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SOME THEOREMS ON BASE-NORMALITY

KAORI YAMAZAKI

Abstract. Corresponding to base-paracompactness due to
John E. Porter [“Base-paracompact spaces, ” Topology Appl.
128 (2003), 145–156], we previously introduced base-normality
of a space in “ Base-normality and product spaces, ” [Topol-
ogy Appl. 148 (2005), 123–142]. In this paper, we prove the
following theorems. (1) For a base-normal space X and an
Fσ-set A of X, if w(A) = w(X), then A is base-normal. (2)
Bing’s examples G and H are base-normal. (3) For the σ-
product X of countably many spaces Xi, i ∈ N, satisfying
that finite subproducts Πi≤nXi, n ∈ N, are base-normal, X
is normal if and only if X is base-normal.

1. Introduction

Throughout this paper, all spaces are assumed to be T1 topolog-
ical spaces. The symbol N denotes the set of all natural numbers.
Let κ denote an infinite cardinal and ω the first infinite cardinal.
The cardinality of a set X is denoted by |X|. As usual, a cardinal
is the initial ordinal and an ordinal is the set of smaller ordinals.
Bases and neighborhood bases mean open bases and open neigh-
borhood bases, respectively. For a space X, w(X) stands for the
weight of X. For a space X and a subspace A of X, the closure of
A in X is denoted by A. For a collection A of subspaces of a space
X,

{
A : A ∈ A}

is denoted by A.

2000 Mathematics Subject Classification. 54B05, 54B10, 54D15, 54D70.
Key words and phrases. base-normal, base-paracompact, Bing’s examples,

Fσ-sets, σ-products.
Supported by Grant-in-Aid for the Encouragement of Young Scientists (B)

(No. 16740028) of Japan Society for the Promotion of Science.

389



390 K. YAMAZAKI

In [11], John E. Porter introduced the notion of base-paracom-
pactness and proved some fundamental theorems. A space X is said
to be base-paracompact if there is a base B for X with |B| = w(X)
such that every open cover of X has a locally finite refinement by
members of B. In a previous paper [15], we introduced the notion
of base-normality and studied base-normality of products with a
metric factor, countable products, and Σ-products. A space X is
said to be base-normal if there is a base B for X with |B| = w(X)
such that every binary (= two-element) open cover {U0, U1} of X
admits a locally finite cover B′ of X by members of B such that B′
refines {U0, U1}. For a Hausdorff space X, X is base-normal and
paracompact if and only if X is base-paracompact [15]; this fact
will be used without reference throughout the paper.

In this paper, we first show that an Fσ-set A of a base-normal
space X with w(A) = w(X) is base-normal. This result corresponds
to a theorem on base-paracompact spaces X due to Porter [11, sec-
tion 2]. Next, we give some basic examples of base-normal spaces;
in particular, we show that every normal almost compact space and
every ordinal space are base-normal. We also show that Bing’s ex-
amples G and H are base-normal. Finally, we study base-normality
from viewpoints of the σ-product of countably many spaces. Some
open questions are also given.

2. Fσ-sets of base-normal spaces

In this section, we show that the theorems on base-paracom-
pactness due to Porter in [11, section 2] can be extended to those
on base-normality. Recall the following:

Theorem 2.1 (Porter [11]). Let X be base-paracompact. If A ⊂ X
is an Fσ-set with w(A) = w(X), then A is base-paracompact.

It is unknown whether the condition “w(A) = w(X)” in Theorem
2.1 can be removed or not [11]. In fact, to show that the hereditarity
of Fσ-sets is equivalent is to solve positively the open problem posed
by Porter [11]: “Is any paracompact space base-paracompact?”

For base-normal spaces, we have the following Theorem 2.2. As
was shown in [15], it is consistent with ZFC that the fact “base-
normal spaces are not hereditary to clopen subsets” holds. So, the
condition “w(A) = w(X)” in Theorem 2.2 cannot be removed.
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Theorem 2.2. Let X be base-normal. If A ⊂ X is an Fσ-set with
w(A) = w(X), then A is base-normal.

