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PRODUCTS OF WEAK TOPOLOGIES

YOSHIO TANAKA

Abstract. We consider conditions for weak topologies to
be productive. We give relations between products of weak
topologies and products of sequential spaces (k-spaces, quasi-
k-spaces, resp.), and we also consider products of these spaces.

1. Introduction

We assume that all spaces are regular, T1, and all maps are
continuous and onto.

Let X be a space. Then X is determined by a cover P [7], if X
has the weak topology with respect to P; that is, G ⊂ X is open
in X if G ∩ P is open in P for each P ∈ P. Here, it is possible to
replace “open” with “closed.”

Every space is determined by an open cover or a hereditarily
closure preserving (HCP) closed cover. Let us recall the following
elementary facts which will be used often in this paper. These facts
are routinely shown (see, e.g., [20] and [21]).

Fact 1.1. Let X be determined by a cover C. If C is a refinement
of a cover P (i.e., each C ∈ C is contained in some P ∈ P), then
X is determined by P.
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Fact 1.2. Let X be determined by a cover {Pα : α}. If each Pα is
determined by a cover Pα, X is determined by a cover

⋃{Pα : α}.
A space X is a sequential space (k-space, quasi-k-space, resp.) if

X is determined by the cover of all compact metric subsets (com-
pact subsets, countably compact subsets, resp.). Here, sequential
spaces (quasi-k-spaces, resp.) are introduced by S. P. Franklin [5]
(Jun-iti Nagata [14], resp.). Sequential spaces are k-spaces, and
k-spaces are quasi-k-spaces, but the converses of these do not hold.
However, quasi-k-spaces in which every point is a Gδ-set are se-
quential, and paracompact quasi-k-spaces are k-spaces [10]. As is
well-known, every sequential space, k-space, and quasi-k-space is
characterized as a quotient image of a metric space, locally com-
pact (paracompact) space, M -space, respectively; see, e.g., [10] and
[14]. Here, a space is an M -space iff it is a quasi-perfect inverse im-
age of a metric space.

For a topological property (P) on a space X, X is locally (P) if
each point of X has an nbd whose closure has the property (P).
The following basic result holds by means of Fact 1.1 and Fact 1.2.

Proposition 1.3. If X is determined by a cover of sequential
spaces (k-spaces, quasi-k-spaces, resp.) then X is a sequential space
(k-space, quasi-k-space, resp.). In particular, every locally sequen-
tial space (locally k-space, locally quasi-k-space, resp.) is a sequen-
tial space (k-space, quasi-k-space, resp.).

Now, as is well-known, weak topologies are preserved by closed
or open subsets and quotient maps. Namely, the following holds.

For space X determined by a cover P, every open or closed subset
S of X is determined by {P ∩ S : P ∈ P}, and every image of X
under a quotient map f is determined by f(P) = {f(P ) : P ∈ P}.

However, weak topologies need not be preserved by products in
view of [3, Example 5, p. 132] due to C. H. Dowker [2], or by
Example 1.5 below. So, let us consider the following classic ques-
tion, and then we will give some relations between products of weak
topologies and products of sequential spaces, k-spaces, or quasi-k-
spaces. Also, as their applications, we will consider products of
these spaces.
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Question 1.4. For each i = 1, 2, let Xi be a space determined
by a cover Pi. What is a (necessary and sufficient) condition for
X1 ×X2 to be determined by P1 × P2 = {P1 × P2 : Pi ∈ Pi}?
Example 1.5. (1) There exist paracompact σ-spaces Xi (i = 1, 2)
determined by an HCP cover Pi of compact metric subsets, and (a)
or (b) below holds, but X1 ×X2 is not determined by P1 × P2.

(a) |P1| = ω and |P2| = 2ω;
(b) X1 = X2, and |Pi| = ω1.

(2) There exist both a countable space X1 determined by a count-
able HCP cover P1 of compact metric subsets and a countable met-
ric space X2 determined by a cover P2 of compact metric subsets
(or a cover P2 = {X2}), but X1×X2 is not determined by P1×P2.

(3) In (1) and (2), it is possible to replace “HCP” with “point-
finite” for both P1 and P2, but use P2 = {X2} in (2).

No X1×X2 in (1), (2), or (3) is a quasi-k-space or is determined
by P1×P2 for any cover P1 of X1 and any cover P2 of X2 by locally
compact subsets (or vice versa).

