Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics

Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT o by Topology Proceedings. All rights reserved.

SOME THEOREMS ON BASE-NORMALITY

KAORI YAMAZAKI

ABSTRACT. Corresponding to base-paracompactness due to John E. Porter ["Base-paracompact spaces," Topology Appl. 128 (2003), 145–156], we previously introduced base-normality of a space in "Base-normality and product spaces," [Topology Appl. 148 (2005), 123–142]. In this paper, we prove the following theorems. (1) For a base-normal space X and an F_{σ} -set A of X, if w(A) = w(X), then A is base-normal. (2) Bing's examples G and H are base-normal. (3) For the σ -product X of countably many spaces X_i , $i \in \mathbb{N}$, satisfying that finite subproducts $\Pi_{i \leq n} X_i$, $n \in \mathbb{N}$, are base-normal, X is normal if and only if X is base-normal.

1. Introduction

Throughout this paper, all spaces are assumed to be T_1 topological spaces. The symbol $\mathbb N$ denotes the set of all natural numbers. Let κ denote an infinite cardinal and ω the first infinite cardinal. The cardinality of a set X is denoted by |X|. As usual, a cardinal is the initial ordinal and an ordinal is the set of smaller ordinals. Bases and neighborhood bases mean open bases and open neighborhood bases, respectively. For a space X, w(X) stands for the weight of X. For a space X and a subspace A of X, the closure of A in X is denoted by \overline{A} . For a collection A of subspaces of a space X, $\{\overline{A}: A \in A\}$ is denoted by \overline{A} .

²⁰⁰⁰ Mathematics Subject Classification. 54B05, 54B10, 54D15, 54D70.

Key words and phrases. base-normal, base-paracompact, Bing's examples, F_{σ} -sets, σ -products.

Supported by Grant-in-Aid for the Encouragement of Young Scientists (B) (No. 16740028) of Japan Society for the Promotion of Science.

In [11], John E. Porter introduced the notion of base-paracompactness and proved some fundamental theorems. A space X is said to be base-paracompact if there is a base \mathcal{B} for X with $|\mathcal{B}| = w(X)$ such that every open cover of X has a locally finite refinement by members of \mathcal{B} . In a previous paper [15], we introduced the notion of base-normality and studied base-normality of products with a metric factor, countable products, and Σ -products. A space X is said to be base-normal if there is a base \mathcal{B} for X with $|\mathcal{B}| = w(X)$ such that every binary (= two-element) open cover $\{U_0, U_1\}$ of Xadmits a locally finite cover \mathcal{B}' of X by members of \mathcal{B} such that $\overline{\mathcal{B}'}$ refines $\{U_0, U_1\}$. For a Hausdorff space X, X is base-normal and paracompact if and only if X is base-paracompact [15]; this fact will be used without reference throughout the paper.

In this paper, we first show that an F_{σ} -set A of a base-normal space X with w(A) = w(X) is base-normal. This result corresponds to a theorem on base-paracompact spaces X due to Porter [11, section 2]. Next, we give some basic examples of base-normal spaces; in particular, we show that every normal almost compact space and every ordinal space are base-normal. We also show that Bing's examples G and H are base-normal. Finally, we study base-normality from viewpoints of the σ -product of countably many spaces. Some open questions are also given.

2. F_{σ} -SETS OF BASE-NORMAL SPACES

In this section, we show that the theorems on base-paracompactness due to Porter in [11, section 2] can be extended to those on base-normality. Recall the following:

Theorem 2.1 (Porter [11]). Let X be base-paracompact. If $A \subset X$ is an F_{σ} -set with w(A) = w(X), then A is base-paracompact.

It is unknown whether the condition "w(A) = w(X)" in Theorem 2.1 can be removed or not [11]. In fact, to show that the hereditarity of F_{σ} -sets is equivalent is to solve positively the open problem posed by Porter [11]: "Is any paracompact space base-paracompact?"

For base-normal spaces, we have the following Theorem 2.2. As was shown in [15], it is consistent with ZFC that the fact "base-normal spaces are not hereditary to clopen subsets" holds. So, the condition "w(A) = w(X)" in Theorem 2.2 cannot be removed.

Theorem 2.2. Let X be base-normal. If $A \subset X$ is an F_{σ} -set with w(A) = w(X), then A is base-normal.

Since every F_{σ} -set of a paracompact space is paracompact, for a Hausdorff space X, Theorem 2.2 refines Theorem 2.1.

In [11], Theorem 2.1 is observed as a corollary to a more general theorem as follows:

Theorem 2.3 (Porter [11]). If X is paracompact and the countable union of closed base-paracompact sets relative to X, then X is base-paracompact.

Here, a subspace A of a space X is said to be base-paracompact relative to X if there is a base \mathcal{B} for X with $|\mathcal{B}| = w(X)$ such that every open (in X) cover of A has a locally finite (in X) partial refinement $\mathcal{B}' \subset \mathcal{B}$ such that $A \subset \bigcup \mathcal{B}'$ [11].