Since every Fσ-set of a paracompact space is paracompact, for a
Hausdorff space X, Theorem 2.2 refines Theorem 2.1.

In [11], Theorem 2.1 is observed as a corollary to a more general
theorem as follows:

Theorem 2.3 (Porter [11]). If X is paracompact and the countable
union of closed base-paracompact sets relative to X, then X is base-
paracompact.

Here, a subspace A of a space X is said to be base-paracompact
relative to X if there is a base B for X with |B| = w(X) such that
every open (in X) cover of A has a locally finite (in X) partial
refinement B′ ⊂ B such that A ⊂ ⋃B′ [11].

Similarly, we prove Theorem 2.2 by giving Theorem 2.5. Our
proof is based on that of Porter [11, section 2], with a slight modi-
fication. We call a subspace A of a space X base-normal relative to
X if there is a base B for X with |B| = w(X) such that for every
binary open (in X) cover {U0, U1} of A there is a locally finite (in
X) family B′ ⊂ B such that B′ is a partial refinement of {U0, U1}
and A ⊂ ⋃B′.

Note that X is base-normal if and only if there is a base B for
X with |B| = w(X) such that every locally finite open cover U of
X admits a locally finite cover B′ of X by members of B such that
B′ refines U . The proof of the following lemma is straightforward
and left to the reader.

Lemma 2.4. The following statements hold.
(1) If X is a base-normal space and F is a closed subspace of X,

then F is base-normal relative to X.
(2) Let X be a normal space and F a closed subspace of X. Then,

F is base-normal relative to X if and only if there is a base B for
X with |B| = w(X) such that for every locally finite open (in X)
cover U of F there is a locally finite (in X) family B′ ⊂ B such that
B′ is a partial refinement of U and F ⊂ ⋃B′.
Theorem 2.5. If X is normal and the countable union of closed
base-normal sets relative to X, then X is base-normal.
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Proof: The proof is based on that of [11, Theorem 2.4].
Let X be a normal space and X =

⋃
i<ω Fi, where each Fi is

closed base-normal relative to X. By Lemma 2.4(2), we can take a
base Bi for X with |Bi| = w(X) such that every locally finite open
cover U (in X) of Fi admits a locally finite (in X) family B′ ⊂ Bi

such that B′ is a partial refinement of U , and Fi ⊂
⋃B′. Since⋃

i<ω Bi is a base for X with |⋃i<ω Bi| = w(X), it suffices to show
that

⋃
i<ω Bi witnesses base-normality of X. To prove this, let U

be a binary open cover of X. There is a locally finite (in X) family
A0 ⊂ B0 such thatA0

X is a partial refinement of U , and F0 ⊂
⋃A0.

Since A0∪{X−F0} is a locally finite open cover of a normal space
X, there is a locally finite open star-refinement of A0 ∪ {X − F0}
[6, 5.1.14]. Repeating this process, we can inductively define locally
finite (in X) families An ⊂ Bn, n < ω, satisfying thatAn is a partial
refinement of A∗i for each i < n, and An

X is a partial refinement
of U , and we can define locally finite open covers A∗n, n < ω, of X
such that A∗n is a star-refinement of An ∪ {X −Fn} and A∗n refines
A∗i for each i < n. For each j < ω, set Vj = {V ∈ Aj : V 6⊂ U
for every U ∈ ⋃

i<j Ai}. Define V =
⋃

j<ω Vj . Then, V is a locally
finite cover of X by members of

⋃
i<ω Bi, and V refines U . Thus,

X is base-normal. This completes the proof. ¤

Proof of Theorem 2.2: Let X be base-normal and A an Fσ-set
of X with w(A) = w(X). Let A =

⋃
n<ω Fn, where Fn, n < ω,

are closed in X. Fix n < ω. By Lemma 2.4(1), Fn is base-normal
relative to X. Now, we can show that Fn is base-normal relative
to A. Since normality is hereditary with respect to Fσ-sets, it
follows from Theorem 2.5 that A is base-normal. This completes
the proof. ¤

3. Examples of base-normal spaces

A Tychonoff space X is said to be almost compact if |βX−X| ≤ 1,
where βX is the Stone-Čech compactification of X.