Proof: We show that the latter part holds. For (1), (2), and (3),
X1 ×X2 is not sequential by [6, Theorem 1]; by [5, Example 1.11];
and by [19, Fact C(2) and Lemma 1(2)], respectively. Since each
point of X1×X2 is a Gδ-set, X1×X2 is not even a quasi-k-space, by
[10, Theorem 7.3]. Next, suppose that if X1×X2 is determined by
P1×P2, then it is also determined by P = {X1×P2 : P2 ∈ P2} from
Fact 1.1. But, as is well-known, every product of a k-space with a
locally compact space is a k-space. Thus, the elements of P are k-
spaces, so X1×X2 is a k-space by Proposition 1.3, a contradiction.
Therefore, X1 ×X2 is not determined by P1 ×P2. ¤

2. Results

Lemma 2.1. Let X be determined by a cover P. Then X × Y is
determined by {P × Y : P ∈ P} if either (a) or (b) holds.

(a) Y is locally compact.
(b) X is sequential, and Y is locally countably compact.

Proof: For G ⊂ X × Y , let G ∩ (P × Y ) be open in P × Y
for every P ∈ P. To show G is open in X × Y , let (a, b) ∈ G,
and let a ∈ P0 ∈ P. Put H = {y ∈ Y : (a, y) ∈ G}. Then
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H = {y ∈ Y : (a, y) ∈ G∩(P0×Y )}; thus, H is an nbd of b in Y . For
(a) ((b), resp.), there exists an nbd V of b such that V is compact
(countably compact, resp.) with V ⊂ H. Let W = {x : x×V ⊂ G}.
Then a ∈ W . For (a), W ∩ P is obviously open in P for every
P ∈ P; hence, W is open in X. For (b), to see W is also open in
X, suppose not. Then, since X is sequential, there exists a sequence
L = {pn : n ∈ N} converging to some point p ∈ W with L∩W = ∅.
Since X is determined by P, but L is not closed in X, then P ∗ ∈ P
frequently contains the point p and L. So, we can assume that
L ⊂ P ∗ without loss of generality. Then, there exists a sequence
S = {(pn, qn) : n ∈ N} in X × Y such that (pn, qn) ∈ pn × V ,
but S ∩ G = ∅. Since V is countably compact, some subsequence
T of S has an accumulation point (p, q) ∈ (p × V ), so (p, q) ∈ G.
But G ∩ (P ∗ × Y ) is open in P ∗ × Y and contains the point (p, q).
Since P ∗×Y contains the sequence T , the sequence T is contained
eventually in G, a contradiction. Hence, W × V is an nbd of (a, b)
in X × Y such that W × V ⊂ G. Thus, G is open in X × Y . Then
the result for (a) or (b) holds. ¤

Corollary 2.2. For each i = 1, 2, let Xi be a space determined by
a cover Pi. Then X1×X2 is determined by P1×P2 if the following
(a), (b), or (c) holds. The result for (b) is due to [11].

(a) P1 is an open cover or a locally finite closed cover, as is P2.
(b) P2 is a locally finite closed cover of locally compact subsets.
(c) X1 is sequential, and P2 is a locally finite closed cover of

locally countably compact subsets.

Proof: We show that the result for (b) holds since the result for
(a) or (c) is similarly shown. Obviously, X1×X2 is determined by a
locally finite closed cover {X1×P2 : P2 ∈ P2}. But, by Lemma 2.1,
each element X1×P2 is determined by a cover {P1×P2 : P1 ∈ P1}.
Thus, the result holds by Fact 1.2. ¤

Lemma 2.3. For each i = 1, 2, let Xi be a space determined by a
cover Pi. Then X1 ×X2 is determined by P1 × P2 if the following
(a) or (b) holds.

(a) The elements of P1 are k-spaces, and X1×X2 is determined
by {X1 × L : L ∈ L}, where L is a cover of X2 by locally compact
subsets.
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(b) X1 is sequential, and X1×X2 is determined by {X1×L : L ∈
L}, where L is a cover of X2 by locally countably compact subsets.

Proof: For (a), let P1 = {Pα : α}, where each Pα is a k-space.
Then each Pα is determined by a cover Pα of compact subsets.
Then, by Fact 1.2, X1 is determined by a cover P =

⋃{Pα : α} of
compact subsets, and P is a refinement of P1. Let L = {Lα : α}.
Then X1 ×X2 is determined by {X1 × Lα : α}, and each element
X1 × Lα is determined by a cover P × {Lα} from Lemma 2.1, for
Lα is locally compact. Thus, by Fact 1.2, X1 × X2 is determined
by a cover P × L which is a refinement of C = {P ×X2 : P ∈ P}.
Then, by Fact 1.1, X1 × X2 is determined by C. But, by Lemma
2.1, each P × X2 ∈ C is determined by a cover P × P2, for P is
compact. Thus, by Fact 1.2, X1 × X2 is determined by P × P2.
Then, by Fact 1.1, X1 ×X2 is determined by P1 ×P2. For (b), X1

is sequential, then X1 is determined by a cover F of compact metric
subsets. But each F ∈ F is closed in X1, so F is determined by a
cover {F ∩ P : P ∈ P1} of metric subsets. Then, by Fact 1.2, X1

is determined by a cover M = {F ∩ P : F ∈ F , P ∈ P1} of metric
subsets. But each M ∈M is metric, so M is determined by a cover
of compact subsets. Thus, by Fact 1.2, X1 is determined by a cover
P∗ of compact subsets, and P∗ is a refinement of P1. Then the
result for (b) is similarly shown in (a) by means of Lemma 2.1(2),
but use P∗ instead of the cover P in (a). ¤