Similarly, we prove Theorem 2.2 by giving Theorem 2.5. Our proof is based on that of Porter [11, section 2], with a slight modification. We call a subspace A of a space X base-normal relative to X if there is a base \mathcal{B} for X with $|\mathcal{B}| = w(X)$ such that for every binary open (in X) cover $\{U_0, U_1\}$ of A there is a locally finite (in X) family $\mathcal{B}' \subset \mathcal{B}$ such that $\overline{\mathcal{B}'}$ is a partial refinement of $\{U_0, U_1\}$ and $A \subset \bigcup \mathcal{B}'$.

Note that X is base-normal if and only if there is a base \mathcal{B} for X with $|\mathcal{B}| = w(X)$ such that every locally finite open cover \mathcal{U} of X admits a locally finite cover \mathcal{B}' of X by members of \mathcal{B} such that $\overline{\mathcal{B}'}$ refines \mathcal{U} . The proof of the following lemma is straightforward and left to the reader.

Lemma 2.4. The following statements hold.

- (1) If X is a base-normal space and F is a closed subspace of X, then F is base-normal relative to X.
- (2) Let X be a normal space and F a closed subspace of X. Then, F is base-normal relative to X if and only if there is a base \mathcal{B} for X with $|\mathcal{B}| = w(X)$ such that for every locally finite open (in X) cover \mathcal{U} of F there is a locally finite (in X) family $\mathcal{B}' \subset \mathcal{B}$ such that $\overline{\mathcal{B}'}$ is a partial refinement of \mathcal{U} and $F \subset \bigcup \mathcal{B}'$.

Theorem 2.5. If X is normal and the countable union of closed base-normal sets relative to X, then X is base-normal.

Proof: The proof is based on that of [11, Theorem 2.4].

Let X be a normal space and $X = \bigcup_{i < \omega} F_i$, where each F_i is closed base-normal relative to X. By Lemma 2.4(2), we can take a base \mathcal{B}_i for X with $|\mathcal{B}_i| = w(X)$ such that every locally finite open cover \mathcal{U} (in X) of F_i admits a locally finite (in X) family $\mathcal{B}' \subset \mathcal{B}_i$ such that $\overline{\mathcal{B}'}$ is a partial refinement of \mathcal{U} , and $F_i \subset \bigcup \mathcal{B}'$. Since $\bigcup_{i<\omega} \mathcal{B}_i$ is a base for X with $|\bigcup_{i<\omega} \mathcal{B}_i| = w(X)$, it suffices to show that $\bigcup_{i<\omega} \mathcal{B}_i$ witnesses base-normality of X. To prove this, let \mathcal{U} be a binary open cover of X. There is a locally finite (in X) family $A_0 \subset \mathcal{B}_0$ such that $\overline{\mathcal{A}_0}^X$ is a partial refinement of \mathcal{U} , and $F_0 \subset \bigcup \mathcal{A}_0$. Since $A_0 \cup \{X - F_0\}$ is a locally finite open cover of a normal space X, there is a locally finite open star-refinement of $A_0 \cup \{X - F_0\}$ [6, 5.1.14]. Repeating this process, we can inductively define locally finite (in X) families $\mathcal{A}_n \subset \mathcal{B}_n$, $n < \omega$, satisfying that \mathcal{A}_n is a partial refinement of \mathcal{A}_i^* for each i < n, and $\overline{\mathcal{A}_n}^X$ is a partial refinement of \mathcal{U} , and we can define locally finite open covers \mathcal{A}_n^* , $n < \omega$, of Xsuch that \mathcal{A}_n^* is a star-refinement of $\mathcal{A}_n \cup \{X - F_n\}$ and \mathcal{A}_n^* refines \mathcal{A}_i^* for each i < n. For each $j < \omega$, set $\mathcal{V}_j = \{V \in \mathcal{A}_j : V \not\subset U\}$ for every $U \in \bigcup_{i < j} A_i$. Define $\mathcal{V} = \bigcup_{j < \omega} \mathcal{V}_j$. Then, \mathcal{V} is a locally finite cover of X by members of $\bigcup_{i<\omega} \mathcal{B}_i$, and $\overline{\mathcal{V}}$ refines \mathcal{U} . Thus, X is base-normal. This completes the proof.

Proof of Theorem 2.2: Let X be base-normal and A an F_{σ} -set of X with w(A) = w(X). Let $A = \bigcup_{n < \omega} F_n$, where F_n , $n < \omega$, are closed in X. Fix $n < \omega$. By Lemma 2.4(1), F_n is base-normal relative to X. Now, we can show that F_n is base-normal relative to A. Since normality is hereditary with respect to F_{σ} -sets, it follows from Theorem 2.5 that A is base-normal. This completes the proof.

3. Examples of base-normal spaces

A Tychonoff space X is said to be almost compact if $|\beta X - X| \le 1$, where βX is the Stone-Čech compactification of X.

Proposition 3.1. Every normal almost compact space is basenormal.

Proof: Let X be a normal almost compact space and \mathcal{B} a base for X with $|\mathcal{B}| = w(X)$. Put

$$\mathcal{B}^* = \mathcal{B} \cup \left\{ X - \bigcup_{i \le n} \overline{B_i} : B_0, \cdots, B_n \in \mathcal{B}, n < \omega \right\}.$$

Clearly, $|\mathcal{B}^*| = w(X)$ and \mathcal{B}^* is a base for X. It is not difficult to show that \mathcal{B}^* witnesses base-normality of X, because either one of any two disjoint closed sets is compact. This completes the proof.

