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SOME THEOREMS ON BASE-NORMALITY

KAORI YAMAZAKI

ABSTRACT. Corresponding to base-paracompactness due to
John E. Porter [“Base-paracompact spaces,” Topology Appl.
128 (2003), 145-156], we previously introduced base-normality
of a space in “Base-normality and product spaces,” [Topol-
ogy Appl. 148 (2005), 123-142]. In this paper, we prove the
following theorems. (1) For a base-normal space X and an
Fy-set A of X, if w(A) = w(X), then A is base-normal. (2)
Bing’s examples G and H are base-normal. (3) For the o-
product X of countably many spaces X;, i € N, satisfying
that finite subproducts II;<,X;, n € N, are base-normal, X
is normal if and only if X is base-normal.

1. INTRODUCTION

Throughout this paper, all spaces are assumed to be T} topolog-
ical spaces. The symbol N denotes the set of all natural numbers.
Let k denote an infinite cardinal and w the first infinite cardinal.
The cardinality of a set X is denoted by |X|. As usual, a cardinal
is the initial ordinal and an ordinal is the set of smaller ordinals.
Bases and neighborhood bases mean open bases and open neigh-
borhood bases, respectively. For a space X, w(X) stands for the
weight of X. For a space X and a subspace A of X, the closure of
A in X is denoted by A. For a collection A of subspaces of a space
X, {Z A€ .A} is denoted by A.
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In [11], John E. Porter introduced the notion of base-paracom-
pactness and proved some fundamental theorems. A space X is said
to be base-paracompact if there is a base B for X with |B| = w(X)
such that every open cover of X has a locally finite refinement by
members of B. In a previous paper [15], we introduced the notion
of base-normality and studied base-normality of products with a
metric factor, countable products, and X-products. A space X is
said to be base-normal if there is a base B for X with |B| = w(X)
such that every binary (= two-element) open cover {Uy, U1} of X
admits a locally finite cover B’ of X by members of B such that B’
refines {Uy, U1 }. For a Hausdorff space X, X is base-normal and
paracompact if and only if X is base-paracompact [15]; this fact
will be used without reference throughout the paper.

In this paper, we first show that an F,-set A of a base-normal
space X with w(A) = w(X) is base-normal. This result corresponds
to a theorem on base-paracompact spaces X due to Porter [11, sec-
tion 2]. Next, we give some basic examples of base-normal spaces;
in particular, we show that every normal almost compact space and
every ordinal space are base-normal. We also show that Bing’s ex-
amples G and H are base-normal. Finally, we study base-normality
from viewpoints of the o-product of countably many spaces. Some
open questions are also given.

2. F,-SETS OF BASE-NORMAL SPACES

In this section, we show that the theorems on base-paracom-
pactness due to Porter in [11, section 2] can be extended to those
on base-normality. Recall the following;:

Theorem 2.1 (Porter [11]). Let X be base-paracompact. If A C X
is an Fy-set with w(A) = w(X), then A is base-paracompact.

It is unknown whether the condition “w(A) = w(X)” in Theorem
2.1 can be removed or not [11]. In fact, to show that the hereditarity
of F,-sets is equivalent is to solve positively the open problem posed
by Porter [11]: “Is any paracompact space base-paracompact?”

For base-normal spaces, we have the following Theorem 2.2. As
was shown in [15], it is consistent with ZFC that the fact “base-
normal spaces are not hereditary to clopen subsets” holds. So, the
condition “w(A) = w(X)” in Theorem 2.2 cannot be removed.
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Theorem 2.2. Let X be base-normal. If A C X is an F,-set with
w(A) = w(X), then A is base-normal.

Since every Fy-set of a paracompact space is paracompact, for a
Hausdorff space X, Theorem 2.2 refines Theorem 2.1.

In [11], Theorem 2.1 is observed as a corollary to a more general
theorem as follows:

Theorem 2.3 (Porter [11]). If X is paracompact and the countable
union of closed base-paracompact sets relative to X, then X is base-
paracompact.

