Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT (© by Topology Proceedings. All rights reserved.



TOPOLOGY
PROCEEDINGS

Volume 29, No. 1, 2005
Pages 277-291

A FUNCTIONAL EQUATION FOR THE
LEFSCHETZ ZETA FUNCTIONS OF
INFINITE CYCLIC COVERINGS WITH
AN APPLICATION TO KNOT THEORY

AKIO NOGUCHI

ABSTRACT. The Weil conjecture is a delightful theorem for
algebraic varieties on finite fields and an important model for
dynamical zeta functions. In this paper, we prove a func-
tional equation of Lefschetz zeta functions for infinite cyclic
coverings which is analogous to the Weil conjecture. Apply-
ing this functional equation to knot theory, we obtain a new
view point on the reciprocity of the Alexander polynomial of
a knot.

INTRODUCTION

The Lefschetz zeta function is one of the dynamical zeta func-
tions. Dynamical zeta functions are developed in order to study
the number of fixed points or periodic points. These zeta func-
tions are motivated by the Weil conjecture [1]. Therefore, studying
dynamical zeta functions is usually modeled after Weil conjecture.

In addition, dynamical zeta functions are useful in geometric
topology. For example, if you fix a map to a geometrical one, it can
be related to topological invariants (e.g., [5], [7], [8], [15]). That is,
a property of a topological invariant can be regarded as a property
of the dynamical zeta function.
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278 A. NOGUCHI

Alexander Grothendieck' (after the works of André Weil and
Jean-Pierre Serre) observed that the Weil conjecture should be the
consequence of a certain good cohomology theory, which is called
the Weil cohomology, and in particular the functional equation
should be derived from the Poincaré duality of the cohomology (see
section 1.2). In this paper, we prove an analogous functional equa-
tion of Lefschetz zeta functions by following his idea and applying
it to knot theory. To do that, we have to resolve the following two
problems:

(1) The infinite cyclic covering of a knot complement is a non-
compact odd-dimensional manifold but the Weil cohomol-
ogy requires the even-dimensional Poincaré duality.

(2) This manifold has the boundary, so we need to deal with the
relative version of the Poincaré duality (Lefschetz-Poincaré
duality).

John Milnor’s duality theorem for infinite cyclic coverings [18]
resolves the first problem. The device for the second is the Lefschetz
zeta function for the boundary, found in Definition 2.2. With those
tools, the following theorem is proved in section 2.

Theorem. Let M be a compact connected manifold of dimension
n which may have a boundary OM, and M an orientable infinite
cyclic covering of M with dim H,(M;Q) < co. Let f : (M,0M) —
(M , oM ) be a proper continuous map with degree X # 0 with respect
to the compact support cohomology gpt(M,al\Z;Q). If n is odd,
then the Lefschetz zeta function (¢ and Cf\aM satisfies the functional
equation:

GOA oy G(2)°

Cf|8]\2[(1/)‘z) <f|aM(Z)7
where x is the Euler characteristic of M.

In Theorem 2.1, the Lefschetz zeta function for the boundary
is essential. However, it is usually easy to compute it. In section

!Grothendieck and various others produced Séminaire de Géométrie
Algébrique du Bois-Marie [Lectures Notes in Mathematics (151, 152, 153, 224,
225, 269, 270, 288, 305, 340, 589), Berlin: Springer-Verlag, 1970-1977; and
Cohomologie Locale des Faisceaux Cohrents et Thormes de Lefschetz Locaux et
Globauz, Amsterdam: North-Holland, 1968]. The volumes, SGA 1-7, have been
scanned and are made available at http://modular.fas.harvard.edu/sga/.
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3, we apply the functional equation to knot theory. Computing
directly the Lefschetz zeta function for the boundary, we obtain
the following:

Corollary [21]. The Alexander polynomial Ak (z) of a knot K is
reciprocal.

This corollary implies that the reciprocity of the Alexander poly-
nomial of a knot is a special case of the functional equation of
Lefschetz zeta functions for infinite cyclic coverings. Formally, the
reciprocity of the Alexander polynomial was interpreted as sym-
metry of the covering transformations. However, not only covering
transformations but also more general maps have symmetry, and
those symmetries are realized in the functional equation. That is,
this functional equation would be useful in studying the symmetry
of a knot.