As another example of base-normal spaces, we have the following result. Every ordinal is equipped with the usual order topology. As usual, $cf(\kappa)$ stands for the cofinality of an ordinal κ .

Proposition 3.2. Every ordinal is base-normal.

Proof: Let κ be an ordinal. If $cf(\kappa) \leq \omega$, then κ is regular Lindelöf, and it follows from [11, Theorem 3.5] that κ is base-paracompact; therefore, κ is base-normal. Assume $cf(\kappa) > \omega$. In this case, κ is almost compact. Indeed, every real-valued continuous function $f: \kappa \to \mathbb{R}$ is constant on a tail. Hence, either one of any two disjoint closed subsets of κ is bounded, that is, compact. So, it follows from Proposition 3.1 that κ is base-normal. This completes the proof.

It is unknown whether there exist ZFC examples of normal non-base-normal spaces or not (Question 5.2: see footnote, page 12). Related to this problem, we show that some classical examples of R. H. Bing [2] are base-normal. To prove this, we first give a technical lemma. For a topological space X and a subspace A of X, X_A is the set X equipped with the topology $\{U \cup V : U \text{ is open in } X, \text{ and } V \subset X - A\}$. For $x \in X$, $\chi(x)$ is the character of x in X, that is, the smallest cardinal number of the form $|\mathcal{B}_x|$, where \mathcal{B}_x is a neighborhood base of x in X.

Lemma 3.3. Let X be a topological space, A a subspace of X, and assume $w(X_A) = \max\{2^{|A|} \cdot \sup_{x \in A} \chi(x), |X - A|\}$. If X_A is normal, then X_A is base-normal. Therefore, if X_A is paracompact Hausdorff, then X_A is base-paracompact.

Proof: Assume X_A is normal. For $x \in A$, we denote by \mathcal{B}_x a neighborhood base of x in X with $|\mathcal{B}_x| = \chi(x)$. Set

$$\mathcal{B} = \Big\{ \bigcup_{x \in A'} B_x : A' \subset A, B_x \in \mathcal{B}_x, x \in A' \Big\} \cup \Big\{ \{z\} : z \in X - A \Big\}.$$

Then, \mathcal{B} is a base for X_A , and it follows from the assumption that $|\mathcal{B}| = w(X_A)$. To see that \mathcal{B} witnesses base-normality for X_A , let F_0 and F_1 be disjoint closed subsets of X_A . Since X_A is normal, there is an open cover $\{U_0, U_1\}$ of X_A such that $\overline{U_0}^{X_A} \cap F_1 = \emptyset$ and $\overline{U_1}^{X_A} \cap F_0 = \emptyset$. For every $a \in U_0 \cap A$, take $B_a \in \mathcal{B}_a$ such that $B_a \subset U_0$. Similarly, for every $b \in U_1 \cap A$, take $B_b \in \mathcal{B}_b$ such that $B_b \subset U_1$. Set $V_0 = \bigcup \{B_a : a \in U_0 \cap A\}$ and $V_1 = \bigcup \{B_b : b \in U_1 \cap A\}$. Then, $\mathcal{B}' = \{V_0, V_1\} \cup \{\{z\} : z \in X - V_0 \cup V_1\}$ is a locally finite cover of X_A consisting of elements of \mathcal{B} , and for every $W \in \mathcal{B}'$ we have $\overline{W}^{X_A} \cap F_0 = \emptyset$ or $\overline{W}^{X_A} \cap F_1 = \emptyset$. Hence, it follows that X_A is base-normal, and this completes the proof.

Remark 3.4. It follows from Lemma 3.3 that the Michael line $\mathbb{R}_{\mathbb{Q}}$ is base-paracompact, which had been noted in [10].

Let κ be an uncountable cardinal, $D_s = \{0,1\}$ for each $s \in 2^{\kappa}$. Let $X = \prod_{s \in 2^{\kappa}} D_s$ and $A = \{f_{\alpha} : \alpha \in \kappa\}$, where $f_{\alpha} \in X$ is defined by $f_{\alpha}(s) = 1$ if $\alpha \in s$, and $f_{\alpha}(s) = 0$ otherwise, for $s \in 2^{\kappa}$. Then, the space X_A is Bing's example G ([2]; see also [6, 5.1.23]). Bing's example H ([2]; see also [6, 5.5.3(a)]) is constructed as follows: Consider the set $Z = (A \times \{0\}) \cup \bigcup_{i \in \mathbb{N}} (X \times \{1/i\})$, and generate a topology on Z taking as a base at a point (x,0) the sets $\{(x,0)\} \cup \bigcup_{i=k}^{\infty} (U \times \{1/i\})$, where U is a neighborhood of x in X_A and $k \in \mathbb{N}$, and letting all the remaining points be isolated. The metacompact version of Bing's example due to Michael is the space X_0 constructed as follows ([8]; see also [6, 5.5.3.(c)]): let S be the subspace of the space X_A , where X_A is Bing's example G consisting of all points of X which have at most finitely many coordinates distinct from zero, and consider the space $X_0 = S \cup A$ with the subspace topology of X_A . These examples are known as normal and non-collectionwise Hausdorff spaces.