Here, a subspace A of a space X is said to be base-paracompact
relative to X if there is a base B for X with |B| = w(X) such that
every open (in X) cover of A has a locally finite (in X) partial
refinement B’ C B such that A C B’ [11].

Similarly, we prove Theorem 2.2 by giving Theorem 2.5. Our
proof is based on that of Porter [11, section 2], with a slight modi-
fication. We call a subspace A of a space X base-normal relative to
X if there is a base B for X with |B| = w(X) such that for every
binary open (in X) cover {Uy, Ui} of A there is a locally finite (in
X) family B C B such that B’ is a partial refinement of {Up, Uy}
and A C JB.

Note that X is base-normal if and only if there is a base B for
X with |B| = w(X) such that every locally finite open cover U of
X admits a locally finite cover B’ of X by members of B such that
B’ refines U. The proof of the following lemma is straightforward
and left to the reader.

Lemma 2.4. The following statements hold.

(1) If X is a base-normal space and F' is a closed subspace of X,
then F is base-normal relative to X.

(2) Let X be a normal space and F a closed subspace of X. Then,
F is base-normal relative to X if and only if there is a base B for
X with |B] = w(X) such that for every locally finite open (in X)
cover U of F there is a locally finite (in X) family B’ C B such that
B’ is a partial refinement of U and F C |JB'.

Theorem 2.5. If X is normal and the countable union of closed
base-normal sets relative to X, then X 1is base-normal.



392 K. YAMAZAKI

Proof: The proof is based on that of [11, Theorem 2.4].

Let X be a normal space and X = |J;_, Fi, where each Fj is
closed base-normal relative to X. By Lemma 2.4(2), we can take a
base B; for X with |B;| = w(X) such that every locally finite open
cover U (in X) of F; admits a locally finite (in X) family B’ C B;
such that B’ is a partial refinement of ¢, and F; C (JB'. Since
Ui<o Bi is a base for X with |, Bi| = w(X), it suffices to show
that J,,, B; witnesses base-normality of X. To prove this, let U
be a binary open cover of X. There is a locally finite (in X) family

Ao C By such that /TOX is a partial refinement of U, and Fy C |J Ap.
Since AgU{X — Fp} is a locally finite open cover of a normal space
X, there is a locally finite open star-refinement of Ay U {X — Fp}
[6, 5.1.14]. Repeating this process, we can inductively define locally
finite (in X) families A,, C B, n < w, satisfying that 4, is a partial
refinement of A} for each ¢ < n, and .%TnX is a partial refinement
of U, and we can define locally finite open covers A, n < w, of X
such that A} is a star-refinement of A, U{X — F},} and A}, refines
A for each i < n. Foreach j <w,set V; ={VeA  :VgU
for every U € J,; Ai}. Define V =J,_,,V;. Then, V is a locally

J _
finite cover of X by members of (J,_, B;, and V refines ¢/. Thus,

X is base-normal. This completes the proof. O

Proof of Theorem 2.2: Let X be base-normal and A an F,-set
of X with w(A) = w(X). Let A = {J, ., Fn, where Fj;, n < w,
are closed in X. Fix n < w. By Lemma 2.4(1), F}, is base-normal
relative to X. Now, we can show that F), is base-normal relative
to A. Since normality is hereditary with respect to Fj-sets, it
follows from Theorem 2.5 that A is base-normal. This completes
the proof. O

3. EXAMPLES OF BASE-NORMAL SPACES
A Tychonoff space X is said to be almost compactif |fX—-X| <1,
where SX is the Stone-Cech compactification of X.

Proposition 3.1. FEvery normal almost compact space is base-
normal.
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Proof: Let X be a normal almost compact space and B a base
for X with |B| = w(X). Put

B*:Bu{X—UE . By,---,B, € B, n<w}.

i<n

Clearly, |B*| = w(X) and B* is a base for X. It is not difficult
to show that B* witnesses base-normality of X, because either one
of any two disjoint closed sets is compact. This completes the
proof. O

As another example of base-normal spaces, we have the following
result. Every ordinal is equipped with the usual order topology. As
usual, ¢f(k) stands for the cofinality of an ordinal .