Proposition 3.1. Every normal almost compact space is base-
normal.
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Proof: Let X be a normal almost compact space and B a base
for X with |B| = w(X). Put

B∗ = B ∪
{

X −
⋃

i≤n

Bi : B0, · · · , Bn ∈ B, n < ω
}

.

Clearly, |B∗| = w(X) and B∗ is a base for X. It is not difficult
to show that B∗ witnesses base-normality of X, because either one
of any two disjoint closed sets is compact. This completes the
proof. ¤

As another example of base-normal spaces, we have the following
result. Every ordinal is equipped with the usual order topology. As
usual, cf(κ) stands for the cofinality of an ordinal κ.

Proposition 3.2. Every ordinal is base-normal.

Proof: Let κ be an ordinal. If cf(κ) ≤ ω, then κ is regular
Lindelöf, and it follows from [11, Theorem 3.5] that κ is base-
paracompact; therefore, κ is base-normal. Assume cf(κ) > ω. In
this case, κ is almost compact. Indeed, every real-valued continuous
function f : κ → R is constant on a tail. Hence, either one of any
two disjoint closed subsets of κ is bounded, that is, compact. So, it
follows from Proposition 3.1 that κ is base-normal. This completes
the proof. ¤

It is unknown whether there exist ZFC examples of normal non-
base-normal spaces or not (Question 5.2: see footnote, page 12).
Related to this problem, we show that some classical examples of
R. H. Bing [2] are base-normal. To prove this, we first give a tech-
nical lemma. For a topological space X and a subspace A of X,
XA is the set X equipped with the topology {U ∪ V : U is open in
X, and V ⊂ X − A}. For x ∈ X, χ(x) is the character of x in X,
that is, the smallest cardinal number of the form |Bx|, where Bx is
a neighborhood base of x in X.

Lemma 3.3. Let X be a topological space, A a subspace of X,
and assume w(XA) = max{2|A| · supx∈A χ(x), |X − A|}. If XA is
normal, then XA is base-normal. Therefore, if XA is paracompact
Hausdorff, then XA is base-paracompact.
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Proof: Assume XA is normal. For x ∈ A, we denote by Bx a
neighborhood base of x in X with |Bx| = χ(x). Set

B =
{ ⋃

x∈A′
Bx : A′ ⊂ A, Bx ∈ Bx, x ∈ A′

}
∪

{
{z} : z ∈ X −A

}
.

Then, B is a base for XA, and it follows from the assumption that
|B| = w(XA). To see that B witnesses base-normality for XA, let
F0 and F1 be disjoint closed subsets of XA. Since XA is normal,
there is an open cover {U0, U1} of XA such that U0

XA ∩ F1 = ∅
and U1

XA ∩ F0 = ∅. For every a ∈ U0 ∩A, take Ba ∈ Ba such that
Ba ⊂ U0. Similarly, for every b ∈ U1 ∩ A, take Bb ∈ Bb such that
Bb ⊂ U1. Set V0 =

⋃{Ba : a ∈ U0 ∩ A} and V1 =
⋃{Bb : b ∈

U1 ∩A}. Then, B′ = {V0, V1} ∪ {{z} : z ∈ X − V0 ∪ V1} is a locally
finite cover of XA consisting of elements of B, and for every W ∈ B′
we have W

XA ∩ F0 = ∅ or W
XA ∩ F1 = ∅. Hence, it follows that

XA is base-normal, and this completes the proof. ¤

Remark 3.4. It follows from Lemma 3.3 that the Michael line RQ
is base-paracompact, which had been noted in [10].