Theorem 3.5. Bing's examples G and H and the metacompact version of Bing's example due to Michael are base-normal.

Proof: Let X_A be Bing's example G constructed as above. Then, we can see that $|A| = \kappa$, $\sup_{x \in A} \chi(x) = 2^{\kappa}$, $|X - A| = 2^{2^{\kappa}}$, and $w(X_A) = 2^{2^{\kappa}}$. Hence, it follows from Lemma 3.3 that G is basenormal. A similar argument works for Bing's example H. Let $X_0 = S \cup A$ be the metacompact version of Bing's example due to Michael constructed as above. Then, $|A| = \kappa$, $\sup_{x \in A} \chi(x) = 2^{\kappa}$, $|X_0 - A| = |S| = 2^{\kappa}$, and $w(X_0) = 2^{\kappa}$. Apply Lemma 3.3.

4. Base-normality and σ -products

Previously, in [15], we proved theorems on base-normality of products with a metric factor, countable products, and Σ -products. In this section, we give a theorem on the σ -product of countably many spaces by applying the method given in [15].

Let us recall the definition of σ -products from [5]. Let Ω be a set with $|\Omega| \geq \omega$, $X = \prod_{\alpha \in \Omega} X_{\alpha}$ a product space, and $p = (p_{\alpha})$ a fixed point of X. The subspace $\sigma = \{x = (x_{\alpha}) \in X : | \{\alpha \in \Omega : x_{\alpha} \neq p_{\alpha}\}| < \omega\}$ of X is called the σ -product of spaces X_{α} , $\alpha \in \Omega$, (about p). For collections A and B of subsets of a space X, we set $A \wedge B = \{A \cap B : A \in A, B \in B\}$ and $A \cap A = \{\bigcap_{i=1}^{n} A_i : A_i \in A, i = 1, \dots, n, n \in \mathbb{N}\}$.

The "only if" part of the following theorem was proven by Hui Teng [13], which had been given by Keiko Chiba (see [3]) assuming further countable paracompactness of finite subproducts $\Pi_{i \leq n} X_i$, $n \in \mathbb{N}$, and the "if" part was independently proven by Chiba in [4] and Teng in [13].

Theorem 4.1 (Chiba [3], [4]; Teng [13]). Let X be the σ -product of countably many spaces X_i , $i \in \mathbb{N}$, and assume finite subproducts $\prod_{i \leq n} X_i$, $n \in \mathbb{N}$, are normal. Then, X is normal if and only if X is countably paracompact.

Note that it is unknown whether the following holds or not: For the σ -product X of spaces X_{α} , $\alpha \in \Omega$, satisfying that all finite subproducts $\Pi_{\alpha \in \delta} X_{\alpha}$, $\delta \in [\Omega]^{<\omega}$, are normal, X is normal if and only if X is countably paracompact.

Theorem 4.2. Let X be the σ -product of countably many spaces X_i , $i \in \mathbb{N}$, and assume finite subproducts $\prod_{i \leq n} X_i$, $n \in \mathbb{N}$, are basenormal. Then, X is normal if and only if X is base-normal.

To prove this, we need the following:

Lemma 4.3 ([15, Lemma 3.1]). Let X be a base-normal space, and \mathcal{B}_X a base which witnesses base-normality for X. Let \mathcal{U} be a locally finite open cover of X, and R^0 , R^1 and K closed subsets of X such that $R \cap K = \emptyset$, where $R = R^0 \cap R^1$. Then, there is a locally finite cover \mathcal{B} of X by members of $\mathcal{B}_X \wedge \mathcal{U}$ satisfying the following conditions: for every $B \in \mathcal{B}$,

(a)
$$B \cap R = \emptyset \implies \overline{B} \cap R^0 = \emptyset \text{ or } \overline{B} \cap R^1 = \emptyset;$$

$$(b) \ \overline{B} \cap R \neq \emptyset \implies \overline{B} \cap K = \emptyset.$$

Proof of Theorem 4.2: The proof is based on that of [15, Theorem 4.1]. Let X be the σ -product of countably many spaces X_i , $i \in \mathbb{N}$, and assume finite subproducts $\Pi_{i \leq n} X_i$, $n \in \mathbb{N}$, are base-normal. We may assume $|X_i| \geq 2$ for every $i \in \mathbb{N}$. Assume X is normal. We set $X^{(n)} = \Pi_{i \leq n} X_i$ for each $n \in \mathbb{N}$. Let $p_n : X \to X^{(n)}$ be the restriction of the natural projection $\pi_n : \Pi_{i \in \mathbb{N}} X_i \to X^{(n)}$ to X. Note that p_n is open and onto for $n \in \mathbb{N}$. The map $\pi_j^i : X^{(i)} \to X^{(j)}$ stands for the natural projection for $j \leq i$ and $i, j \in \mathbb{N}$.