The covering transformation of the infinite cyclic coverings plays
an analogous role to the Frobenius automorphism in this paper.
The similarity between the Lefschetz zeta function and the Reide-
meister torsion (also the Alexander polynomial) was first pointed
out by Milnor [18] and studied by some other investigators from
many viewpoints. For example, John M. Franks [6] studied the
Lefschetz zeta function of a flow on S? which is associated with a
knot, and as a result he re-proved the reciprocity of the Alexander
polynomial. We also refer to Masanori Morishita’s article [19] for
some other analogies with Iwasawa theory.

Grothendieck also studied p-adic cohomology theory to approach
the Weil conjecture. That study immediately asks whether p-adic
(co)homology theory is also helpful for knot theory. The answer is
given in [20]. The p-adic coefficient Alexander module is helpful to
investigate what the zeros of A (z) mean.

The first section is a preliminary section. In 1.1, we recall the
Lefschetz zeta function. In 1.2, we review the Weil conjecture.
In 1.3, we recall a duality theorem for infinite cyclic coverings of
manifolds. This theorem was obtained by Milnor [18]. The proof
of the main theorem, Theorem 2.1, is in section 2. We prove this
theorem, using the duality of infinite cyclic coverings in place of the
Weil cohomology’s duality. In section 3, we apply the functional
equation of Theorem 2.1 to knot theory.
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1. PRELIMINARIES

1.1. DYNAMICAL ZETA FUNCTIONS

Dynamical zeta functions are types of zeta function which have
been developed in order to study the number of fixed points and
periodic points of a map. The most fundamental dynamical zeta
function is defined by Michael Artin and Barry Mazur [1]. This
zeta function, called the Artin-Mazur zeta function, contains all
the information about the numbers of fixed points for any itera-
tions. While the Artin-Mazur zeta function counts the periodic
points geometrically, the Lefschetz zeta function counts them ho-
mologically.

Definition 1.1. Let M be a manifold with dim H,(M,Q) < oo,
and f : M — M a continuous map on M. The Lefschetz zeta
function is defined by

Cr(2) = exp o0, AU o,

where
A(f) = M (1) Tr(fui - Hi(M;Q) — Hi(M;Q))
is the Lefschetz number of f.

The Lefschetz zeta function has some better properties than the
Artin-Mazur zeta function. Not all Artin-Mazur zeta functions have
a strictly positive radius of convergence, but Lefschetz zeta func-
tions always have. This means that the Artin-Mazur zeta function
is a “formal function,” but the Lefschetz zeta function is always a
function. Moreover, the Lefschetz zeta function is always a ratio-
nal function. (Artin-Mazur zeta functions for Axiom A diffeomor-
phisms are rational functions [14].) This rationality is a remarkable
property so that Lefschetz zeta functions can be related to charac-
teristic polynomials. (The proof is written in [22], for example.)

Proposition 1.2. The Lefschetz zeta function admits a rational
exTPTession
; qyidl
Cr(2) = [IE0 7~ det(Id —2fi) D™
where Id is defined as the identity map. In particular, it is always
a rational function.

Remark 1.3. Since we use homology with rational coefficients,
homology groups can be replaced by cohomologies.
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1.2. WEIL CONJECTURE

Our theorem is an analogy to the Weil conjecture. Here, we
recall briefly the Weil conjecture and related topics.

The congruence zeta function arises from the study of the number
of solutions of a congruence

f(z1,...,2,) =0  mod p,

where p is a prime and f(x1,...,z,) is a polynomial of integral
coefficients. It is natural to look for solutions not only in the prime
field ), but also in all of its finite extensions F,m. Abstracting this
idea to algebraic varieties, the congruence zeta function of algebraic
variety is defined as follows.

Definition 1.4. Let I, be a finite field with ¢ elements and V' an
algebraic variety of dimension n defined over F),. Let F,m be the
extension field of IF,, of degree m and V,,, the number of F,m-rational
points of V. Then the function Z(u, V') of u, defined by

o Nm
Z(u,V) = exp Z Wum,
m=1

is called the congruence zeta function of the algebraic variety V.

The congruence zeta function Z(u, V') has the following prop-
erties. These properties were conjectured by Weil [24] and finally
proved by Deligne [4]. But this theorem is still called the Weil
conjecture.

Proposition 1.5 (Weil conjecture). If V is a nonsingular projec-
tive variety over k, then Z(u, V') has the following properties:

(1) Rationality: Z(u, V') is a rational function in u.

