s < t and for all 4, and hence,
if Hij(F) < oo, then HY(F) = 0 for t > s. Thus, there exists a
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unique s € [0, 00] so that Hgj(F) = oo for s < s and Hj(F) = 0
for s > sp. We call this value (possibly co) the Hausdorff dimension
of F' with respect to U and denote it by dimg F

Remark 3.1. For a space X to have a normal sequence U = {4; :
i € N} with property (3.1), X must be a space with no isolated
point. Indeed, suppose that X has an isolated point x. Take any
e > 0 so that Bo(z) N X \ {z} = (. For any normal sequence
U={4; :i € N} on X, by property (B), there is ig € N such that
st(z,4;) C B-(x) for i > ig. Then {x} € U; for i > ig.

Theorem 3.2. For each s > 0, there exists a metric outer measure
Hy) on X with respect to the metric dy.

Proof: First, we show that Hy; is an outer measure on X for
each i. Clearly, Hy;,(0) = 0 and HUZ(A) < Hj,(B) for any subsets

o0
A, B of X with A C B. To show H{ ;( ‘UlAj) < > Hyf;(A;) for any
? ]: j:l )

subsets A; of X, let € > 0. For each j > 1, there exists {U : k €
S .
Aj} € Covusi(4;) such that 3= (W) < Hjj(A)) + 270e.

oo 00
So, <;) H e. But UA U u
J;kgj 87k ; U’( i) +e Bu S ke,

Uk, and hence, H%i(.UIAj) < Z H{ ;(Aj) + . Since € > 0 is
’ ‘]: j:1 k)

arbitrary, we have the required inequality, showing that Hf;; is an
outer measure on X. This immediately implies that Hyf; is an outer
measure on X. It remains to show Hfj(A) + Hij(B) = H{j(AU B)
for any subsets A, B of X such that dy(A4, B) = inf{dy(z,2’) : x €
A,x’ € B} > 0. Indeed, if dy(A4, B) > 0, then there is ig such that
st(A, 111) Nst(B, ;) = 0 for i > ip. For if not, each ¢ admits x; € A
and 2} € B such that dy(z;, z}) < 37~ 27, and hence, dy(A, B) would
be 0. Then for i > g, Hyy;(A) + H[Uz( ) < Hjj,(AU B). Letting
i — oo, we have Hy;(A) + Hf;(B) < H{j(AU B). Since the other
inequality holds by the above argument, we have the equality. O

Hence, Hf; defines a measure on the Borel subsets of X, which
we call the s-dimensional Hausdorff measure with respect to U (or
s-dimensional Hausdorff U-measure) on X.
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Theorem 3.3. Let B = {B; : i € N} be the normal sequence on R"
which consists of the open coverings B; by open balls with radius
%. Then dimg F =dimy F holds for any subset F' of R™.

Proof: Fix i € N. For each {Uy : k € A} € Covp;(F),

S 2 °
w1 <3 (ot )

¥ keA
and so,
(3.2) H (F) < 2°Hg,(F).
37
Conversely, suppose that {Ug(xx,d)) : A € A} is an open covering

of F' by open balls with radius at most %, where the index set A is

finite or countable. So, §) < % If we choose i) € N so that

Firtl <0y < 30’
then iy > i. So, {Uq4(xx,d)) : A € A} € Covp;(F), and we have

.0 < Y (5) <# 0= (3) X waten sl

AEA AEA AEA
This implies
3 S
(53) (7)< (3 ) 1P,
3'L
(3.2) and (3.3) imply dim} F' = dimy F, as required. O
Theorem 3.4. Let U = {4; : i € N} and V = {; : i € N} be

normal sequences on X with property (3.1), and let F' be any subset
of X. Then the following results hold:

(1) If V< U, then H§(F) < H{(F) and dim{j F < dimy; F.

(2) Hyy(F) = 3°HY(F) and dimEY F = dim F.