Theorem 2.4. For each i = 1, 2, let Xi be a space determined by
a cover Pi. Then X1×X2 is determined by P1×P2 if the following
(a) or (b) holds.

(a) X1 ×X2 is a k-space, and the elements of P1 are k-spaces.
(b) X1 is sequential, and X1 ×X2 is a quasi-k-space.

Proof: For (b), since X1 × X2 is a quasi-k-space, X1 × X2 is
determined by a cover C of countably compact subsets. Since C is
a refinement of P = {X1 × C : C is countably compact in X2}, by
Fact 1.1, X1 × X2 is determined by P. Then the result holds by
Lemma 2.3. Similarly, (a) holds. ¤

Reviewing E. A. Michael [10], let us recall some matters around
k-spaces, and certain quotient spaces. A space X is a space of
pointwise countable type (a q-space, resp.) if each x ∈ X has a
sequence {Vn : n ∈ N} of nbd’s such that C =

⋂{Vn : n ∈ N} is
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a compact set (countably compact closed set, resp.), and each nbd
of C contains some Vn. First-countable spaces, locally compact
spaces, or paracompact M -spaces are of pointwise countable type.
Locally countably compact spaces, M -spaces, or spaces of pointwise
countable type are q-spaces.

The implications in (A) and (B) below hold, and for each i =
1, 2, 3, 4, 5, (i) in (A) implies (i) in (B). For these implications and
definitions of related spaces, and for five kinds of quotient spaces
below and their related maps, see, e.g., [10].

(A) (1) spaces of pointwise countable type → (2) bi-k-spaces →
(3) countably bi-k-spaces → (4) singly bi-k-spaces → (5) k-spaces.

(B) (1) q-spaces→ (2) bi-quasi-k-spaces→ (3) countably bi-quasi-
k-spaces → (4) singly bi-quasi-k-spaces → (5) quasi-k-spaces.

The spaces in (1), (2), (3), (4), and (5) in (A) ((B), resp.)
are characterized, respectively, as open, bi-quotient, countably bi-
quotient, hereditarily quotient, and quotient spaces of paracompact
M -spaces ( M -spaces, resp.). Here, a map f : X → Y is bi-quotient
(countably bi-quotient, resp.) if, whenever y ∈ Y and U is a cover
(countable cover, resp.) of f−1(y) by open subsets of X, then fi-
nitely many f(U), with U ∈ U , covers an nbd of y in Y , and f
is hereditarily quotient (or pseudo-open) if f |f−1(S) is quotient for
every S ⊂ Y . (Equivalently, for any nbd U of f−1(y) in X, f(U)
contains an nbd of y in Y .)

Corollary 2.5. For each i = 1, 2, let Xi be a space determined by
a cover Pi. Then X1 ×X2 is determined by P1 × P2 if either (a)
or (b) holds.

(a) X1 ×X2 is a k-space, and each element of P1 is a closed set
or a union of Gδ-sets in X1.

(b) X1 ×X2 is sequential.

Proof: The result for (b) holds by Theorem 2.4. For (a), X1×X2

is determined by a cover C = {C1×X2 : C1 is compact in X1}. Let
(C1 ×X2) ∈ C. Then the closed subset C1 of X1 is determined by
a cover P = {C1 ∩ P1 : P1 ∈ P1}. Let C1 ∩ P1 ∈ P. When P1 is
a closed set in X1, C1 ∩ P1 is a k-space. When P1 is a union of
Gδ-sets in X1, C1 ∩P1 is a union of Gδ-sets in C1; thus, C1 ∩P1 is
a space of pointwise countable type by [10, Remark, p. 103], and
therefore, it is also a k-space. Thus, the set C1 ∩ P1 is a k-space.
However, each element C1 × X2 of C is a k-space, for it is closed
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in the k-space X1 × X2. Thus, by Theorem 2.4, each C1 × X2 is
determined by a cover {(C1 ∩ P1) × P2 : Pi ∈ Pi}. Hence, by Fact
1.1 and Fact 1.2, X1 ×X2 is determined by P1 × P2. ¤

The author asks the following question in view of Theorem 2.4
and Corollary 2.5.

