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A SHORT PROOF OF A THEOREM OF MORTON
BROWN ON CHAINS OF CELLS

VLADIMIR USPENSKIJ

Abstract. Suppose that a topological space X is the union
of an increasing sequence of open subsets each of which is
homeomorphic to the Euclidean space Rn. Then X itself
is homeomorphic to Rn. This is an old theorem of Morton
Brown. We observe that this theorem is an immediate con-
sequence of two other theorems of Morton Brown concerning
near homeomorphisms and cellular sets.

1. Introduction

Consider the following theorem due to Morton Brown [4]:

Theorem 1.1. Suppose that a topological space X = ∪∞i=0Ui is the
union of an increasing sequence of open subsets Ui each of which is
homeomorphic to the Euclidean space Rn. Then X is homeomor-
phic to Rn.

The aim of this paper is to give a very short proof of this theorem,
based on two other theorems by Morton Brown concerning near
homeomorphisms and cellular sets. These theorems read:

Theorem 1.2 ([3], [1], [6, Theorem 6.7.4]). Let (Xn) be an inverse
sequence of compact metric spaces with limit X∞. If all bonding
maps Xk → Xn are near homeomorphisms, then so are the limit
projections X∞ → Xn.
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Theorem 1.3 ([2], [5, Theorem 5.2, propositions 6.2 and 6.5]). Let
F be a closed subset of the n-sphere Sn. The following conditions
are equivalent:

(1) F is cellular;
(2) the quotient map Sn → Sn/F (which collapses F to a point)

is a near homeomorphism;
(3) the quotient space Sn/F is homeomorphic to Sn.

Corollary 1.4. Let f : Sn → Sn be a map of the n-sphere onto
itself such that only one point-inverse of f has more than one point.
Then f is a near homeomorphism.

Let us explain the notions used in these theorems. A map X → Y
between compact spaces is a near homeomorphism if it is in the
closure of the set of all homeomorphisms from X onto Y , with
respect to the compact-open topology on the space C(X, Y ) of all
maps from X to Y . A (closed) n-cell is a space homeomorphic to
the closed n-cube [0, 1]n. A compact subset C of a Hausdorff n-
manifold M is cellular if it has a base of open neighborhoods in M
homeomorphic to Rn, or, equivalently, if it is the intersection of a
decreasing sequence (Bk) of closed n-cells such that each Bk+1 lies
in the interior of Bk.

Cellular sets were used in the beautiful paper [2] to prove the
Generalized Schoenflies Theorem [5, Theorem 6.6]. For that, a
stronger version of Corollary 1.4 was needed: every onto self-map
of Sn with two non-trivial point-inverses is a near homeomorphism.
This requires a little more effort. For our purposes, the elementary
Theorem 1.3 suffices. To make the paper less dependent on external
sources, we show in section 3 that Theorem 1.3 readily follows from
Bing’s Shrinking Criterion.

2. A short proof of Theorem 1.1

The proof can be made one line: consider one point compactifica-
tions, and apply Corollary 1.4 and Theorem 1.2. We now elaborate.

Let X = ∪∞i=0Ui be the union of an increasing sequence of open
subsets Ui each of which is homeomorphic to the Euclidean space
Rn. Note that X must be Hausdorff: any two points x, y ∈ X
lie in a Hausdorff open subspace Uk. Let X∞ = X ∪ {∞} be the
one point compactification of X. Let Fi be the complement of Ui
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in X∞. Let Xi = X∞/Fi be the space obtained by collapsing the
closed set Fi to a point. Then Xi is a one-point compactification
of Ui and hence homeomorphic to the n-sphere Sn.

Since the sequence (Fi) is decreasing, there are natural maps
pj

i : Xj → Xi for j > i, and we get an inverse sequence (Xi) of
n-spheres. Since the quotient maps p∞i : X∞ → Xi separate points
of X∞, the limit of this sequence can be identified with X∞.

The maps pj
i : Xj → Xi have at most one non-trivial point-

inverse. According to Corollary 1.4, they are near homeomor-
phisms. In virtue of Theorem 1.2, so is the map p∞0 : X∞ → X0. It
follows that X∞ is homeomorphic to Sn. Hence, X is homeomor-
phic to Rn.

3. Shrinkable decompositions and cellular sets

To make the paper more self-contained, we show how to deduce
Theorem 1.3 from Bing’s Shrinking Criterion.

A decomposition of a set is a cover by disjoint subsets. If G is a
decomposition of X, a subset of X is G-saturated if it is the union
of some elements of G.

A decomposition G of a compact Hausdorff space X is upper
semicontinuous if one of the following equivalent conditions holds:
(1) there exists a compact Hausdorff space Y and a continuous
map f : X → Y such that G = {f−1(y) : y ∈ Y }; (2) the set⋃{g × g : g ∈ G} is closed in X ×X; (3) for every closed subset F
of X its G-saturation

⋃{g ∈ G : g meets F} is closed. An upper
semicontinuous decomposition G of a compact metric space X is
shrinkable if for every ε > 0 and every cover U of X by G-saturated
open sets there exists a homeomorphism h of X onto itself such
that: (1) for every g ∈ G the set h(g) has diameter < ε; (2) for
every x ∈ X there exists U ∈ U such that x ∈ U and h(x) ∈ U .

Bing’s Shrinking Criterion ([5, Theorem 5.2], [6, Theorem
6.1.8]). An onto map f : X → Y between compact metric spaces is
a near homeomorphism if and only if the decomposition {f−1(y) :
y ∈ Y } of X is shrinkable.

Proof of Theorem 1.3: (1) ⇒ (2). If F is a cellular set in a
compact n-manifold M , the decomposition GF of M whose only
non-singleton element is F is shrinkable. This easily follows from
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the fact that for every ε > 0 there exists a homeomorphism of the
n-cube [0, 1]n onto itself which is identity on the boundary and
shrinks the subcube [ε, 1 − ε]n to a set of small diameter. Bing’s
Shrinking Criterion implies that the quotient map M → M/F is a
near homeomorphism.

(2) ⇒ (3) is trivial.
(3) ⇒ (1). Suppose Sn/F is homeomorphic to Sn. We want

to prove that F is cellular. Let U be an open neighborhood of
F . Denote the quotient map Sn → Sn/F by p. Let a ∈ Sn/F
be the point onto which F collapses, p(F ) = {a}. Then p(U) is
an open neighborhood of a. Since Sn/F topologically is a sphere,
there exists a neighborhood V of a such that V ⊂ p(U) and the
complement C of V in Sn/F is cellular. Then p−1(C) is cellular in
Sn (note that p restricted to Sn \ F is a homeomorphism).

From the first part of the proof (implication (1) ⇒ (2)), it follows
that the complement of any cellular subset of Sn is homeomorphic
to Rn. Thus, Sn \ p−1(C) = p−1(V ) is homeomorphic to Rn, and
it is an open neighborhood of F which is contained in U . Since U
was arbitrary, F is cellular. ¤
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