(3) Hy(F) < H(F) < 3°HS, y(F) and dim$iY F = dim{j F.
Proof: (1) immediately follows from the definition. (2) follows

from the fact that Hgy ,(F) = 3°Hyj ;1 (F) for each i € N and
s> 0. (3) follows from (1) and (2) since ¥stU < U < st U. O

Theorem 3.5. Let U be a normal sequence on X with property
(3.1). Then the following results hold:
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(1) If Fy € F, C X, then Hj(Fy) < H§(Fy) and dimy Fy <
dim}; Fy.

(2) dim{(Fy U Fy) = max{dim}j Fy,dim} Fy} for any subsets
Fl,FQ OfX

Proof: (1) is trivial. To see (2), it suffices to show the inequality
“<.” Suppose to the contrary that there is a0 such that

max{dimy Fy, dim} F} < o < dimf(Fy U F).

Then HEj(Fy U Fy) = oo and H{j(F1) = 0 = Hfj(F2). But since Hf
is an outer measure, Hfj(Fy U Fy) < H{(F1) + Hfj(F2), which leads
to a contradiction. O

For any spaces X and Y with normal sequences U = {U; : i € N}
and V = {V; : ¢ € N}, respectively, a map f : X — Y is called a
(U, V)-Lipschitz map provided there exists a constant o > 0 such
that

dy(f(x), f(«')) < ady(z,2’) for z,2" € X,

and it is a (U,V)-biLipschitz map provided there exist constants
a1, an > 0 such that

a1 dy(a, ') < dy(f (), f(2')) < agdy(a, o) for 2,2’ € X.

Lipschitz maps and biLipschitz maps are characterized in terms of
normal sequences as follows:

Theorem 3.6 ([10, §5, §7] and [12, §3]). Let f : X — Y be
a map between spaces X and Y with normal sequences U and V,
respectively. Consider the following conditions:

(L) dy(f(z), f(a')) < 38 dy(z,a’) for z,a’ € X;
(L)k dU(xa QS‘,) S 3k dV(f(l’), f(ﬂi‘,)) fOT' z, 33‘, S X;
(N),n MU < f7HE"V);
(N)ymn f=H(xmV) < ¥"U.

Then for m, n > 0, the following implications hold:

(1) (N)mm = (L)n—m; (L)m = (N)m+4,0§ (L)em = (N)4,m: and
(2) if f is surjective, then
(L)m = (N)m+4’0; (L)_m = (N)4’m; (N)m,n = (L)m_n.

We now show that the Hausdorff dimension in our sense is Lip-
schitz invariant.
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Theorem 3.7. Let f : X — Y be a map between spaces X and 'Y
with normal sequences U = {4; : i € N} and V = {; : i € N},
respectively, both of which have property (3.1), and let F' be a subset
of X. Consider the following conditions:
(H)y, HS(f(F)) < 3™ H(F) for s >0, and
(H)™ H(F) < 37 By (F(F)) for s > 0.
Then for m > 0, the following implications hold:
(1) (L) = (H)pya = dimy; f(F) < dim{j F, and
(2) if f is surjective, then
(L)™ = (H)™** = dimy; f(F) > dim{ F.

Proof: To see the two implications in (1), it suffices to show
(N)m+4,0 = (H)m+a by Theorem 3.6 (1). Let i > m + 4. Suppose
{Up: ke A} € COV]U’Z'(F). Fix k € A. Then, Uy € uo(Uk;U,i)‘ By
(N)imt4,0, there exists Vi € Uy (1, 0,i)—m—a such that f(Uy) C Vj.
So,

S 1 ° m S 1 °
HV,i—m—4(f(F)) < Z (30(Uk;U,i)—m—4> = 3( ) Z <3U(Uk;U,i)) ’

keA keA

and hence, Hy ;. ,(f(F)) < 3(m+4)s Hy,(F). Taking limits as
i — 00, we have (H),,44.