Let κ be an uncountable cardinal, Ds = {0, 1} for each s ∈
2κ. Let X = Πs∈2κDs and A = {fα : α ∈ κ}, where fα ∈ X
is defined by fα(s) = 1 if α ∈ s, and fα(s) = 0 otherwise, for
s ∈ 2κ. Then, the space XA is Bing’s example G ([2]; see also [6,
5.1.23]). Bing’s example H ([2]; see also [6, 5.5.3(a)]) is constructed
as follows : Consider the set Z = (A × {0}) ∪ ⋃

i∈N(X × {1/i}),
and generate a topology on Z taking as a base at a point (x, 0) the
sets {(x, 0)} ∪ ⋃∞

i=k(U × {1/i}), where U is a neighborhood of x
in XA and k ∈ N, and letting all the remaining points be isolated.
The metacompact version of Bing’s example due to Michael is the
space X0 constructed as follows ([8]; see also [6, 5.5.3.(c)]): let
S be the subspace of the space XA, where XA is Bing’s example
G consisting of all points of X which have at most finitely many
coordinates distinct from zero, and consider the space X0 = S ∪A
with the subspace topology of XA. These examples are known as
normal and non-collectionwise Hausdorff spaces.

Theorem 3.5. Bing’s examples G and H and the metacompact
version of Bing’s example due to Michael are base-normal.
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Proof: Let XA be Bing’s example G constructed as above. Then,
we can see that |A| = κ, supx∈A χ(x) = 2κ, |X − A| = 22κ

, and
w(XA) = 22κ

. Hence, it follows from Lemma 3.3 that G is base-
normal. A similar argument works for Bing’s example H. Let
X0 = S ∪A be the metacompact version of Bing’s example due to
Michael constructed as above. Then, |A| = κ, supx∈A χ(x) = 2κ,
|X0 −A| = |S| = 2κ, and w(X0) = 2κ. Apply Lemma 3.3. ¤

4. Base-normality and σ-products

Previously, in [15], we proved theorems on base-normality of
products with a metric factor, countable products, and Σ-products.
In this section, we give a theorem on the σ-product of countably
many spaces by applying the method given in [15].

Let us recall the definition of σ-products from [5]. Let Ω be a
set with |Ω| ≥ ω, X = Πα∈ΩXα a product space, and p = (pα) a
fixed point of X. The subspace σ = {x = (xα) ∈ X : |{α ∈ Ω :
xα 6= pα}| < ω} of X is called the σ-product of spaces Xα, α ∈ Ω,
(about p). For collections A and B of subsets of a space X, we set
A ∧ B = {A ∩ B : A ∈ A, B ∈ B} and

∧A = {⋂n
i=1 Ai : Ai ∈

A, i = 1, · · · , n, n ∈ N}.
The “only if” part of the following theorem was proven by Hui

Teng [13], which had been given by Keiko Chiba (see [3]) assuming
further countable paracompactness of finite subproducts Πi≤nXi,
n ∈ N, and the “if” part was independently proven by Chiba in [4]
and Teng in [13].

Theorem 4.1 (Chiba [3], [4]; Teng [13]). Let X be the σ-product
of countably many spaces Xi, i ∈ N, and assume finite subproducts
Πi≤nXi, n ∈ N, are normal. Then, X is normal if and only if X
is countably paracompact.

Note that it is unknown whether the following holds or not: For
the σ-product X of spaces Xα, α ∈ Ω, satisfying that all finite
subproducts Πα∈δXα, δ ∈ [Ω]<ω, are normal, X is normal if and
only if X is countably paracompact.