For every $n \in \mathbb{N}$, let \mathcal{G}_n be a base which witnesses base-normality for $X^{(n)}$. For later use, for $n \in \mathbb{N}$, we set

$$\mathcal{G}'_n = \mathcal{G}_n \cup (\pi^n_{n-1})^{-1} (\mathcal{G}_{n-1}) \cup (\pi^n_{n-2})^{-1} (\mathcal{G}_{n-2}) \cup \dots \cup (\pi^n_1)^{-1} (\mathcal{G}_1),$$

and

$$\mathcal{G}_n^* = \bigwedge \mathcal{G}_n'$$
.

Define $\mathcal{G} = \bigcup_{n \in \mathbb{N}} p_n^{-1}(\mathcal{G}_n^*)$. Since $|\mathcal{G}| \leq \sup_{n \in \mathbb{N}} w(X^{(n)}) = w(X)$ and \mathcal{G} is a base for X, we shall show that \mathcal{G} witnesses base-normality for X.

To prove this, let $\{U_0, U_1\}$ be a binary open cover of X. As usual, for every $n \in \mathbb{N}$ and every i = 0, 1, set

$$W^{i}(n) = \bigcup \{W : W \text{ is open in } X^{(n)}, \ p_{n}^{-1}(W) \subset U_{i} \}$$

and $W(n) = W^0(n) \cup W^1(n)$. Then, as in a proof in [4] and [13], $\{p_n^{-1}(W(n)) : n \in \mathbb{N}\}$ is an increasing open cover of X. It follows from Theorem 4.1 that X is countably paracompact. Hence, take an increasing open cover $\{G_n : n \in \mathbb{N}\}$ of X such that $\overline{G_n}^X \subset p_n^{-1}(W(n))$ for every $n \in \mathbb{N}$.

For every $n \in \mathbb{N}$, define

$$H_n = \bigcup \{H : H \text{ is open in } X^{(n)}, \ p_n^{-1}(H) \subset G_n\}.$$

Then, $\{p_n^{-1}(H_n): n \in \mathbb{N}\}$ is an increasing open cover of X satisfying that $\overline{H_n}^X \subset W(n)$.

CLAIM 1. There are locally finite covers $\mathcal{B}(n)$, $n \in \mathbb{N}$, of $X^{(n)}$, where each $\mathcal{B}(n)$ consists of members of \mathcal{G}_n^* , such that the following conditions are satisfied:

- (a) for $n \in \mathbb{N}$ with n > 1, $p_n^{-1}(\mathcal{B}(n))$ refines $p_{n-1}^{-1}(\mathcal{B}(n-1))$;
- (b) for $n \in \mathbb{N}$ and $B \in \mathcal{B}(n)$,

$$B \subset W(n) \implies \overline{B}^{X^{(n)}} \subset W^0(n) \text{ or } \overline{B}^{X^{(n)}} \subset W^1(n);$$
(c) for $n \in \mathbb{N}$ and $B \in \mathcal{B}(n)$,

$$\overline{B}^{X^{(n)}} \not\subset W(n) \implies \overline{B}^{X^{(n)}} \cap \overline{H_n}^{X^{(n)}} = \emptyset.$$

Proof of Claim 1: Put $X = X_1$,

$$\mathcal{B}_X = \mathcal{G}_1, \quad \mathcal{U} = \{X_1\}, \quad R^0 = X_1 - W^0(1),$$

 $R^1 = X_1 - W^1(1), \quad K = \overline{H_1}^{X^{(1)}}.$

(Hence, we have $R = X_1 - W(1)$.) Apply Lemma 4.3 and define the resulting cover \mathcal{B} by $\mathcal{B}(1)$.

Next, assume $\mathcal{B}(n)$ has been constructed so as to satisfy conditions (a), (b), and (c) above. To apply Lemma 4.3, we put

$$X = X^{(n+1)}, \quad \mathcal{B}_X = \mathcal{G}_{n+1}, \quad \mathcal{U} = (\pi_n^{n+1})^{-1} (\mathcal{B}(n)),$$

 $R^0 = X^{(n+1)} - W^0(n+1), \quad R^1 = X^{(n+1)} - W^1(n+1),$
 $K = \overline{H_{n+1}}^{X^{(n+1)}}.$

(Hence, we have $R = X^{(n+1)} - W(n+1)$.) Define the resulting cover \mathcal{B} by $\mathcal{B}(n+1)$. This completes the proof of Claim 1.

For every $n \in \mathbb{N}$, set

$$\mathcal{A}(n) = \{ B \in \mathcal{B}(n) : B \subset W(n) \} \text{ and } \mathcal{A}'(n) = \mathcal{B}(n) - \mathcal{A}(n).$$

Then, for every $n \in \mathbb{N}$, we have

(1)
$$p_{n+1}^{-1}(\bigcup \mathcal{A}'(n+1)) \subset p_n^{-1}(\bigcup \mathcal{A}'(n)).$$

To show this, let $x \in p_{n+1}^{-1}(\bigcup \mathcal{A}'(n+1))$. Take $B \in \mathcal{A}'(n+1)$ such that $x \in p_{n+1}^{-1}(B)$. By (a) of Claim 1, there is $B' \in \mathcal{B}(n)$ such that $p_{n+1}^{-1}(B) \subset p_n^{-1}(B')$. By the definition, we have $B \not\subset$ W(n+1); hence, $p_{n+1}^{-1}(B) \not\subset p_{n+1}^{-1}(W(n+1))$. Since $\{p_n^{-1}(W(n)): n \in \mathbb{N}\}$ is increasing, it follows that $p_n^{-1}(B') \not\subset p_n^{-1}(W(n))$. Hence, $B' \not\subset W(n)$, that is, $B' \in \mathcal{A}'(n)$. Thus, $x \in p_n^{-1}(\bigcup \mathcal{A}'(n))$. This completes the proof of (1).