(2) Functional equation: Z(u,V') satisfies the functional equation

1
Z(——,V) = £¢"™ ¥ Z(u,V),
q-u

where the integer x s the FEuler characteristic of V.
(8) Riemann hypothesis: Z(u, V) can be factored as

2n
Z(u, V) =[] P(w) 0",
1=0

where Pj(u) = Hf:il(l - ag»i)u) and ag»i) satisfies |oz§-i)\ = ¢'/2.
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Now let us review how the Weil conjecture was solved. Weil
initially suggested the possibility of using the Lefschetz fixed point
formula to approach the Weil conjecture [25]. It means that the
congruence zeta functions can be interpreted as the Lefschetz zeta
function of the Frobenius action. (In view of this, he should get
credit for the definition of the Lefschetz zeta function.)

Inspired by works of Serre, Grothendieck formulated the coho-
mology theory which is required to realize the Weil conjecture,
which is called Weil cohomology (see below), and studied the étale
cohomology toward realizing the Weil cohomology [?]. Actually,
his étale cohomology proved the functional equation.

Definition 1.6 (Weil cohomology). Let K be a field of charac-
teristic 0. A contravariant functor V. — H*(V) is called a Weil
cohomology with coefficients in K if it has the following three prop-
erties:

(1) Poincaré duality: If n = dim V, then an orientation isomor-
phism H?"(V) 2 K exists and the cup product H (V) x H?>"~1(V) —
H?"(V) 2 K induces a non-degenerate pairing.

(2) Kiinneth formula: For any V; and V5 the mapping H*(V}) ®
H*(Va) — H*(Vi x V3) defined by a ® b — Proji(a) - Proj;(b) is
an isomorphism.

(3) Cycle map: Let C7(V) be the group of algebraic cycles of co-
dimension j on V. There exists a fundamental class homomorphism
FUND : C¥(V) — H%(V) for all j which is functorial, compatible
with products via the Kiinneth map, and sends a O-cycle to its
degree as an element of H**(V).

The Weil cohomology was modeled after the classical cohomology
theory of smooth compact varieties over the complex numbers C.
Actually, in this case, the cohomology theory satisfies the condition
of the Weil cohomology.

The expository articles [12] and [16] are helpful to see how the
Weil cohomology derives the Weil conjecture. The point is that the
even-dimensional Poincaré duality derives the functional equation.
(In view of this, Klaudiusz Wojcik’s functional equation in [26]
might have been already known in Grothendieck’s project. How-
ever, his computation is helpful in this paper.)
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1.3. DUALITY THEOREM FOR INFINITE CYCLIC COVERINGS

To prove functional equations, we need an even-dimensional Poin-
caré duality. But the infinite cyclic covering of a knot complement
is three dimensional and apparently does not admit the functional
equation. However, Milnor [18] proved a duality theorem, which
looked like even-dimensional Poincaré duality for odd-dimensional
manifolds. In this section, we give a brief review of this duality.

Let M be a manifold. The infinite cyclic covering of M is defined
as covering space X which is determined by some homomorphism of
the fundamental group 7;(X) onto an infinite cyclic group. These
spaces have two ends.

Let N, and N/, be neighborhoods of two ends e and €, and
{N, U N/} be directed. The direct limit of the Mayer-Vietoris
sequence:

- — H'"™Y(M,N,nN.) 25 HI(M, Ny, UN.) —
HY(M,N,)® H (M,N,) — -+,
prove that the connecting homomorphism
(= lim §°) s HIL(D) — Hipy (O1)
is an isomorphism. This isomorphism is essential.

From the Poincaré duality theorem for an oriented n-dimensional
manifold, the cup product

U Hl (M) x H"/(M,0M) — HZ,

(M,0M) = Q
provides a non-degenerate pairing.

By the above argument, we have the following.

Proposition 1.7 (Duality theorem for infinite cyclic coverings
[18]). Let M be a compact connected n-dimensional manifold with
boundary, and M an orientable infinite cyclic covering of M. If
H,.(M;Q) is finitely generated over Q, then the cup product:

U: H™Y(M;Q) x H" /(M ,0M;Q) — H"(M,0M;Q) = Q
provides a mon-degenerate pairing.

Remark 1.8. In the original paper, M is assumed to be triangu-
lated. However, from the study of Robion C. Kirby and Laurence
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C. Siebenmann [11], it is not necessary. It was pointed out in [9]
and [10].

2. FUNCTIONAL EQUATION FOR INFINITE CYCLIC COVERINGS

In this section, we prove Theorem 2.1, replacing the Poincaré du-
ality of the Weil cohomology with Milnor’s duality theorem (Prop-
osition 1.7). However, one problem remains. We need to deal with
the relative version of Milnor duality because the infinite cyclic
covering has the boundary. For that reason, we introduce other
Lefschetz zeta functions in this section (Definition 2.2). After that,
we prove the following theorem.