Theorem 4.2. Let X be the σ-product of countably many spaces
Xi, i ∈ N, and assume finite subproducts Πi≤nXi, n ∈ N, are base-
normal. Then, X is normal if and only if X is base-normal.
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To prove this, we need the following:

Lemma 4.3 ([15, Lemma 3.1]). Let X be a base-normal space, and
BX a base which witnesses base-normality for X. Let U be a locally
finite open cover of X, and R0, R1 and K closed subsets of X such
that R ∩ K = ∅, where R = R0 ∩ R1. Then, there is a locally
finite cover B of X by members of BX ∧ U satisfying the following
conditions: for every B ∈ B,

(a) B ∩R = ∅ =⇒ B ∩R0 = ∅ or B ∩R1 = ∅;
(b) B ∩R 6= ∅ =⇒ B ∩K = ∅.

Proof of Theorem 4.2: The proof is based on that of [15, Theorem
4.1]. Let X be the σ-product of countably many spaces Xi, i ∈ N,
and assume finite subproducts Πi≤nXi, n ∈ N, are base-normal.
We may assume |Xi| ≥ 2 for every i ∈ N. Assume X is normal.
We set X(n) = Πi≤nXi for each n ∈ N. Let pn : X → X(n) be
the restriction of the natural projection πn : Πi∈NXi → X(n) to X.
Note that pn is open and onto for n ∈ N. The map πi

j : X(i) → X(j)

stands for the natural projection for j ≤ i and i, j ∈ N.
For every n ∈ N, let Gn be a base which witnesses base-normality

for X(n). For later use, for n ∈ N, we set

G′n = Gn ∪
(
πn

n−1

)−1(Gn−1

) ∪ (
πn

n−2

)−1(Gn−2

) ∪ · · · ∪ (
πn

1

)−1(G1

)
,

and

G∗n =
∧
G′n.

Define G =
⋃

n∈N p−1
n

(G∗n
)
. Since |G| ≤ supn∈Nw(X(n)) = w(X)

and G is a base for X, we shall show that G witnesses base-normality
for X.

To prove this, let {U0, U1} be a binary open cover of X. As
usual, for every n ∈ N and every i = 0, 1, set

W i(n) =
⋃ {

W : W is open in X(n), p−1
n (W ) ⊂ Ui

}

and W (n) = W 0(n) ∪W 1(n). Then, as in a proof in [4] and [13],
{p−1

n (W (n)) : n ∈ N} is an increasing open cover of X. It follows
from Theorem 4.1 that X is countably paracompact. Hence, take
an increasing open cover {Gn : n ∈ N} of X such that Gn

X ⊂
p−1

n (W (n)) for every n ∈ N.
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For every n ∈ N, define

Hn =
⋃ {

H : H is open in X(n), p−1
n (H) ⊂ Gn

}
.

Then, {p−1
n (Hn) : n ∈ N} is an increasing open cover of X satisfying

that Hn
X ⊂ W (n).

Claim 1. There are locally finite covers B(n), n ∈ N, of X(n),
where each B(n) consists of members of G∗n, such that the following
conditions are satisfied:

(a) for n ∈ N with n > 1, p−1
n (B(n)) refines p−1

n−1(B(n− 1));
(b) for n ∈ N and B ∈ B(n),

B ⊂ W (n) =⇒ B
X(n)

⊂ W 0(n) or B
X(n)

⊂ W 1(n);
(c) for n ∈ N and B ∈ B(n),

B
X(n)

6⊂ W (n) =⇒ B
X(n)

∩Hn
X(n)

= ∅.
Proof of Claim 1: Put X = X1,

BX = G1, U = {X1}, R0 = X1 −W 0(1),

R1 = X1 −W 1(1), K = H1
X(1)

.

(Hence, we have R = X1 − W (1).) Apply Lemma 4.3 and define
the resulting cover B by B(1).

Next, assume B(n) has been constructed so as to satisfy condi-
tions (a), (b), and (c) above. To apply Lemma 4.3, we put

X = X(n+1), BX = Gn+1, U =
(
πn+1

n

)−1(B(n)
)
,

R0 = X(n+1) −W 0(n + 1), R1 = X(n+1) −W 1(n + 1),
K = Hn+1

X(n+1)

.