To see the two implications in (2), it suffices to show (N)™+40
= (H)™** by Theorem 3.6 (2). This is proven similarly to the
above. Let i > m + 4. Suppose {V; : k € A} € Covy;(f(F)).
Fix k € A. Then, Vi € Vy(v,.v,)- By (N)m+40 " there exists Uy €
Uor(V;:7,i)—m—a such that (Vi) C Uy. So,

s 1 ° m—+4)s 1 ’
HU,i—m—4(F) < Z <30—(Vk;V,i)—m—4> = 3( ) Z <3U(Vk;V,i)> ’

keA keA
and hence, Hfj;  ,(F) < 3m*)sHy (f(F)). Taking limits as
i — o0, we have (H)™*4, O

Corollary 3.8. Let f : X — Y be a map between spaces X and
Y with normal sequences U = {; : i € N} and V = {; : i € N},
respectively, both of which have property (3.1). If f is a surjective
(U, V)-biLipschitz map, then dimg; f(F) = dimy F for any subset
F of X.
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Proof: Suppose that f : X — Y is a surjective (U, V)-biLipschitz
map. Then there exists a positive integer m for which both (L),

and (L)™ hold. Thus, Theorem 3.7 implies the required equality.
O

4. AN APPROXIMATE SEQUENCE APPROACH

Let p = (pi) : X — X = (X;,4;,pii+1) be an approximate
resolution of a compact space X. We assume that the approximate
sequence X has the following property:

4.1) Foreach je N, p it Np, sl =0ifi,4 <jand i #i.
1] ')

For any i, j € N with ¢ < j and for each compact subset F}; of X,
let Covx; ;j(Fj) denote the set of all open coverings {Vj, : k € A}
of Fj indexed by a finite set A such that each k admits m with
i1 <m<jandV, € p;éii?n. By property (4.1), for each of these
indexed coverings and k € A, such m is uniquely determined, and

it is denoted by 7(Vi; Fj,,7). For each s > 0 and ¢ € N, we define

H;(p) as
. 1 *
lnf Z <37—(Vk§pj (X)fb,]) > ’
keA

where the infimum is over all finitely indexed {Vj : k € A} ele-

ments of Covx; ;j(p;(X)), i < j. For each s > 0, we then define the

s-dimensional Hausdorff measure of p as H*(p) = lim Hj(p). Simi-
1—00

larly to dimj], there exists a unique so € [0, 0o] such that H*(p) = oo
for s < sp and H*(p) = 0 for s > sg. We call this value the Haus-
dorff dimension of p and denote it by dimg(p).

Lemma 4.1. Let p = (p;) : X — X = (X;, 4, piivr1) be a nor-
mal approximate resolution of a compact space X. If the approx-
imate sequence X has property (4.1), then the normal sequence
U = {p; '4; : i € N} has property (3.1).

Proof: Let i < i'. Then property (4.1) for X implies that p; *£;0
Dy L = Dy lpi_i,lili N pi_,lili/ = (), which means that U satisfies
(3.1). O

Lemma 4.2. Let p = (p;) : X — X = (X;, Y, piit1) be an ap-
proximate resolution of X. Let A be a finite index set, and for each
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k€ A, let Uy, be a subset of X;, for someiy € N. If X C kUApi_kl(Uk)
€
e —1
and if j > iy for k € A, then p;j(X) C kgApikj(Uk).

Proof: For each j > iy,
—1
Piipi(X) € U paips Py, (U)) € U Uk,
which implies
~1
pi(X) € U 0;,5(Uk)- D

Lemma 4.3. Let p = (p;) : X — X = (X;, 4, piiy1) be a normal
approximate resolution of X such that the approrimate sequence X
has property (4.1), and let U = {p; ' (4;) : i € N}. Then H*(p) =
H,(X) for each s > 0, and dimg(p) = dim} X.