Theorem 2.1. Let M be a compact connected manifold of dimen-
sion m which may have a boundary M, and M an orientable
infinite cyclic covering of M with dim H*(M;(@) < oo. Let f :
(M,0M) — (M,dM) be a proper continuous map with degree A # 0
with respect to the compact support cohomology ngt(M, OM; Q). If
n is odd, then the Lefschetz zeta function (y and §f|az\?[ satisfies the

following functional equation:
(r(1/A2)° EEVIEN (r(2)?

Cf|aM(1/)‘z) Cf|a]\;[(z),
where waM(z) 1s the restricted Lefschetz zeta function to the bound-

ary (cf. Definition 2.2), and x is the Euler characteristic of M.
In particular, in the case where OM = (), we have
1
Cr(3) = N2 (2)
(cf. Proposition 1.5).
We define two other Lefschetz zeta functions (cf. Definition 1.1).

These zeta functions let us use the property of the Lefschetz num-
bers in the proof of Theorem 2.1.

Definition 2.2. Suppose that (M, A) is a pair of manifolds with
dim H. (M, A;Q) < oo and dim H,(A;Q) < co. Let f: (M, A) —
(M, A) be a continuous map. The relative Lefschetz zeta function
is defined by
o0 Arel( fn
C}el(Z) — expz (f )

n=1

2",
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where A" (f) = S0 M (“1)I Tr(f,; : Hi(M, A;Q) — Hy(M, A; Q).
The restricted Lefschetz zeta functzon to A is defined by

A"
Cf\A _ eXpZ f‘ n

MmAmm=2%%4v<mmmimwwnmm@»
Lemma 2.3. If two of the three homology groups—H,(M;Q),
H.(A;Q), and H.(M, A;Q)—are finite dimensional, then all three
Lefschetz zeta functions are defined and satisfy the following rela-
tion:

Cr(2) = (=) x Cppala).

Proof: We can see that A(f) = A™(f) + A(f]A), which follows
from the exact sequence:

P H(A) 2 Hy(X) P Hy(x,A) 2
From the definitions, we can see that (¢(z) = Crel( ) X Crralz). O
We need some formulas to prove Theorem 2.1.

Lemma 2.4 ([26]). Let (, ) : V x V' — Q be a non-degenerate
pairing of the Q-vector spaces with dimension n. Let A € Q \ {0},
and f:V —V,g: V' — V' be endomorphisms such that

(f(),9(y)) = Mz, y)
forallz € V,y € V'. Then
(1) (det f)(det g) = A",
(2) det(Id —gt)det f = (—1)"\"t" det(Id — f/ At).
Here t is an indeterminacy.

Proof: Since A € Q\ {0}, f and g are isomorphisms, and their
inverse maps f~! and ¢! exist. The equation (z,\g~!(y)) =
(f(x),y) means that the dual map f* = \g™!

Hence, we obtain

det f = det f* = det \g~! = \"/det g.
Similarly, we have
det(Id —gt) det f = det(Id —gt) det(Ag™!)
= (=1)"A"t" det(Id —g ! /1)
= (=1)"A\"t" det(Id — f/ At). O
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Proof of Theorem 2.1: Let f*: H*(M;Q) — H*(M;Q) and f, :
H*(M, OM:; Q) — H*(M, OM:; Q) be the induced homomorphisms
of f. By the naturality of the cup product and Proposition 1.7,

@) U RS T ) = @ uy)
=Nz Uy)

is a non-degenerate pairing and satisfies the condition of Lemma 2.4.
Recall that the degree A is with respect to the compact support co-
homology HC”pt(M ,OM) and that the connecting homomorphism
& H"Y(M,0M) — Hglpt(M, OM) is an isomorphism.