(Hence, we have R = X(n+1) − W (n + 1).) Define the resulting
cover B by B(n + 1). This completes the proof of Claim 1. ¤

For every n ∈ N, set

A(n) =
{
B ∈ B(n) : B ⊂ W (n)

}
and A′(n) = B(n)−A(n).

Then, for every n ∈ N, we have

p−1
n+1

(⋃
A′(n + 1)

) ⊂ p−1
n

( ⋃
A′(n)

)
.(1)

To show this, let x ∈ p−1
n+1(

⋃A′(n + 1)). Take B ∈ A′(n + 1)
such that x ∈ p−1

n+1(B). By (a) of Claim 1, there is B′ ∈ B(n)
such that p−1

n+1(B) ⊂ p−1
n (B′). By the definition, we have B 6⊂
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W (n + 1); hence, p−1
n+1(B) 6⊂ p−1

n+1(W (n + 1)). Since {p−1
n (W (n)) :

n ∈ N} is increasing, it follows that p−1
n (B′) 6⊂ p−1

n (W (n)). Hence,
B′ 6⊂ W (n), that is, B′ ∈ A′(n). Thus, x ∈ p−1

n (
⋃A′(n)). This

completes the proof of (1).

Define

L0 = p−1
1

(A(1)
)
, and Ln = p−1

n

(A′(n)
) ∧ p−1

n+1

(A(n + 1)
)

for n ∈ N. Set L =
⋃

n≥0 Ln. Since each member of L is that of G,
to complete the proof, it suffices to show the following claims:

Claim 2. For every L ∈ L, either L
X ⊂ U0 or L

X ⊂ U1 holds.

Proof of Claim 2: Let L ∈ L. Then, L ⊂ p−1
n (A) for some n ∈ N

and A ∈ A(n). Since A ∈ B(n) and A ⊂ W (n), it follows from (b)

of Claim 1 that A
X(n)

⊂ W 0(n) or A
X(n)

⊂ W 1(n) holds. Now, we
can show that

L
X ⊂ p−1

n (A)
X ⊂ p−1

n

(
A

X(n)) ⊂ p−1
n (W i(n)) ⊂ Ui for i = 0 or 1.

This completes the proof of Claim 2. ¤
Claim 3. L is a cover of X.

Proof of Claim 3: Let x ∈ X. Since {p−1
n (Hn) : n ∈ N} is a cover

of X, take n ∈ N such that x ∈ p−1
n (Hn). Since B(n) is a cover

of X(n), there is B ∈ B(n) such that pn(x) ∈ B. As B ∩Hn 6= ∅,
it follows from (c) of Claim 1 that B ⊂ W (n); hence, B ∈ A(n).
Thus, x ∈ p−1

n (
⋃A(n)). Now, let m be the minimum m (≤ n)

such that pm(x) ∈ ⋃A(m). Then, either x ∈ ⋃
p−1
1 (A(1)) or x ∈⋃

p−1
m (A(m)) − ⋃

p−1
m−1(A(m− 1)) holds. If x ∈ ⋃

p−1
1 (A(1)), we

clearly have x ∈ ⋃L0. So, we may assume x ∈ ⋃
p−1

m (A(m)) −⋃
p−1

m−1(A(m− 1)). It follows from X =
(⋃

p−1
m−1(A(m − 1))

) ∪( ⋃
p−1

m−1(A′(m − 1))
)

that x ∈ ⋃
p−1

m−1(A′(m − 1)). Take B′ ∈
A′(m−1) and B ∈ A(m) such that x ∈ p−1

m−1(B
′)∩p−1

m (B). Hence,
we have x ∈ ⋃Lm−1. This completes the proof of Claim 3. ¤

Claim 4. L is locally finite in X.

Proof of Claim 4: Let x ∈ X. Since {p−1
n (Hn) : n ∈ N} is an

increasing open cover, take m ∈ N and a neighborhood U of pm(x)
in X(m) such that p−1

m (U) ⊂ p−1
m (Hm). Since each Li is locally finite

in X, it suffices to show that
⋃

j≥m Lj is locally finite at x. The
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following holds.