Proposition 3.2. FEvery ordinal is base-normal.

Proof: Let k be an ordinal. If cf(k) < w, then k is regular
Lindeldf, and it follows from [11, Theorem 3.5] that x is base-
paracompact; therefore, x is base-normal. Assume cf(k) > w. In
this case, k is almost compact. Indeed, every real-valued continuous
function f : k — R is constant on a tail. Hence, either one of any
two disjoint closed subsets of k is bounded, that is, compact. So, it
follows from Proposition 3.1 that « is base-normal. This completes
the proof. O

It is unknown whether there exist ZFC examples of normal non-
base-normal spaces or not (Question 5.2: see footnote, page 12).
Related to this problem, we show that some classical examples of
R. H. Bing [2] are base-normal. To prove this, we first give a tech-
nical lemma. For a topological space X and a subspace A of X,
X 4 is the set X equipped with the topology {U UV : U is open in
X,and V C X — A}. For z € X, x(x) is the character of x in X,
that is, the smallest cardinal number of the form |B,|, where B, is
a neighborhood base of x in X.

Lemma 3.3. Let X be a topological space, A a subspace of X,
and assume w(X ) = max{24 - sup,c 4 x(z), |X — A|}. If X4 is
normal, then X 4 is base-normal. Therefore, if X o is paracompact
Hausdorff, then X s is base-paracompact.
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Proof: Assume X4 is normal. For z € A, we denote by B, a
neighborhood base of z in X with |B;| = x(z). Set

B:{ UBC"’: A C A, BIEBx,IEA/}U{{z}:ZEX—A}.

zeA’

Then, B is a base for X 4, and it follows from the assumption that
|B] = w(Xa). To see that B witnesses base-normality for X 4, let
Fy and F} be disjoint closed subsets of X 4. Since X4 is normal,
there is an open cover {Uy,U;} of X4 such that 70XA NE =0

and 71XA N EFy = 0. For every a € Uy N A, take B, € B, such that
B, C Uy. Similarly, for every b € Uy N A, take By € By such that
By cUp. Set Vo = U{Bs :a € UyNA} and Vi = J{By : b €
UrNA}. Then, B/ = {Vp,Vi} U{{z}:2€ X —VhUVi} is a locally
finite cover of X 4 consisting of elements of B, and for every W € B’
we have W4 N Fy =0 or W N E = 0. Hence, it follows that
X 4 is base-normal, and this completes the proof. O

Remark 3.4. It follows from Lemma 3.3 that the Michael line Rg
is base-paracompact, which had been noted in [10].

Let k be an uncountable cardinal, Dy = {0,1} for each s €
2% Let X = I4eoxDs and A = {f, : a € k}, where f, € X
is defined by fo(s) = 1 if a € s, and f,(s) = 0 otherwise, for
s € 2%. Then, the space X4 is Bing’s ezample G ([2]; see also [6,
5.1.23]). Bing’s example H ([2]; see also [6, 5.5.3(a)]) is constructed
as follows : Consider the set Z = (A x {0}) U J,;en(X x {1/3}),
and generate a topology on Z taking as a base at a point (z,0) the
sets {(z,0)} U ;2 (U x {1/i}), where U is a neighborhood of z
in X4 and k£ € N, and letting all the remaining points be isolated.
The metacompact version of Bing’s example due to Michael is the
space X constructed as follows ([8]; see also [6, 5.5.3.(c)]): let
S be the subspace of the space X4, where X4 is Bing’s example
G consisting of all points of X which have at most finitely many
coordinates distinct from zero, and consider the space Xo = SU A
with the subspace topology of X 4. These examples are known as
normal and non-collectionwise Hausdorff spaces.