Question 2.6. For each i = 1, 2, let Xi be a space determined by
a cover Pi. If X1×X2 is a k-space, then is X1×X2 determined by
P1 × P2 ?

We consider equivalent relations between products of weak topol-
ogies and products of sequential spaces, k-spaces, or quasi-k-spaces.

Let X be a space determined by a cover P. Then P is a weak
k-system [24] if the elements of P = {P : P ∈ P} are compact.
When the cover P is closed, P is called a k-system [1]. Similarly,
let us say that P is a weak lk-system by replacing “compact” with
“locally compact,” and that P is an lk-system when the cover P
is closed. A space with a countable k-system is called a kω-space
[9] (or space of class S ′ [13]). A space with a countable lk-system
is called an lkω-space [19] (or space of class T ′ [17]). Obviously,
a space is a k-space iff it has a weak lk-system (or k-system) by
Proposition 1.3. Point-countable k-systems are considered in [18]
or [24].

Remark 2.7. (1) A space has a countable k-system iff it is a quo-
tient image of a locally compact Lindelöf space, by [13, Theorem 5].
Similarly, a space has a point-countable k-system iff it is a quotient,
s-image (i.e., each point-inverse is separable) of a locally compact
paracompact space. Analogously, a space X has a point-countable
weak k-system P iff X is an image of a locally compact paracompact
space L under a map f such that for some S ⊂ L, f |S is a quotient
s-map onto X. Here, it is possible to replace “paracompact” with
“meta-Lindelöf” (i.e., every open cover has a point-countable open
refinement). (In fact, for the “only if” part, let L be the topolog-
ical sum of P and S be the union of elements of P in L, and let
f be the obvious map from L. For the “if” part, L is determined
by a point-countable open cover G such that the elements of G are
compact. Since S is determined by a point-countable open cover
V = {S ∩ G : G ∈ G}, X has a point-countable weak k-system
f(V).)
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(2) Every countably bi-quasi-k-space (bi-quasi-k-space, resp.)
X with a point-countable lk-system (weak lk-system, resp.) is lo-
cally compact by [23, Theorem 3.16(2)] (in view of the proof of [24,
Theorem 3.8(1)], resp.). For the parenthetic part, by [24, Lemma
2.3], we can add the prefix “countably” before bi-quasi-k-space if
X is sequential, or generally, t(X) ≤ ω (i.e., for any x ∈ A, there is
a countable C ⊂ A with x ∈ C).

Proposition 2.8. For each i = 1, 2, let Xi have a cover Pi. Then
X1 × X2 is a k-space determined by a cover P1 × P2 if each of
(a1) ∼ (a4) below holds. When X1 is sequential, or the elements of
P1 are k-spaces (such as (a3)), X1 ×X2 is determined by a cover
P1 × P2.

(a1) Pi are countable weak lk-systems.
(a2) Xi are locally separable singly bi-quasi-k-spaces, and Pi are

point-countable weak lk-systems.
(a3) Xi are singly bi-quasi-k-spaces, and Pi are point-countable

lk-systems.
(a4) P1 is a countable weak lk-system, and X2 has the same

properties as in (a3).

Proof: The result for (a1), (a3), or (a4) holds in view of the proof
of [20, Theorem 6]; here, for the space Xi having a countable weak
lk-system Pi, Xi has the countable lk-system P i which is assumed
to be increasing. For (a2), each point of X1 has an nbd V whose
closure is separable, while V has a point-countable weak lk-system
V = {V ∩P : P ∈ P1}. But V is a separable singly bi-quasi-k-space.
Thus, by [23, Lemma 2.8], V has a countable lk-system W for some
countable W ⊂ V. This implies that each point in X1 ×X2 has an
nbd whose closure is a k-space in view of (a1). Hence, X1 ×X2 is
a k-space by Proposition 1.3. Thus, the result holds by Theorem
2.4. ¤

Similar modifications of Proposition 2.8 would be obtained from
changing the combinations: for example, the same result for (a4)
holds if we replace “(a3)” with “(a2)” in (a4).

Now, every product of k-spaces (or quasi-k-spaces) need not be
a quasi-k-space, by either Example 1.5 or Example 2.9.

Example 2.9. (1) There exist countably compact spaces X and
Y , but X × Y is not a quasi-k-space [10, Example 10.7].
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(2) (2ω0 < 2ω1). There exist Fréchet countably bi-k-spaces X
and Y , but X × Y is not a quasi-k-space [15, Example 6.6].

The following holds in view of the proof for (a) and (b) in [20,
Theorem 6], using Fact 1.1.