Define

$$\mathcal{L}_0 = p_1^{-1}(\mathcal{A}(1)), \text{ and } \mathcal{L}_n = p_n^{-1}(\mathcal{A}'(n)) \wedge p_{n+1}^{-1}(\mathcal{A}(n+1))$$

for $n \in \mathbb{N}$. Set $\mathcal{L} = \bigcup_{n \geq 0} \mathcal{L}_n$. Since each member of \mathcal{L} is that of \mathcal{G} , to complete the proof, it suffices to show the following claims:

CLAIM 2. For every
$$L \in \mathcal{L}$$
, either $\overline{L}^X \subset U_0$ or $\overline{L}^X \subset U_1$ holds.

Proof of Claim 2: Let $L \in \mathcal{L}$. Then, $L \subset p_n^{-1}(A)$ for some $n \in \mathbb{N}$ and $A \in \mathcal{A}(n)$. Since $A \in \mathcal{B}(n)$ and $A \subset W(n)$, it follows from (b) of Claim 1 that $\overline{A}^{X^{(n)}} \subset W^0(n)$ or $\overline{A}^{X^{(n)}} \subset W^1(n)$ holds. Now, we can show that

$$\overline{L}^X \subset \overline{p_n^{-1}(A)}^X \subset p_n^{-1}(\overline{A}^{X^{(n)}}) \subset p_n^{-1}(W^i(n)) \subset U_i \text{ for } i = 0 \text{ or } 1.$$

This completes the proof of Claim 2.

CLAIM 3. \mathcal{L} is a cover of X.

Proof of Claim 3: Let $x \in X$. Since $\{p_n^{-1}(H_n) : n \in \mathbb{N}\}$ is a cover of X, take $n \in \mathbb{N}$ such that $x \in p_n^{-1}(H_n)$. Since $\mathcal{B}(n)$ is a cover of $X^{(n)}$, there is $B \in \mathcal{B}(n)$ such that $p_n(x) \in B$. As $B \cap H_n \neq \emptyset$, it follows from (c) of Claim 1 that $B \subset W(n)$; hence, $B \in \mathcal{A}(n)$. Thus, $x \in p_n^{-1}(\bigcup \mathcal{A}(n))$. Now, let m be the minimum $m \leq n$ such that $p_m(x) \in \bigcup \mathcal{A}(m)$. Then, either $x \in \bigcup p_1^{-1}(\mathcal{A}(1))$ or $x \in \bigcup p_m^{-1}(\mathcal{A}(m)) - \bigcup p_{m-1}^{-1}(\mathcal{A}(m-1))$ holds. If $x \in \bigcup p_1^{-1}(\mathcal{A}(n)) - \bigcup p_{m-1}^{-1}(\mathcal{A}(m-1))$. It follows from $X = (\bigcup p_{m-1}^{-1}(\mathcal{A}(m-1))) \cup (\bigcup p_{m-1}^{-1}(\mathcal{A}'(m-1)))$ that $x \in \bigcup p_{m-1}^{-1}(\mathcal{A}'(m-1))$. Take $B' \in \mathcal{A}'(m-1)$ and $B \in \mathcal{A}(m)$ such that $x \in p_{m-1}^{-1}(B') \cap p_m^{-1}(B)$. Hence, we have $x \in \bigcup \mathcal{L}_{m-1}$. This completes the proof of Claim 3.

CLAIM 4. \mathcal{L} is locally finite in X.

Proof of Claim 4: Let $x \in X$. Since $\{p_n^{-1}(H_n) : n \in \mathbb{N}\}$ is an increasing open cover, take $m \in \mathbb{N}$ and a neighborhood U of $p_m(x)$ in $X^{(m)}$ such that $p_m^{-1}(U) \subset p_m^{-1}(H_m)$. Since each \mathcal{L}_i is locally finite in X, it suffices to show that $\bigcup_{j \geq m} \mathcal{L}_j$ is locally finite at x. The

following holds.

(2)
$$U \cap (\bigcup \mathcal{A}'(m)) = \emptyset.$$

To prove (2), first prove $(\bigcup \mathcal{A}'(m)) \cap H_m = \emptyset$ by using (c) of Claim 1. Since $U \subset H_m$, we have $U \cap (\bigcup \mathcal{A}'(m)) = \emptyset$. This completes the proof of (2).