U ∩ (⋃
A′(m)

)
= ∅.(2)

To prove (2), first prove
( ⋃A′(m)

)∩Hm = ∅ by using (c) of Claim
1. Since U ⊂ Hm, we have U ∩ ( ⋃A′(m)

)
= ∅. This completes the

proof of (2).
To finish the proof of Claim 4, it suffices to show that

p−1
m (U) ∩ L = ∅ for every L ∈

⋃

j≥m

Lj .(3)

To prove (3), assume to the contrary that p−1
m (U)∩L 6= ∅ for some

L ∈ Lj with j ≥ m. Then, L is expressed as L = p−1
j (B′)∩p−1

j+1(B)
for some B′ ∈ A′(j) and B ∈ A(j + 1). It follows from (1) that

∅ 6= p−1
m (U) ∩ p−1

j (B′) ∩ p−1
j+1(B) ⊂ p−1

m (U) ∩ p−1
j

( ⋃
A′(j))

⊂ p−1
m (U) ∩ p−1

m

(⋃
A′(m)

)
.

Hence, U ∩ ( ⋃A′(m)
) 6= ∅, which contradicts (2). Thus, (3) holds.

This completes the proof of Claim 4. ¤
Claims 2, 3, and 4 complete the proof of Theorem 4.2. ¤
A space X is said to be base-κ-paracompact if there is a base B for

X with |B| = w(X) such that every open cover of X of cardinality
at most κ has a locally finite refinement by members of B [15].
In particular, a space X is said to be base-countably paracompact
if X is base-ω-paracompact. The example of a normal non-base-
normal space, introduced in [15], is countably paracompact but
not base-countably paracompact. For a space X is normal and
base-countably paracompact if and only if X is base-normal and
countably paracompact [15, Proposition 2.2].

By Theorems 4.1 and 4.2, we have:

Corollary 4.4. Let X be the σ-product of countably many spaces
Xi, i ∈ N, and assume finite subproducts Πi≤nXi, n ∈ N, are base-
normal. Then, the following statements are equivalent.

(1) X is normal;
(2) X is countably paracompact;
(3) X is base-normal;
(4) X is base-countably paracompact.
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5. Problems and related comments

In this section, we introduce some open problems. In [11, The-
orem 3.6 and Corollary 3.8], Porter proved that base-paracom-
pactness is an inverse invariant of perfect mappings. Hence, para-
compact M -spaces (= paracompact p-spaces) are base-paracompact.
The proofs of the above facts in [11] essentially show that if f :
X → Y be a perfect map onto a base-κ-paracompact space Y and
w(X) ≤ κ, then X is base-(κ)-paracompact. Hence, we have the
following:

Question 5.1 ([15]). Is base-κ-paracompactness an inverse invari-
ant of perfect mappings?

The (necessarily consistent) example of normal non-base-normal
spaces introduced in [15] is normal non-collectionwise Hausdorff.
Hence, it is natural to ask the following:

Question 5.2.1 Are there ZFC examples of normal non-base-normal
spaces?

Question 5.3. Is any normal countably compact space base-normal?

Proposition 3.1 can be seen as a partial answer to Question 5.3.

Porter [11, Question 4.2] asked if any paracompact GO-space is
base-paracompact. For our case, we ask

Question 5.4. Is any GO-space base-normal?

A version of the Morita-Rudin-Starbird Theorem is obtained in
[15, Theorem 1.1]: For a base-normal space X and a metrizable
space Y , if the product space X × Y is normal, then X × Y
is base-normal. Recently, Yukinobu Yajima [14, Corollary 6.5]
proved the following: For a base-paracompact space X and a base-
paracompact σ-space Y , if the product space X×Y is paracompact
and rectangular, then X×Y is base-paracompact. This is obtained
from the following important result [14, Theorem 4.1]: For a space
X, a paracompact σ-space Y , and a normal open cover O of X×Y ,