Lemma 2.10. Let X be a bi-k-space (sequential countably bi-quasi-
k-space, resp.), and let Y be a countably bi-quasi-k-space (bi-quasi-
k-space, resp.). Then X × Y is determined by a cover {C × Y : C
is compact in X}.
Proposition 2.11. (1) X × Y is a k-space if the following (b1),
(b2), or (b3) holds.

(b1) X is a k-space and Y is locally compact.
(b2) X is a bi-k-space, and Y is a k-space which is countably

bi-quasi-k.
(b3) X is a sequential countably bi-quasi-k-space, and Y is a k-

space which is bi-quasi-k.
(2) X × Y is a quasi-k-space if each of the following (c1) ∼

(c4) holds.
(c1) X is a quasi-k-space, and Y is locally compact.
(c2) X is a sequential space, and Y is locally countably compact.
(c3) X is a bi-k-space, and Y is a countably bi-quasi-k.
(c4) X is a sequential countably bi-quasi-k-space, and Y is a bi-

quasi-k-space.

Proof: The result for (b1) is well-known, and the one for (c2)
is shown in [16]. But the result for (b1), (c1), or (c2) holds by
Proposition 1.3 and Corollary 2.2. For example, for (c1), X × Y is
determined by a cover of locally countably compact subsets, taking
P1 as the cover of all countably compact subsets, and P2 = {Y } in
Corollary 2.2(b). Hence, X × Y is a quasi-k-space by Proposition
1.3. The result for (b2) or (b3) is shown in [20]. But the result for
(b2), (b3), (c3), or (c4) holds by use of Lemma 2.10. For example,
for (c3), X × Y is determined by a cover {C × Y : C is compact in
X}, but the elements are quasi-k-spaces by (c1). Thus, X × Y is a
quasi-k-space by Proposition 1.3. ¤

By Proposition 2.11 and Theorem 2.4, we have the following
partial answer to Question 3.18 in [24] of whether X2 has a point-
countable weak k-system if X is a locally compact space X with a
point-countable weak k-system.
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Corollary 2.12. Let X be a space with a weak k-system (weak lk-
system, resp.) P. Then X2 has a weak k-system (weak lk-system,
resp.) P2 if X is a sequential bi-quasi-k-space, or X is a bi-k-space
with the elements of P k-spaces.

The following holds in view of the proof of Example 1.5, but use
Proposition 2.11(2) for the parenthetic part.

Lemma 2.13. Let X1 be a k-space (quasi-k-space, resp.) deter-
mined by a cover P1, and let X2 be a space determined by a cover
P2 by locally compact subsets. If X1×X2 is determined by P1×P2,
then X1 × X2 is a k-space (quasi-k-space, resp.). For the paren-
thetic part, when X1 is sequential, it is possible to replace “locally
compact subsets” with “locally countably compact subsets.”

Theorem 2.14. For each i = 1, 2, let Xi be a space determined
by a cover Pi.

(1) Let Xi be k-spaces. Suppose that each of (d1) ∼ (d4) be-
low holds, for example. Then X1 × X2 is a k-space iff X × Y is
determined by P1 × P2.

(d1) The elements of P2 are locally compact.
(d2) The elements of P1 are bi-k-spaces, and the elements of P2

are countably bi-quasi-k-spaces.
(d3) The elements of Pi are (locally) lkω-spaces.
(d4) The elements of Pi are singly bi-quasi-k-spaces with a point-

countable lk-system.
(2) Let X1 be a sequential space. Suppose that (e1), (e2), or

(e3) below holds. Then X1 ×X2 is a quasi-k-space iff X1 ×X2 is
determined by P1 × P2.

(e1) The elements of P2 are locally countably compact.
(e2) Same as (d2).
(e3) The elements of P1 are countably bi-quasi-k-spaces, and the

elements of P2 are bi-quasi-k-spaces.

Proof: The “only if” parts of (1) and (2) hold by Theorem 2.4,
because the elements of P1 (or P2) are k-spaces for (1), and X1 is
sequential for (2). Their “if” parts hold, using propositions 2.8 and
2.11. Indeed, let X1 × X2 be determined by P1 × P2, and let us
consider (d1), (d2), and (e3), for example. For (d1), the result holds
by Lemma 2.13. For (d2), by Lemma 2.10, each element P1 × P2

of P1 × P2 is determined by a cover {C × P2 : C is compact in
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P1}. Thus, by Fact 1.1 and Fact 1.2, X1 ×X2 is determined by a
cover {C ×X2 : C is compact in X1} of k-spaces. Then X1 ×X2

is a k-space by Proposition 1.3. For (e3), the elements of P1 are
quasi-k-spaces; hence, they are determined by a cover of countably
compact subsets. Since X1 is sequential, these countably compact
subsets are closed in X1, hence sequential. Thus, the elements of P1

are sequential by Proposition 1.3. Then X1×X2 is a quasi-k-space
by Proposition 2.11(2). ¤

Theorem 2.15. For each i = 1, 2, let Xi be a space determined
by a cover Pi. Let X1 be a sequential space, and X2 be a k-space
(sequential space, resp.). Then (a) ⇔ (b) below, and (b) ⇒ (c)
hold. When each of (ei) in Theorem 2.14 holds, (a), (b), and (c)
are equivalent.