Theorem 3.5. Bing’s examples G and H and the metacompact
version of Bing’s example due to Michael are base-normal.
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Proof: Let X 4 be Bing’s example G constructed as above. Then,
we can see that |[A| = k, supyey x(2) = 2%, | X — A] = 2%, and
w(X4) = 22", Hence, it follows from Lemma 3.3 that G is base-
normal. A similar argument works for Bing’s example H. Let
Xo = S U A be the metacompact version of Bing’s example due to
Michael constructed as above. Then, |A] = k, sup,c4 x(z) = 2%,
| Xo — A| = |S| = 2%, and w(Xp) = 2%. Apply Lemma 3.3. O

4. BASE-NORMALITY AND o-PRODUCTS

Previously, in [15], we proved theorems on base-normality of
products with a metric factor, countable products, and X-products.
In this section, we give a theorem on the o-product of countably
many spaces by applying the method given in [15].

Let us recall the definition of o-products from [5]. Let Q be a
set with || > w, X = [I,cqX, a product space, and p = (p,) a
fixed point of X. The subspace 0 = {z = (z,) € X : {a € Q:
To # Pa)| < w} of X is called the o-product of spaces X,, a € Q,
(about p). For collections A and B of subsets of a space X, we set
ANB={ANB:Ac A BeB}and NA = {1, A4 : A4 ¢
A i=1,---,n, neN}L

The “only if” part of the following theorem was proven by Hui
Teng [13], which had been given by Keiko Chiba (see [3]) assuming
further countable paracompactness of finite subproducts II;<,, X,
n € N, and the “if” part was independently proven by Chiba in [4]
and Teng in [13].

Theorem 4.1 (Chiba [3], [4]; Teng [13]). Let X be the o-product
of countably many spaces X;, i € N, and assume finite subproducts
IL;<,Xi, n € N, are normal. Then, X is normal if and only if X
1s countably paracompact.

Note that it is unknown whether the following holds or not: For
the o-product X of spaces X,, a € 2, satisfying that all finite
subproducts Iye5Xq, 0 € [Q<¥, are normal, X is normal if and
only if X is countably paracompact.

Theorem 4.2. Let X be the o-product of countably many spaces
Xi, 1 € N, and assume finite subproducts 11;<,, X;, n € N, are base-
normal. Then, X is normal if and only if X is base-normal.
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To prove this, we need the following:

Lemma 4.3 ([15, Lemma 3.1]). Let X be a base-normal space, and
Bx a base which witnesses base-normality for X. Let U be a locally
finite open cover of X, and R°, R' and K closed subsets of X such
that RN K = 0, where R = R° N R'. Then, there is a locally
finite cover B of X by members of Bx AU satisfying the following
conditions: for every B € B,

(@) BONR=0) = BNR'=0) or BNR'=1;
(b)) BNR#0) = BNK =4.

Proof of Theorem 4.2: The proof is based on that of [15, Theorem
4.1]. Let X be the o-product of countably many spaces X;, i € N,
and assume finite subproducts II;<, X;, n € N, are base-normal.
We may assume |X;| > 2 for every ¢ € N. Assume X is normal.
We set X = II;<,X; for each n € N. Let p, : X — X ™) he
the restriction of the natural projection 7, : [L;enX; — X®) to X.
Note that p,, is open and onto for n € N. The map 7r§- X0 - X0
stands for the natural projection for j < and ¢,j € N.

For every n € N, let G,, be a base which witnesses base-normality
for X(™. For later use, for n € N, we set

G =Gn U (7_1) " (Gn1) U (752) " (Gn2) U+ U (a1) T (G),
and
G: = N\G,.

Define G = |J,cn Py (G2). Since |G| < suppenyw(X™) = w(X)
and @G is a base for X, we shall show that G witnesses base-normality
for X.