1Gary Gruenhage has constructed a ZFC example of a countably compact
LOTS which is not base-normal. Hence, his example answers Question 5.2
affirmatively, and questions 5.3 and 5.4 negatively.
(See http://web6. duc.auburn. edu/̃ gruengf/preprints/basepara. pdf .)
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O has a σ-locally finite refinement consisting of cozero-rectangles
if and only if O has a locally finite (and σ-discrete) refinement,
consisting of cozero-rectangles, which has a shrinking consisting of
zero-rectangles. A product space X × Y of spaces X and Y is said
to be rectangular if every finite cozero-set cover of X × Y has a
σ-locally finite refinement consisting of cozero-rectangles of X × Y
[9], and a subspace A of the product space X × Y is said to be a
cozero-rectangle (zero-rectangle, resp.) if A is denoted by A = B×C
by using cozero-sets (zero-sets, resp.) B and C of X and Y , respec-
tively. Hence, it should be noted that by using [14, Theorem 4.1],
we can show: For a base-normal space X and a base-paracompact
σ-space Y , if the product space X × Y is normal and rectangu-
lar, then X × Y is base-normal. This result, together with the fact
“every normal product X×Y of a normal space X and a metrizable
space Y is rectangular” due to B. A. Pasynkov [9], also implies [15,
Theorem 1.1]. On the other hand, it is unknown whether a normal
product X ×Y of a normal space X and a paracompact σ-space Y
(more generally, a Lašnev space Y ) is rectangular or not. Hence, a
natural question arises:

Question 5.5. Let X be a base-normal space. Let Y be a base-
paracompact σ-space, in particular, a base-paracompact Lašnev
space. Assume X × Y is normal. Is X × Y base-normal?

By using [11, Theorem 3.6], we can extend [15, Corollary 6.6]
as follows: For a base-paracompact space X and a paracompact
M -space (= a paracompact p-space) Y , the product space X×Y is
normal if and only if X ×Y is base-paracompact. Being motivated
by this fact, we have another question.

Question 5.6. Let X be a base-normal space. Let Y be a para-
compact M -space, in particular, a compact space. Assume X × Y
is normal. Is X × Y base-normal?

Remark 5.7. If Question 5.1 is affirmative for κ = ω, then Ques-
tion 5.6 is also affirmative. To show this, let X be a base-normal
space and Y a paracompact M -space, and assume X×Y is normal.
Let f : Y → Z be a perfect map onto a metrizable space Z. First
assume Z is non-discrete. Then, X is countably paracompact. It
follows from [15, Theorem 6.1] that X ×Z is base-countably para-
compact. Hence, if Question 5.1 is affirmative for κ = ω, it follows
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that X × Y is base-countably paracompact. By [15, Proposition
2.2], we have X × Y is base-normal. Next, we assume Z is dis-
crete and f−1(z) is non-discrete for some z ∈ Z. Since f−1(z) is
non-discrete compact and X × f−1(z) is normal, it follows from
[12, Theorem 3.12] that X is countably paracompact. In the case
where Z is non-discrete, we have X × Y is base-normal. Finally,
we assume Z is discrete and f−1(z) is discrete for every z ∈ Z. In
this case, since Y is discrete, X × Y is base-normal.

As a version of the Gul’ko-Rudin Theorem, we obtained in [15]
the following: Every Σ-product of metric spaces is base-normal.
In view of A. P. Kombarov’s theorem in [7], we have a natural
question.

Question 5.8. Let Σ be a Σ-product of paracompact M -spaces,
and assume Σ is normal. Is Σ base-normal?

We conclude this paper by asking:

Question 5.9 ([15]). In the definition of base-normality, is it possi-
ble to replace “a locally finite cover B′ ” by “a σ-locally finite cover
B′ ”? (Note that, for base-countably paracompact spaces, such a
replacement is possible.)

If Question 5.9 has an affirmative answer, the proofs of many
results related to base-paracompactness and base-normality could
be simplified.
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