Proof: Tt suffices to show Hj(p) = Hj;;,(X) for each i € N. Sup-
pose {Vj, : k € A} € Covy,;(X), where A is a finite or countably

infinite index set. Then V, = Pi, 1(Uk) for some U}, € 4;,, where
ip = 0(Vy;U,4). By Lemma 4.2, if j > i, for k € A,

(X) C —1 )
p]( ) = kgAka](Uk)

Since p;j(X) is compact, there is a finite subcovering {p;ki(Uk) ke
A’} Also iy, = T(pi_lj(Uk);pj(X),i,j) by property (4.1). So,
S 1 i
< Y (5:)
ke’
and hence, H;(p) < H{j ;(X). It remains to show H;(p) > H{j ;(X).
Let j > 4, and suppose {W}, : k € A} € Covx; j(p;(X)), where A is
a finite index set. Foreachk € A, W), = p;ki(Uk) for some Uy, € ;, ,
where i, = 7(Wp; p;i(X),4,7), and pj(X) C kUAWk. So,
€

—1_—1 —1
X C kgApj pik]’(Uk) = kLeJApik (Uk)

Also i = a(pi;l(Uk);U, i) by Proposition 4.1. So,

.00 <Y (5)

keA
and Hj,(X) < i (p). O
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Next, we recall the definition of box-counting dimension for ap-
proximate resolutions [11], which will be needed in the next section.
Ifp=(pi): X - X = (X;, 4, pii+1) is a normal approximate
resolution of a compact space X, we define the upper and lower
boz-counting dimensions of p by
dimp(p) = EM and dimg (p) = hﬁw

1—00 ] i—00 1

)

where 3;(X) = lim N ’1(Ll¢)(Xj) for each i € N. Here, for any
j—oo Pij

compact space Z and for any 4 € Cov(Z), let Ny(Z) be the min-
imum number of elements of Y that cover Z. If the two values
coincide, the common value is denoted by dimp(p) and called the
boz-counting dimension of p.

Theorem 4.4. Letp = (p;) : X — X = (X;, 4, piiv1) be a normal
approximate resolution of X. Then
dimp (p) < dimp(p) < dimp(p).

Proof: 1t suffices to verify the first inequality. For each i € N
and s > 0,

s 1\* 1\° .
10) < () Ny aC0) < (55 ) Ny (5) 1 2

So, Hi(p) < (%)s Bi(X). If H(p) = oo, then for a sufficiently large
i, 1 < Hi(p) < (%)sﬁl(X) This implies s < w, and so,
s < dimp(p). This verifies the first inequality. O

For each approximate sequence X = (Xj, 4, p; ;1) with prop-
erty (4.1) and for each s > 0 and ¢ € N, we define H} (X)) as

. 1 °
1nf Z <3T(Vk;Xj,i,j) ) ’
keA
where the infimum is over all finitely indexed {Vj : k € A} elements
of Covx; j(Xj), % < j. We then define the s-dimensional Hausdorff
measure of X as H*(X) = lim H;(X). Similarly to dim}, there
1—00

exists a unique sy € [0,00] such that H*(X) = oo for s < sy and
H*(X) =0 for s > s9. We call this value the Hausdorff dimension
of X and denote it by dimy(X). Note here that the definition of
H;(X) does not depend on the projection maps p;.
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Lemma 4.5. Let p = (p;) : X — X = (X;, 4, pii+1) be a normal
approximate resolution of X such that the approrimate sequence X
has the following property:

(4.2) stil; < pi_jlili fori<j,

and let F' C X be compact. For eachi € N, let F; be a compact poly-
hedron such that st(p;(F),;) C F; C st(pi(F),stil;). Then there
is a well-defined approzimate sequence F = (F;, | F;, piit1|Fit1),
and the restriction p|F = (p;|F) : F — F is a normal approzimate
resolution of F. Moreover, if X has property (4.1), so does F.