To prove this, let {Up, U1} be a binary open cover of X. As
usual, for every n € N and every ¢ = 0, 1, set

Wi(n) = U {W: W is open in XM pl (W) Ui}

and W(n) = W°n) UW(n). Then, as in a proof in [4] and [13],
{p,Y(W(n)) : n € N} is an increasing open cover of X. It follows
from Theorem 4.1 that X is countably paracompact. Hence, take
an increasing open cover {G,, : n € N} of X such that GTLX -
P L(W(n)) for every n € N.
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For every n € N, define
Hn = U {H : H is open in X(n)a p'r:l(H) - Gn}

Then, {p,,}(H,) : n € N} is an increasing open cover of X satisfying
that H," C W(n).
CLAIM 1. There are locally finite covers B(n), n € N, of X

where each B(n) consists of members of G, such that the following
conditions are satisfied:

(a) for n € N with n > 1, p;*(B(n)) refines p, ', (B(n —1));
(b) for n € N and B € B(n),
—__x(n) —x(n)
BCW(n) = BY cWon) oo B < Win);
(c¢) for n € N and B € B(n),

__x(n) —xn)  ___x(n)
B " ¢wmn = B nH, =0

Proof of Claim 1: Put X = X1,
Bx =G, U={Xi}, R"=X;-W°(1),

5 (D)
R =X, -wW'(1), K=H" .

(Hence, we have R = X; — W(1).) Apply Lemma 4.3 and define
the resulting cover B by B(1).

Next, assume B(n) has been constructed so as to satisfy condi-
tions (a), (b), and (c¢) above. To apply Lemma 4.3, we put

X=X By =G,1, U= (WZ“)_l(B(n)),
RY — x(nt+l) WO(TL + 1>’ R = x(nt+l) Wl(n + 1),

x (n+1)
K = Hn+1
(Hence, we have R = Xt — W (n + 1).) Define the resulting
cover B by B(n + 1). This completes the proof of Claim 1. O

For every n € N, set

A(n)={BeB(n): BC W(n)} and A'(n)=B(n)— A(n).
Then, for every n € N, we have
(1) rot(UA e+ D) cp (UA ).

To show this, let 2 € p,;(UA(n + 1)). Take B € A'(n + 1)
such that z € p,1;(B). By (a) of Claim 1, there is B’ € B(n)
such that p;_lﬂ(B) C p,Y(B’). By the definition, we have B ¢
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W (n + 1); hence, p;il(B) s p;}rl(W(n +1)). Since {p,,}(W(n)) :
n € N} is increasing, it follows that p,,*(B’) ¢ p;;}(W(n)). Hence,
B' ¢ W(n), that is, B’ € A'(n). Thus, = € p,;'(JA(n)). This
completes the proof of (1).

Define
Lo=pi' (A1), and £, =p, ' (A'(n)) A ppii(An+1))

for n € N. Set £ = Un>0 L,. Since each member of £ is that of G,
to complete the proof, it suffices to show the following claims:

CLAIM 2. For every L € L, either ¥ C Up or ¥ C U; holds.

Proof of Claim 2: Let L € L. Then, L C p,,}(A) for some n € N
and A € A(n). Since A € B(n) and A C W (n), it follows from (b)

—__x(n) —x(n)
of Claim 1 that A~ C WO(n) or AT e W1(n) holds. Now, we
can show that
_ —_—X _ xn) .
r* C pnt(A) Cp,_Ll(AX ) Cp,{(Wi(n)) CU; for i =0 or 1.
This completes the proof of Claim 2. U

CrAM 3. L is a cover of X.

Proof of Claim 3: Let x € X. Since {p,'(H,) : n € N} is a cover
of X, take n € N such that € p,!(H,). Since B(n) is a cover
of X there is B € B(n) such that p,(z) € B. As BN H,, # 0,
it follows from (¢) of Claim 1 that B C W(n); hence, B € A(n).
Thus, z € p,'(JA(n)). Now, let m be the minimum m (< n)
such that p,,(z) € [JA(m). Then, either z € Jp; (A(1)) or z €
U (Am)) — UppLy (A(m — 1)) holds. 1f z € Up; (A(1)), we
clearly have € |JLo. So, we may assume x € |Jp,,!(A(m)) —
Up, i (A(m — 1)). Tt follows from X = (Up,';(A(m — 1)) U
(Upp i (A'(m — 1)) that = € Up,L (A (m — 1)). Take B’ €
A'(m—1) and B € A(m) such that = € p.,' | (B")Np;,}(B). Hence,
we have x € |J Ly,—1. This completes the proof of Claim 3. O

CrAam 4. L is locally finite in X.