To finish the proof of Claim 4, it suffices to show that

(3)
$$p_m^{-1}(U) \cap L = \emptyset \text{ for every } L \in \bigcup_{j > m} \mathcal{L}_j.$$

To prove (3), assume to the contrary that $p_m^{-1}(U) \cap L \neq \emptyset$ for some $L \in \mathcal{L}_j$ with $j \geq m$. Then, L is expressed as $L = p_j^{-1}(B') \cap p_{j+1}^{-1}(B)$ for some $B' \in \mathcal{A}'(j)$ and $B \in \mathcal{A}(j+1)$. It follows from (1) that

$$\emptyset \quad \neq \quad p_m^{-1}(U) \cap p_j^{-1}(B') \cap p_{j+1}^{-1}(B) \subset p_m^{-1}(U) \cap p_j^{-1} \left(\bigcup \mathcal{A}'(j)\right)$$

$$\subset \quad p_m^{-1}(U) \cap p_m^{-1} \left(\bigcup \mathcal{A}'(m)\right).$$

Hence, $U \cap (\bigcup \mathcal{A}'(m)) \neq \emptyset$, which contradicts (2). Thus, (3) holds. This completes the proof of Claim 4.

Claims 2, 3, and 4 complete the proof of Theorem 4.2.
$$\Box$$

A space X is said to be $base-\kappa$ -paracompact if there is a base \mathcal{B} for X with $|\mathcal{B}| = w(X)$ such that every open cover of X of cardinality at most κ has a locally finite refinement by members of \mathcal{B} [15]. In particular, a space X is said to be base-countably paracompact if X is base- ω -paracompact. The example of a normal non-base-normal space, introduced in [15], is countably paracompact but not base-countably paracompact. For a space X is normal and base-countably paracompact if and only if X is base-normal and countably paracompact [15, Proposition 2.2].

By Theorems 4.1 and 4.2, we have:

Corollary 4.4. Let X be the σ -product of countably many spaces X_i , $i \in \mathbb{N}$, and assume finite subproducts $\Pi_{i \leq n} X_i$, $n \in \mathbb{N}$, are basenormal. Then, the following statements are equivalent.

- (1) X is normal;
- (2) X is countably paracompact;
- (3) X is base-normal;
- (4) X is base-countably paracompact.

5. Problems and related comments

In this section, we introduce some open problems. In [11, Theorem 3.6 and Corollary 3.8], Porter proved that base-paracompactness is an inverse invariant of perfect mappings. Hence, paracompact M-spaces (= paracompact p-spaces) are base-paracompact. The proofs of the above facts in [11] essentially show that if $f: X \to Y$ be a perfect map onto a base- κ -paracompact space Y and $w(X) \leq \kappa$, then X is base- (κ) -paracompact. Hence, we have the following:

Question 5.1 ([15]). Is base- κ -paracompactness an inverse invariant of perfect mappings?

The (necessarily consistent) example of normal non-base-normal spaces introduced in [15] is normal non-collectionwise Hausdorff. Hence, it is natural to ask the following:

Question 5.2. Are there ZFC examples of normal non-base-normal spaces?

Question 5.3. Is any normal countably compact space base-normal? Proposition 3.1 can be seen as a partial answer to Question 5.3.

Porter [11, Question 4.2] asked if any paracompact GO-space is base-paracompact. For our case, we ask

Question 5.4. Is any GO-space base-normal?

A version of the Morita-Rudin-Starbird Theorem is obtained in [15, Theorem 1.1]: For a base-normal space X and a metrizable space Y, if the product space $X \times Y$ is normal, then $X \times Y$ is base-normal. Recently, Yukinobu Yajima [14, Corollary 6.5] proved the following: For a base-paracompact space X and a base-paracompact σ -space Y, if the product space $X \times Y$ is paracompact and rectangular, then $X \times Y$ is base-paracompact. This is obtained from the following important result [14, Theorem 4.1]: For a space X, a paracompact σ -space Y, and a normal open cover $\mathcal O$ of $X \times Y$,

¹Gary Gruenhage has constructed a ZFC example of a countably compact LOTS which is not base-normal. Hence, his example answers Question 5.2 affirmatively, and questions 5.3 and 5.4 negatively.

 $⁽See \ http://web6. \ duc.auburn. \ edu/\~gruengf/preprints/basepara. \ pdf.)$

 \mathcal{O} has a σ -locally finite refinement consisting of cozero-rectangles if and only if \mathcal{O} has a locally finite (and σ -discrete) refinement. consisting of cozero-rectangles, which has a shrinking consisting of zero-rectangles. A product space $X \times Y$ of spaces X and Y is said to be rectangular if every finite cozero-set cover of $X \times Y$ has a σ -locally finite refinement consisting of cozero-rectangles of $X \times Y$ [9], and a subspace A of the product space $X \times Y$ is said to be a cozero-rectangle (zero-rectangle, resp.) if A is denoted by $A = B \times C$ by using cozero-sets (zero-sets, resp.) B and C of X and Y, respectively. Hence, it should be noted that by using [14, Theorem 4.1], we can show: For a base-normal space X and a base-paracompact σ -space Y, if the product space $X \times Y$ is normal and rectangular, then $X \times Y$ is base-normal. This result, together with the fact "every normal product $X \times Y$ of a normal space X and a metrizable space Y is rectangular" due to B. A. Pasynkov [9], also implies [15, Theorem 1.1]. On the other hand, it is unknown whether a normal product $X \times Y$ of a normal space X and a paracompact σ -space Y (more generally, a Lašnev space Y) is rectangular or not. Hence, a natural question arises:

Question 5.5. Let X be a base-normal space. Let Y be a base-paracompact σ -space, in particular, a base-paracompact Lašnev space. Assume $X \times Y$ is normal. Is $X \times Y$ base-normal?