Proof: Tt suffices to show p;;(st(p;(F),stil;)) C st(p;(F),L;) for
i < j since all the required properties (AI), (B1), and (B2) are
deduced from the corresponding properties for p : X — X. Let
z € st(p;(F),stl;). Then z € U for some U € stil; such that
p;(F)NU # (. So there is y € F such that p;(y) € U. Then, both
pij(z) and pi(y) = pijp;(y) belong to pi;(U), but by (4.2), pi;(U) C
U’ for some U’ € ;. This shows that p;j(x) € st(p;(F), ;). O
Lemma 4.6. Let p = (p;) : X — X = (X;,4U;,pii+1) be a normal
approzimate resolution of X such that the approximate sequence
X has property (4.1), and let U = {p; '(s;) : i € N}. Suppose
that F is a compact subset of X and that F;, © € N, are com-
pact polyhedra in X; so that the restriction p|F = (p;|F) : F —
F = (F;, 3| Fy, piiv1|Fig1) is an approzimate resolution of F. Then
H,(F) = H*(F) for each s > 0, and dimj F = dimy F.

Proof: It suffices to show Hyj,(F) = Hj(F) for each i € N. Fix
i € N, and suppose {V}, : k € A} € Covy,(F'), where A is a finite
or a countably infinite index set. Then V} = p;kl(Uk) for some
Uk € U5, , where iy, = 0(Vj; U, i). By Lemma 4.2, we have
-1 . .
pi(F) C kgApikj(Uk) for each j > iy.

This, together with property (B2) for p|F : FF — F (Theorem 2.3),
implies that there is j' > j such that

—1
Py (Fy) € U 95, (Uk),

and hence,
Fy € U (P | Fyr) ™ (U N Fyy).
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Since Fj is compact, there is a finite subcovering {(p;, /| Fj) ! (UgN
F,,) : k € A'}. Also, property (4.1) for X implies property (4.1)
for F', and so

i = T((pikj/‘Fj/)il(Uk N Fik); Fj/,i,j/).
So,
1 S
e =S ()
keN
and hence, H (F') < H{j ;(F). It remains to show Hj (F) > Hyj ,(F).
Let j > 4, and suppose {W} : k € A} € Covp, ;(F}), where A is
a finite index set. Then W = p;k;-(Uk N F;,) for some U, € Y;,,
where i, = 7(Wy; Fj,14,j), and F; C kUAWk' So,
€

-1, -1 -1
FC kgApj pikj(Uk) = kLeJApik (Uk).

Also iy, = a(pl-_kl(Uk);U, i). So,

. <Y (57

keA
and hence, Hy; ;(F) < Hi (F). O

Remark 4.7. Given any normal approximate resolution p = (p;) :
X — X = (X;, 44, pii+1) of X, we can always find a normal ap-
proximate resolution p’ = (p;,) : X — X' = (X;,, iy, Piy.ip,,) of
X so that X’ has property (4.2).

By lemmas 4.5, 4.6, and 4.3, we have characterizations of dimg in
terms of an approximate sequence and in terms of an approximate
resolution.

Theorem 4.8. Letp = (p;) : X — X = (X;, 4, piiy1) be a normal
approximate resolution of X such that the approximate sequence X
has properties (4.1) and (4.2), and let U = {p; *(;) : i € N}. For
each compact subset F' of X, there exists an approrimate sequence
F = (Fy, 8| Fy, pia| Fier) with F; € Xi, i € N, being compact
polyhedra in X; so that p|F = (p;|F) : F — F forms a normal
approzimate resolution of F and dimg F = dimy (p|F) = dim} F.



260 T. MIYATA AND T. WATANABE

5. CANTOR SETS

For each N € N and for each i € N, let IV = IV with the usual
metric d of the Euclidean space RY, let 4; be the open covering
by open #-balls, and let g;y1 : Iﬁl — IZN be the identity map.
Then it is easy to see that IV = (va .4, g i+1) is an approximate
sequence with property (4.1). For each i > 1, let ¢; : IV — IV be
the identity map. Then the approximate map q = (g;) : IV — IV
is a normal approximate resolution of IV,

Theorem 5.1. For each positive real number r, let

N - log 3
log 2

(r—i—l)—i—l].