Proof of Claim 4: Let x € X. Since {p,'(H,) : n € N} is an
increasing open cover, take m € N and a neighborhood U of p,,(x)
in X such that p;,}(U) C p,;}(H,,). Since each L; is locally finite

in X, it suffices to show that (J;-,, £; is locally finite at z. The
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following holds.
(2) un(|JA(m)) =0.

To prove (2), first prove (|JA'(m)) N Hy, = 0 by using (c) of Claim
1. Since U C Hp,, we have UN (|JA'(m)) = 0. This completes the
proof of (2).

To finish the proof of Claim 4, it suffices to show that

(3) p (U)NL =0 forevery L€ U L;.

j=>m

To prove (3), assume to the contrary that p,,'(U) N L # @ for some
L € L£; with j > m. Then, L is expressed as L = pj_l(B’) ﬂpj_il (B)
for some B’ € A'(j) and B € A(j + 1). Tt follows from (1) that

0 # p'(U) NP (B) NP (B) C oyt (U) N (LU AG))
C pn (U) N (A (m).

Hence, UN (|JA'(m)) # 0, which contradicts (2). Thus, (3) holds.
This completes the proof of Claim 4. (I

Claims 2, 3, and 4 complete the proof of Theorem 4.2. O

A space X is said to be base-k-paracompact if there is a base B for
X with |B| = w(X) such that every open cover of X of cardinality
at most k has a locally finite refinement by members of B [15].
In particular, a space X is said to be base-countably paracompact
if X is base-w-paracompact. The example of a normal non-base-
normal space, introduced in [15], is countably paracompact but
not base-countably paracompact. For a space X is normal and
base-countably paracompact if and only if X is base-normal and
countably paracompact [15, Proposition 2.2].

By Theorems 4.1 and 4.2, we have:

Corollary 4.4. Let X be the o-product of countably many spaces
Xi, 1 € N, and assume finite subproducts 11;<, X;, n € N, are base-
normal. Then, the following statements are equivalent.

(1) X is normal,

(2) X is countably paracompact,
(3) X is base-normal;
(4)

X is base-countably paracompact.
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5. PROBLEMS AND RELATED COMMENTS

In this section, we introduce some open problems. In [11, The-
orem 3.6 and Corollary 3.8], Porter proved that base-paracom-
pactness is an inverse invariant of perfect mappings. Hence, para-
compact M-spaces (= paracompact p-spaces) are base-paracompact.
The proofs of the above facts in [11] essentially show that if f :
X — Y be a perfect map onto a base-k-paracompact space Y and
w(X) < kK, then X is base-(k)-paracompact. Hence, we have the
following;:

Question 5.1 ([15]). Is base-s-paracompactness an inverse invari-
ant of perfect mappings?

The (necessarily consistent) example of normal non-base-normal
spaces introduced in [15] is normal non-collectionwise Hausdorff.
Hence, it is natural to ask the following:

Question 5.2.! Are there ZFC examples of normal non-base-normal
spaces?

Question 5.3. Is any normal countably compact space base-normal?

Proposition 3.1 can be seen as a partial answer to Question 5.3.

Porter [11, Question 4.2] asked if any paracompact GO-space is
base-paracompact. For our case, we ask

Question 5.4. Is any GO-space base-normal?