By using [11, Theorem 3.6], we can extend [15, Corollary 6.6] as follows: For a base-paracompact space X and a paracompact M-space (= a paracompact p-space) Y, the product space $X \times Y$ is normal if and only if $X \times Y$ is base-paracompact. Being motivated by this fact, we have another question.

Question 5.6. Let X be a base-normal space. Let Y be a paracompact M-space, in particular, a compact space. Assume $X \times Y$ is normal. Is $X \times Y$ base-normal?

Remark 5.7. If Question 5.1 is affirmative for $\kappa = \omega$, then Question 5.6 is also affirmative. To show this, let X be a base-normal space and Y a paracompact M-space, and assume $X \times Y$ is normal. Let $f: Y \to Z$ be a perfect map onto a metrizable space Z. First assume Z is non-discrete. Then, X is countably paracompact. It follows from [15, Theorem 6.1] that $X \times Z$ is base-countably paracompact. Hence, if Question 5.1 is affirmative for $\kappa = \omega$, it follows

that $X \times Y$ is base-countably paracompact. By [15, Proposition 2.2], we have $X \times Y$ is base-normal. Next, we assume Z is discrete and $f^{-1}(z)$ is non-discrete for some $z \in Z$. Since $f^{-1}(z)$ is non-discrete compact and $X \times f^{-1}(z)$ is normal, it follows from [12, Theorem 3.12] that X is countably paracompact. In the case where Z is non-discrete, we have $X \times Y$ is base-normal. Finally, we assume Z is discrete and $f^{-1}(z)$ is discrete for every $z \in Z$. In this case, since Y is discrete, $X \times Y$ is base-normal.

As a version of the Gul'ko-Rudin Theorem, we obtained in [15] the following: Every Σ -product of metric spaces is base-normal. In view of A. P. Kombarov's theorem in [7], we have a natural question.

Question 5.8. Let Σ be a Σ -product of paracompact M-spaces, and assume Σ is normal. Is Σ base-normal?

We conclude this paper by asking:

Question 5.9 ([15]). In the definition of base-normality, is it possible to replace "a locally finite cover \mathcal{B}' " by "a σ -locally finite cover \mathcal{B}' "? (Note that, for base-countably paracompact spaces, such a replacement is possible.)

If Question 5.9 has an affirmative answer, the proofs of many results related to base-paracompactness and base-normality could be simplified.

References

- Richard A. Alò and Harvey L. Shapiro, Normal Topological Spaces. Cambridge Tracts in Mathematics, 65. New York-London: Cambridge University Press, 1974.
- [2] R. H. Bing, "Metrization of Topological Spaces," Canad. J. Math. 3 (1951), 175–186.
- [3] Keiko Chiba, "On the D-property of σ-products," Math. Japon. 32 (1987), no. 1, 5–10.
- [4] ______, "Normality of σ -products," *Proc. Amer. Math. Soc.* **119** (1993), no. 3, 999–1003.
- [5] H. H. Corson, "Normality in subsets of product spaces," Amer. J. Math. 81 (1959), 785–796.

- [6] Ryszard Engelking, *General Topology*. Translated from the Polish by the author. 2nd ed. Sigma Series in Pure Mathematics, 6. Berlin: Heldermann Verlag, 1989.
- [7] A. P. Kombarov, "The tightness and normality of Σ -products," Soviet Math. Dokl. **19** 1978, no. 2, 403–407.
- [8] Ernest Michael, "Point-Finite and Locally Finite Coverings," Canad. J. Math. 7 (1955), 275–279.
- [9] B. A. Pasynkov, "The dimension of rectangular products," Soviet Math. Dokl. 16 (1975), no. 2, 344–347.
- [10] Strashimir G. Popvassilev, "Base-cover paracompactness," Proc. Amer. Math. Soc. 132 (2004), no. 10, 3121–3130.
- [11] John E. Porter, "Base-paracompact spaces," Topology Appl. 128 (2003), 145–156.
- [12] Teodor C. Przymusiński, "Products of Normal Spaces," Handbook of Set-Theoretic Topology. Ed. Kenneth Kunen and Jerry E. Vaughan. Amsterdam: North-Holland, 1984. 781–826.
- [13] Hui Teng, "On countable σ -product spaces," Chinese Ann. Math., Ser. B **14** (1993), no. 1, 113–116.
- [14] Yukinobu Yajima, "Characterizations of normal covers of rectangular products." Preprint.
- [15] Kaori Yamazaki, "Base-normality and product spaces," *Topology Appl.* **148** (2005), 123–142.

Institute of Mathematics; University of Tsukuba; Tsukuba, Ibaraki, 305-8571, Japan

E-mail address: kaori@math.tsukuba.ac.jp