(a) X1 ×X2 is a k-space (sequential space, resp.).
(b) X1 ×X2 is a quasi-k-space.
(c) X1 ×X2 is determined by P1 × P2.

Proof: (a) ⇒ (b) is clear. (b) ⇒ (c) holds by Theorem 2.4. Also,
(b) ⇒ (a) holds, by taking P1 as a cover of compact metric subsets,
and P2 as a cover of compact (compact metric, resp.) subsets in
(c). For the latter part, (c) ⇒ (b) holds by Theorem 2.14(2). ¤

To consider other sufficient conditions on X for a quasi-k-space
X × Y to be a k-space, we introduce the following condition (C):

(C) For each countably compact subset K of X, there exists a
locally paracompact subsets S of X such that S ⊃ K.

Every locally compact (generally, locally paracompact) space sat-
isfies (C). Let us consider other spaces satisfying (C).

Let X be a space, and let P be a closed cover of X. Then,
X is dominated by P [8], or P dominates X (= X has the weak
topology with respect to P in the sense of Morita [11]), if the union
of elements of any subcollectionQ of P is closed in X, and the union
is determined by Q. Every space is dominated by an HCP closed
cover. Obviously, if X is dominated by P, then X is determined
by P, but the converse doesn’t hold. As is well known, every CW-
complex is dominated by a cover of compact metric subsets, and
every space dominated by paracompact subsets is paracompact [8],
[12].



372 Y. TANAKA

Lemma 2.16. Let f : X → Y be a closed map such that (a) or
(b) below holds. Then each countably compact subset K of Y is
contained in a finite union of elements of f(P).

(a) X is determined by a point-countable cover P.
(b) X is dominated by a closed cover P.

Proof: Suppose that the result doesn’t hold for some countably
compact subset K of Y . For (a), let {P ∈ P : x ∈ P} = {Pn(x) :
n ∈ N} for each x ∈ X. Then, there exists D = {xn : n ∈ N} such
that xn /∈ Pj(xi) for i, j < n, and f(D) ⊂ K with f(D) infinite.
Then D ∩ P is finite for each P ∈ P, so D is closed discrete in
X. Then f(D) is discrete closed in the countably compact set
K, a contradiction. For (b), the result is shown by the same way,
replacing “ xn /∈ Pj(xi) for i, j < n ” with “ xn ∈ Pn−

⋃{Pi : i < n}
for some {Pn : n ∈ N} ⊂ P.” ¤

Proposition 2.17. A space X satisfies the condition (C) if each
of the following (f1) ∼ (f4) holds.

(f1) X is determined by a point-countable cover P such that the
elements of P are locally paracompact subsets; in particular, X has
a point-countable weak lk-system.

(f2) X is dominated by a closed cover of locally paracompact
subsets.

(f3) X is a closed image of a space having the same property
in (f1) or (f2), but the locally paracompact subsets are moreover
meta-Lindelöf.

(f4) X is a quotient s-image of a locally Lindelöf (or locally
separable) meta-Lindelöf space.

Proof: The result for (f1) or (f2) holds by Lemma 2.16. For
(f3), let f : S → X be a closed map. Let S be determined by
a point-countable cover P such that the elements of P are locally
paracompact meta-Lindelöf. Let K be a countably compact subset
of X. Then, by Lemma 2.16, K is contained in some F =

⋃{f(P i) :
i = 1, 2, · · · , k}, where Pi ∈ P. Let T be the topological sum of
these finitely many closed sets P i in S. Then F is a closed image of
the locally paracompact meta-Lindelöf space T , and F contains K.
Then we can assume that S is locally paracompact meta-Lindelöf.
Thus, S is determined by a point-countable open cover G such that
every element of G is paracompact. Hence, by Lemma 2.16, K
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is contained in some f(H), where H is paracompact, so f(H) is
paracompact, as is well known. Thus, X satisfies condition (C).
Similarly, the result for (f2) in (f3) also holds.