A version of the Morita-Rudin-Starbird Theorem is obtained in
[15, Theorem 1.1]: For a base-normal space X and a metrizable
space Y, if the product space X X Y is normal, then X x Y
is base-normal. Recently, Yukinobu Yajima [14, Corollary 6.5]
proved the following: For a base-paracompact space X and a base-
paracompact o-space Y, if the product space X XY is paracompact
and rectangular, then X x Y is base-paracompact. This is obtained
from the following important result [14, Theorem 4.1]: For a space
X, a paracompact o-space Y, and a normal open cover O of X XY,

1Graury Gruenhage has constructed a ZFC example of a countably compact
LOTS which is not base-normal. Hence, his example answers Question 5.2
affirmatively, and questions 5.3 and 5.4 negatively.
(See http://web6. duc.auburn. edu/ gruengf/preprints/basepara. pdf .)
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O has a o-locally finite refinement consisting of cozero-rectangles
if and only if O has a locally finite (and o-discrete) refinement,
consisting of cozero-rectangles, which has a shrinking consisting of
zero-rectangles. A product space X x Y of spaces X and Y is said
to be rectangular if every finite cozero-set cover of X x Y has a
o-locally finite refinement consisting of cozero-rectangles of X x Y
[9], and a subspace A of the product space X x Y is said to be a
cozero-rectangle (zero-rectangle, resp.) if A is denoted by A = BxC
by using cozero-sets (zero-sets, resp.) B and C of X and Y, respec-
tively. Hence, it should be noted that by using [14, Theorem 4.1],
we can show: For a base-normal space X and a base-paracompact
o-space Y, if the product space X x Y is normal and rectangu-
lar, then X x Y is base-normal. This result, together with the fact
“every normal product X xY of a normal space X and a metrizable
space Y is rectangular” due to B. A. Pasynkov [9], also implies [15,
Theorem 1.1]. On the other hand, it is unknown whether a normal
product X x Y of a normal space X and a paracompact o-space Y
(more generally, a Lasnev space Y') is rectangular or not. Hence, a
natural question arises:

Question 5.5. Let X be a base-normal space. Let Y be a base-
paracompact o-space, in particular, a base-paracompact LaSnev
space. Assume X X Y is normal. Is X x Y base-normal?

By using [11, Theorem 3.6], we can extend [15, Corollary 6.6]
as follows: For a base-paracompact space X and a paracompact
M-space (= a paracompact p-space) Y, the product space X x Y is
normal if and only if X x Y is base-paracompact. Being motivated
by this fact, we have another question.

Question 5.6. Let X be a base-normal space. Let Y be a para-
compact M-space, in particular, a compact space. Assume X X Y
is normal. Is X x Y base-normal?

Remark 5.7. If Question 5.1 is affirmative for x = w, then Ques-
tion 5.6 is also affirmative. To show this, let X be a base-normal
space and Y a paracompact M-space, and assume X X Y is normal.
Let f: Y — Z be a perfect map onto a metrizable space Z. First
assume Z is non-discrete. Then, X is countably paracompact. It
follows from [15, Theorem 6.1] that X x Z is base-countably para-
compact. Hence, if Question 5.1 is affirmative for kK = w, it follows



402 K. YAMAZAKI

that X x Y is base-countably paracompact. By [15, Proposition
2.2], we have X x Y is base-normal. Next, we assume Z is dis-
crete and f~!(z) is non-discrete for some z € Z. Since f~1(2) is
non-discrete compact and X x f~!(z) is normal, it follows from
[12, Theorem 3.12] that X is countably paracompact. In the case
where Z is non-discrete, we have X X Y is base-normal. Finally,
we assume Z is discrete and f~!(z) is discrete for every z € Z. In
this case, since Y is discrete, X x Y is base-normal.

As a version of the Gul’ko-Rudin Theorem, we obtained in [15]
the following: Every X-product of metric spaces is base-normal.
In view of A. P. Kombarov’s theorem in [7], we have a natural
question.

Question 5.8. Let ¥ be a Y-product of paracompact M-spaces,
and assume Y is normal. Is ¥ base-normal?

We conclude this paper by asking;:

Question 5.9 ([15]). In the definition of base-normality, is it possi-
ble to replace “a locally finite cover B’” by “a o-locally finite cover
B'”?7 (Note that, for base-countably paracompact spaces, such a
replacement is possible.)

If Question 5.9 has an affirmative answer, the proofs of many
results related to base-paracompactness and base-normality could
be simplified.
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