Then there exist compact subsets X;, 1 € N, of va such that X =
o0
() Xi is a Cantor set, so that the restriction p = (¢;|X) : X —
i=1

X = (X, 4| X5, giiv1|Xig1) is a normal approzimate resolution of
X, and dimp(p) = dimg(p) = 7.

Proof: First, let us introduce some notation. Let By = [0, 3] U
[%, 1], and let fo, f1 : I — I be the maps defined by fo(z) = %33 and
fi(z) = %x—i—%, respectively. Then we define B,,, n € N, inductively
by Bny1 = fo(Bn) U fi(Bn).

For each n € N, we let BY = {(2;) ¢ IV : 2; € B,,1 <i < N}.
Note that BY consists of 2"V components.

Now, let r be any positive real number. For each n € N, let a,

be the unique integer satisfying
(5.1) an — 1 <nr < ay,.

Then a, < ap+1 and lim %2 = r. Define the sequence {b,} by

by = a1 and by41 = apy1 — an (= 0). Then, by (5.1) for a,41 and
Qn,

(5.2) b, <r+1forneN.

Moreover, for each n € N| let ¢, be the unique integer satisfying
log 3

(5.3) cn—1< 10221)” < ¢

Then we have
(5.4) 20—l < 800 < 9% for p € N.



APPROXIMATE SEQUENCES AND HAUSDORFF DIMENSION 261

By the first inequality of (5.3) and (5.2),

log 3 log 3
5.5 n < ——bp, +1< 1) + 1 f N.
(5.5) c <10g2 + _logQ(r—i—)—i— orn €
By the second inequality of (5.4), (5.5), and the definition of N,
(5.6) 30 < 2N forn e N.

We wish to define compact subsets X,, of IY (n € N) with the
following properties:

(1) X, is the disjoint sum of 3%» (= 3% ..... 31) components
Ciyoiy, (1<dp <321 <4, <3%) of BY, and

(2) if C'is any one of the 3*"—! components of X,,_1, then CNX,
is the disjoint sum of 3 components of X,,.

First, we take any 3% components C;; (1 < iy < 3%) of BYY, which
is possible by (5.6), and let

X1:U{Ci1:1§i1§3bl}.

Suppose that we have defined compact subsets X; of IlN (1 <n)
with properties (1) and (2). Then

X, = {C,-l...in S <ip <3, k=1, n}

where Cj, ...;,, are components of B} . For each C,...;,,, Cj,...i,, \BY 4
consists of 2V components of BYY ;. Take any 3%+! components
Ciyevinings (1 < ipg1 < 3%+1) from those components. Define the
compact subset X,, 1 of IV 11 as

X1 = {Cil...z-nml C1<ip<3% k=1,..nn+ 1} .
Then X, clearly has the desired properties.

Note that X,,11 C X,,, and let X = noian. Thus, we have a
well-defined normal approximate resolution p = (¢;|X) : X — X =
(X, Wi X, qiiv1 | Xig1)-

CrLAamM 1. There is a(N) € N such that for each n € N each
component of X,, can be covered by a(N) open balls from L,.

Fix n € N, and let D be a component of X,,. Then D is a cube
with dimension N and each side having length 3% Letm = [3\/N } .
Divide each of the IV sides of D equally into m intervals, and obtain



262 T. MIYATA AND T. WATANABE

i1in

m% cubes Dj, iy, (1 <41 <m,...,1<iy <m) which subdivide
has length \/Tﬁn Since m > 3v/N, we have VN o 1

D. Then each side of D has length ﬁv and the diagonal of
Dil"'iN 3n 3nm — 3ntl-
So, each D;,..;, is covered by a single open ball with radius 3,1%

Thus, if we let a(N) = m!, then D can be covered by a(NN) open
balls with radius ?m%’ which establishes the claim.