For (f4), let g : L → X be a quotient s-map, and let L be locally
Lindelöf meta-Lindelöf. Then L is determined by a point-countable
open cover V such that the elements of V are Lindelöf. Since g is a
quotient s-map, X is determined by a point-countable cover g(V).
Thus, by Lemma 2.16, each countably compact subset K of X is
contained in a finite union of elements g(V ) of g(V). Since the
g(V ) are Lindelöf, K is contained in a Lindelöf space. Thus, X
satisfies condition (C). The parenthetic part also holds, because
every separable meta-Lindelöf space is Lindelöf. ¤

Theorem 2.18. For each i = 1, 2, let Xi be a space determined
by a cover Pi, and let X2 be a k-space. For relations among the
following (a) ∼ (d), (1), (2), and (3) below hold. Obviously, (a) ⇒
(b), and (d) ⇒ (c) hold.

(a) X1 ×X2 is a k-space.
(b) X1 ×X2 is a quasi-k-space.
(c) X1 ×X2 is determined by a cover P1 × P2.
(d) X1 ×X2 is determined by a cover P1 × P2.

(1) Suppose that P1 is a point-countable cover (a closed cover
dominating X1, resp.). Then (a) ⇒ (c) ((a) ⇒ (d), resp.) holds.

(2) Suppose that X1 satisfies the condition (C). Then (a) and
(b) are equivalent. When P1 is a point-countable weak lk-system
(an lk-system dominating X1, resp.), then (a), (b), and (c) ((a),
(b), (c), and (d), resp.) are equivalent.

(3) Suppose that X1 is sequential (the elements of P1 are k-
spaces, resp.). If P1 is a point-countable weak lk-system, or an
lk-system dominating X1, then (a), (b), (c), and (d) ((a), (c), and
(d), resp.) are equivalent.

Proof: For (1), to show (a) ⇒ (c) holds, let X1 × X2 be a k-
space. Since X1 is a k-space, it is determined by a cover K of
compact subsets. Then, by Theorem 2.4, X1×X2 is determined by
K×P2. But each compact subset of X1 is contained in a finite union
of elements of P1 by Lemma 2.16. Hence, by Fact 1.1, X1 × X2

is determined by a cover {F × P2 : F is a finite union of elements
of P1, and P2 ∈ P2}. But each element F × P2 is determined by
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some finite subcover of {P ×P2 : P ∈ P1}, because each P ∈ P1 is
closed in X1. Thus, by Fact 1.2, X1×X2 is determined by P1×P2.
Similarly, the parenthetic part holds.

For (2), to show (b) ⇒ (a) holds, let X1×X2 be a quasi-k-space.
Since X1×X2 is determined by a cover of countably compact sub-
sets, it is determined by C = {C ×X2 : C is countably compact in
X1}. Let C ×X2 ∈ C. Then, by the condition (C), the countably
compact subset C of X1 is contained in a locally paracompact sub-
set S of X1. Thus, C is covered by a collection V of open subsets
in S such that the elements of V are paracompact. Here, the “clo-
sure” is taken in S. Then C ×X2 is determined by an open cover
VC = {(C ∩ V ) × X2 : V ∈ V}. Let (C ∩ V ) × X2 ∈ VC , and let
K = C∩V . We show that LC = K×X2 is a k-space. Since V ⊃ K,
K = clV K. Since K is countably compact and V is normal in S, K
is countably compact; thus, it is compact. Hence, by Proposition
2.11(1), LC is a k-space which contains (C ∩ V ) ×X2. Therefore,
each element of VC is contained in a k-space LC of X1 ×X2, and,
by Fact 1.1, X1×X2 is determined by a cover

⋃{VC : C×X2 ∈ C}.
Thus, by Fact 1.1, X1 × X2 is determined by a cover of k-spaces.
Hence, X1 ×X2 is a k-space by Proposition 1.3. Let P1 be a weak
lk-system. Then (c) ⇒ (a) holds, since X1 ×X2 is determined by
a cover {P ×X2 : P ∈ P1} of k-spaces. Thus, (a), (b), and (c) are
equivalent.

For (3), (b) ⇒ (d) ((a) ⇒ (d), resp.) holds by Theorem 2.4. ¤
In the following corollary, (1) follows from Theorem 2.15, and

(2) follows from Theorem 2.18(2) with Proposition 2.17.

Corollary 2.19. (1) If X is a sequential space and Y is a k-space
(sequential space, resp.), then X×Y is a k-space (sequential space,
resp.) iff X × Y is a quasi-k-space [16].

(2) If each of (f1) ∼ (f4) in Proposition 2.17 holds, and Y is
a k-space, then X × Y is a k-space iff X × Y is a quasi-k-space.

The author doesn’t know whether the condition on X in Corol-
lary 2.19 (or the condition (C) in Theorem 2.18(2)) is essential.