By using Proposition 1.2 (or Remark 1.3) and Lemma 2.4(2),

n—1
1 wi (71)i+1
) = Id — f*
¢r(37) 1}) [det(Id — £ /\z)]
n—1 ) ] (_1)¢+1
= —A2) 7P det(Id — £ 2) det f*
rel
=0
(b; : i-th Betti number)
n—1 n—1
*N—1— —1)iFt %7 (=1 i+l
= (=) [ [det(md —fm= 1)) "V T [det £+
i=0 i=0

(71)7171 n—1

(=1)kt1 (1)
det(ld — f712)] ] [det £+ V™"
0

Il
0
>
N
~—
=
1
—

n—

(=1n—t n_l o (1)i+1
= (=22 [¢5(2)] VT et £ 0
1=0

In the same way, we obtain
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By the assumption, n is odd, and using Lemma 2.4(1), we get

rel 1 1
Cr (E)Cf(ﬁ)
ot i+1 nl o (_1)i+1
— (232 [P ¢ (2)] T et £28] 0 T [det £
[ ] n_Z;0 (_qyitt n_ZIO (—1)k+1
:()\z)2x C}el(z)gf(z) H [det f:ell]( ) H [det f*n—k:—l]
_ = k=0
n—1

=) [ ()¢ ()] T et fzh e it 0

:<)\Z)2X :C;el(z)Cf(z): [Abi](—l)“r

=) [ ()¢ (2)| A7
=N [E()0(2)|

From Lemma 2.3, we complete the proof. O

3. APPLICATION TO KNOT THEORY

The Alexander polynomial is one of the most important invari-
ants of knots. In this section, we apply Theorem 2.1 to the infinite
cyclic covering of a knot complement and reduce the functional
equation to the reciprocity of the Alexander polynomial.

Let K C S® be an oriented (tame) knot and N a tubular neigh-
borhood of K, and put X = S\ Int N. The infinite cyclic covering
of X, i.e., the covering associated with the kernel of the Abelianiza-
tion homomorphism 71 (X) — H;(X) = Z, will be denoted by X .
By the theory of covering, the infinite cyclic group II = (¢) acts
on Hi(X), where generator ¢ is chosen to be the positive linking
number with oriented knot K.

Identifying the integral group ring of II with the ring of Lau-
rent polynomials Z[t*!] = Z[t,t7!], H1(X.) is a finitely generated
Z[t*)-module. Similarly, H1(Xs; Q) is a finitely generated Q[t*!]-
module.
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Let M be a module over a commutative ring R. A finite presen-
tation for M is an exact sequence

F B2 M—o,

where E and F' are free R-modules with finite bases {e1,...,en}
and {f1,..., fn}. If a is represented by an m X n matrix, then the
matrix A is a presentation matriz for M.

By adjoining rows of zeros if necessary, we may suppose that A
is m x n with m > n. Then the r-th elementary ideal of M is the
ideal in R generated by all the (n —i4 1) x (n —i+ 1) minors of A.

Definition 3.1. The r-th Alezander ideal of an oriented knot K is
7-th elementary ideal of Z[t*!]-module H;(Xs). The r-th Alexan-
der polynomial of K is a generator of the smallest principal ideal of
Z[t*!] which contains the r-th Alexander ideal. The first Alexan-
der polynomial is called the Alexander polynomial and is denoted

by Ak (t).

Proposition 3.2 ([13]). Let K be a knot in S® and t : Xoo — Xoo
be the covering transformation of Xoo. Then

(1) Hi(X;Q) is a finite-dimensional vector space over the field
Q, and

(2) the characteristic polynomial of the linear map t. : H1(Xo0; Q) —
H1(Xo0; Q) is, up to a multiplication of a unit of Q[t*'], equal to
the Alexander polynomial of K.

Lemma 3.3. Let K be a knot in S® and t : Xoo — Xoo be the
covering transformation of Xo. Then the Alexander polynomial
Ak (z) and the Lefschetz zeta function satisfy the relation:

1 2 A (27
an 1—2z

G(z2) =

)

where the Alexzander polynomial is normalized as Ax(z) = ap +
a1z + -+ + apz™ with apa, # 0, and bi(= n) is the first Betti
number of X.

Proof: Hi(Xoo) = 0 for i > 2 (see [3]). From propositions 1.2
and 3.2, we complete the proof. O

From this lemma, Theorem 2.1 implies the following:
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Corollary 3.4 ([21] (see also [2], [6], [17], [23]). The Alexan-
der polynomial Ak (z) of a knot K is reciprocal, i.e., Ag(z) =
D AR (27,

Proof: Proposition 3.2(1) means that X, satisfies the require-
ment for Theorem 2.1. In our condition, 0X, = S! x R. There-
fore, we can see that (ypx, (2) = 1. Applying Theorem 2.1 to
Lemma 3.3, the proof is complete. Il

Remark 3.5. From this corollary, we can rewrite the relation of
Lemma 3.3 as the following:
1 Ag(z)

W)= Ao 1oz

This implies that the Alexander polynomial of a knot contains all
the information about the Lefschetz numbers A(t") of the covering
transformations.
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