CramM 2. Let j € N, and let X; = kLiqui_k}(Uk), where for each

n
E=1,...,n, Uy € Y, for some iy <j. Then > 3% %k > 3%,
k=1
If C and C’ are two different components of X;, , the distance
between C and C’ are > S%k since they are also components of
BZ-]Z. Since each Uy € il;, is an open ball with radius 3%%’ Uy,
intersects at most one component of X;, . Let A be the set of all £
for which Uy, intersects a component of X;, . For each k € A, we call
this component Cj. Then each component C' of X; is contained in
some Cj. To see this, fix x € C. Then = € Uy, for some k € A since
Uk, k € A, cover X;. C is contained in exactly one component
C" of X;,, so U, NC" # 0. Since Cj is the only component of
X, that intersects Uy, then C' = Cy, so C C Cy. Thus, kLeJACk

contains all the components of X;. Each Cj}, consists of 3% ™%
(= 3% ...... - 3b+1) components of X;, and X, consists of 3%
components of B]N . Thus, we have the required inequality.

CrLAaM 3. dimp(p) = dimp(p) = r.

By Theorem 4.4, it suffices to show dimp(p) = r and r <
dimg(p). For each n > 1, X,, consists of 3%» components of B},
and each open ball of 4, intersects at most one component of X,,.
Hence, 3% < Nq*.l(un)(Xj) for any j > n. On the other hand, by

nj

Claim 1, there is a(N) € N such that each component of X,, can be
covered by a(N) open balls from iL,. So, Nq_-l(LLn)(Xj) < @(N)-3%n
nj

for any j > n. So, 3% < 3,(X) < a(N) - 3% which implies

tn _ logs fn(X) _ logg a(N) | an
n n n n

Thus, dimg(p) = nan;O fn = r, as required.
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It remains to verify r < dimp(p). Since dimp(p) = dimpy(X)
(Theorem 4.8), it suffices to show r < dimp(X). Let i € N, and
suppose there exist iy, j with ¢ < i < jand Uy € 4;, fork =1,...,n
such that X; = kglq;;(Uk) By the choices of a;, and a; in (5.1),
we have i,r < a;, and a; — 1 < jr, which imply

—ikT’ > —Qq,, > aj — Qi — j?“ — 1.
So,
n 1 r n
- —jr—1 a;—a;
(5.7) Z<3k) > 371y g
k=1 k=1
By Claim 2, we have

n
(5.8) D 3% > 3%,
k=1

(5.7) and (5.8) together with the second inequality of (5.1) for a;

imply
n r
> <1> e
3k ) -3
k=1
This means H} (X) > 1, and hence, dimg(X) > r, as required.
This proves Claim 3, and hence completes the proof of the theorem.
O

Corollary 5.2. For each positive real number r, let

log 3
2 1 fr> —m——
[2r+1] Zfr_2log2—log3’
[2r 4+ 2]  otherwise.

N(r) =

Then there exists a Cantor set X in I such that dimg X =r.

Proof: Let M(r) = iggg(r +1)+ 1] Theorem 5.1 implies that

there exist a Cantor set X in I and a normal approximate
resolution P = (QZ‘X) X - X = (Xiaui‘XiaQi,i—&—l‘Xi—l—l) of X
with dimg(p) = r for some compact subsets X; of If\/l(r) . For each
i €N, WX = (q;|X)"HW]|X;). If welet U= {4]|X :i € N}, by
Lemma 4.3, dimy(p) = dimy X. If B = {%B; : i € N} is the normal
sequence on RM (") which consists of the open coverings 9B, by open

balls with radius %, then dim{j X = dim§® X. Theorem 3.4(2)
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and Theorem 3.3 imply dim;i® X = dim} X = dimg X. Thus,
dimpg X = r. Moreover, since M(r) < N(r), X is a Cantor set in
IN() | This proves the corollary. O
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