Question 2.20. For each i = 1, 2, let Xi be a k-space. If X1×X2 is
a quasi-k-space, then is X1×X2 a k-space? In particular, when the
Xi’s are countably compact (then X1 × X2 is countably compact
[4, Theorem 3.10.13], since X1 is a k-space), is X1 ×X2 a k-space?
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By theorems 2.15 and 2.18(1), and by Proposition 2.11(2), we
have

Proposition 2.21. (1) Suppose that X satisfies the condition (C).
Then X × Y is a k-space if the following (a), (b), or (c) holds.

(a) X is a quasi-k-space, and Y is locally compact.
(b) X is locally countably compact, and Y is sequential.
(c) X is a bi-quasi-k-space, and Y is a sequential countably bi-

quasi-k-space.
(2) Suppose that X is a k-space in (b) (X is sequential in (b)

or (c), resp.). Then X × Y is a k-space (sequential, resp.) [20].

References

[1] A. V. Arhangel’ skii, “Factor mappings of metric spaces,” Soviet Math.
Dokl. 5 (1964), 368–371.

[2] C. H. Dowker, “Topology of metric complexes,” Amer. J. Math. 74 (1952),
555–577.

[3] James Dugundji, Topology. Boston, Mass.: Allyn and Bacon, Inc., 1966.

[4] Ryszard Engelking, General Topology. Translated from the Polish by the
author. 2nd ed. Sigma Series in Pure Mathematics, 6. Berlin: Heldermann
Verlag, 1989.

[5] S. P. Franklin, “Spaces in which sequences suffice,” Fund. Math. 57 (1965),
107–115.

[6] Gary Gruenhage, “k-spaces and products of closed images of metric
spaces,” Proc. Amer. Math. Soc. 80 (1980), no. 3, 478–482.

[7] G. Gruenhage, E. Michael, and Y. Tanaka, “Spaces determined by point-
countable covers,” Pacific J. Math. 113 (1984), no. 2, 303–332.

[8] Ernest Michael, “Continuous selections, I,” Ann. of Math. (2) 63 (1956),
no. 2, 361–382.

[9] , “Bi-quotient maps and Cartesian products of quotient maps,”
Ann. Inst. Fourier (Grenoble) 18 (1968), fasc. 2, 287–302 (1969).

[10] , “A quintuple quotient quest,” General Topology and Appl. 2
(1972), 91–138.

[11] Kiiti Morita, “On spaces having the weak topology with respect to closed
coverings,” Proc. Japan Acad. 29 (1953), 537–543.

[12] , “On spaces having the weak topology with respect to closed cov-
erings, II,” Proc. Japan Acad. 30 (1954), 711–717.

[13] , “On decomposition spaces of locally compact spaces,” Proc. Japan
Acad. 32 (1956), 544–548.



376 Y. TANAKA

[14] Jun-iti Nagata, “Quotient and bi-quotient spaces of M -spaces,” Proc.
Japan Acad. 45 (1969), 25–29.

[15] Roy C. Olson, “Bi-quotient maps, countably bi-sequential spaces, and re-
lated topics,” General Topology and Appl. 4 (1974), 1–28.

[16] Yoshio Tanaka, “On quasi-k-spaces,” Proc. Japan Acad. 46 (1970), 1074–
1079.

[17] , “A characterization for the products of k-and-ℵ-spaces and related
results,” Proc. Amer. Math. Soc. 59 (1976), no. 1, 149–155.

[18] , “Point-countable k-systems and products of k-spaces,” Pacific J.
Math. 101 (1982), no. 1, 199–208.

[19] , “Products of k-Spaces Having Point-Countable k-Networks,”
Topology Proc. 22 (1997), 305–329.

[20] , “Products of k-spaces, and questions,” Comment. Math. Univ.
Carolin. 44 (2003), no. 2, 335–345.

[21] , “Quotient spaces and decompositions.” Encyclopedia of General
Topology. Ed. Klaas Pieter Hart, Jun-iti Nagata, and Jerry E. Vaughan.
Amsterdam: North-Holland, 2004. 43–46.

[22] , “On products of k-spaces,” Topology Appl. 146-147 (2005), 593–
602.

[23] Yoshio Tanaka and Iwao Yoshioka, “Spaces determined by point-countable
covers, and singly bi-quasi-k-spaces,” Questions Answers Gen. Topology 23
(2005), no. 1, 35–54.

[24] Iwao Yoshioka, “On spaces with point-countable k-systems,” Comment.
Math. Univ. Carolin. 45 (2004), no. 4, 749–765.

Department of Mathematics; Tokyo Gakugei University; Tokyo
184-8501, Japan

E-mail address: ytanaka@u-gakugei.ac.jp




