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MINIMAL BASES, IDEAL EXTENSIONS, AND

BASIC DUALITIES

MARCEL ERNÉ

Abstract. By a B-space, we mean a topological space with
a minimal base (which is then even the least base). While the
sober B-spaces are precisely the algebraic domains with the
Scott topology, those T0-B-spaces in which every monotone
net having a join converges to that join are just the alge-
braic posets. An elementary construction shows that every
topological space with a prescribed base is not only topolog-
ically dense but also meet-dense in a minimal B-space whose
least base induces the original base. A similar construction
provides a universal B-reflection for each base space. The so-
brification of a B-space is the (Scott-topologized) ideal com-
pletion of its base set, consisting of all points having least
neighborhoods. Combination of both reflections amounts to
a universal B-sobrification.

We establish several equivalences and dualities between
certain categories of spaces and categories of ordered sets,
among them a duality between T0-base spaces and so-called
ideal spaces that induces a duality between T0-B-spaces and
ideal extensions, but also the Lawson duality of continuous
and algebraic domains. As a result, algebraic posets provide
convenient “computational models” not only for T0-B-spaces,
but even for arbitrary T0-(base) spaces.
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0. Introduction: The Role of Minimal Bases

From the pioneering work of Alexandroff we know that the sys-
tems of all upper sets (or lower sets) in quasi-ordered sets (qosets)
are precisely those topologies in which arbitrary intersections of
open sets are open, today usually called Alexandroff topologies or
A-topologies (Alexandroff himself termed them “discrete” [3]). An-
tisymmetry of the quasi-order is reflected by the T0-axiom. By the
core of a point in an arbitrary topological space we mean the in-
tersection of its neighborhoods. We shall speak of an A-space if its
topology is an Alexandroff topology. This is equivalent to saying
that every core is open, and consequently the cores form the least
base. (The “A-spaces” in the sense of Eršov [26] have a different,
more general meaning and are closer to our C-spaces discussed in
Section 3.)

If a space X has a minimal base then that base must already be
contained in all others and consist of all open cores; but that does
not mean that all cores would be open. Spaces with a minimal base
are called B-spaces [17] or monotope (cf. [36]), and points having
an open core (that is, a least neighborhood) are referred to as base
points; we denote by BX the set of all base points, and we adopt
the convention that no topological base contains the empty set as a
member.

In the present note, we are particularly interested in “algebraic”
representations of B-spaces and related types of spaces. By an alge-
braic poset we mean a partially ordered set (poset) in which every
element is a directed supremum of compact elements, where c is
compact if it belongs to every (directed) ideal having a join above
c (in [18], compactness has a slightly stronger meaning). But, as in
[10, 30, 44, 45], we do not require up-completeness ; in other words,
not all directed subsets need possess suprema. We shall give both
a purely topological characterization and an ideal-theoretical de-
scription of such general algebraic posets: introducing appropriate
morphism classes, we establish an isomorphism between the cate-
gory of algebraic posets and that of so-called weak monotone con-
vergence B-spaces on the one hand, and an equivalence (but also
a duality) between algebraic posets and algebraic ideal extensions
on the other hand. The resulting duality between weak monotone
convergence B-spaces and algebraic ideal extensions is induced by
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a duality between T0-base spaces and so-called ideal spaces, which
in turn comes from an elementary self-duality for T0-cover spaces.
Furthermore, we refine the pointfree characterization of B-spaces
to an equivalence between the category of T0-B-spaces and the cat-
egory of so-called consistently prime-based superalgebraic lattices.

B-spaces are much more general than A-spaces: while every sub-
space of an A-space is again an A-space, we shall represent every
base space, that is, every topological space with a given base B, as
a topologically and order-theoretically dense subspace of some B-
space whose least base is isomorphic to B via relativization. More-
over, we show that any base space has a unique minimal B-extension
and also a categorical B-reflection (with respect to suitable mor-
phisms), which in the T0 case is (homeomorphic to) the minimal
B-extension. The sobrification of an arbitrary B-space is a sober B-
space, hence an algebraic domain carrying the Scott topology; the
underlying poset is the ideal completion of the base point set (with
the specialization order). Combining the aforementioned basic con-
struction of the B-reflection with the sobrification, one arrives at a
“B-sobrification” of the original base space. In particular, every T0-
(base) space is a strictly dense subspace of a sober B-space, in other
words, of an algebraic domain. A direct approach to that result is
obtained via the open filter space. Since the base of the subspace
is isomorphic to the least base of the “algebraic model”, and since
bases are often much more economic than the whole topologies,
this approach opens facilities to correlate topological properties of
the represented space or its base with properties of the model, a
method nowadays often used in domain theory and related fields.
In fact, order-topological structures of that kind are helpful tools
in various areas of theoretical computer science (see, for example,
[2, 5, 10, 41, 44, 45]).

Surprisingly, even for arbitrary T0-base spaces, a purely order-
theoretical description is possible in terms of certain enriched alge-
braic posets. Though our “algebraic models” fail to be up-complete
in general, they are conditionally up-complete posets (cups), i.e. ev-
ery upper bounded directed subset has a join. It turns out that the
algebraic cups are precisely the down-sets of algebraic domains. Un-
der the equivalence between algebraic posets and weak monotone
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convergence B-spaces, the algebraic cups correspond to the condi-
tional monotone convergence spaces (in which every upper bounded
monotone net converges to its supremum). In particular, the al-
gebraic domains correspond to the monotone convergence spaces
with minimal bases; indeed, a B-space is sober iff it is a monotone
convergence space. On the other hand, the equivalence between
conditionally monotone convergence B-spaces and algebraic cups
extends to one between arbitrary T0-base spaces and condition-
ally up-complete algebraic posets with point generators (or caps for
short); these are pairs (A,M) consisting of an algebraic cup A and
a cofinal subset M such that every compact element of A is a meet
of elements from M . Assigning to any such pair (A,M) the set
M equipped with the base inherited from the minimal base of the
Scott topology on A, one obtains an equivalence between the cat-
egory of caps and the category of T0-base spaces. On the other
hand, passing to the set K of all compact elements, endowed with
the system of all ideals {c ∈ K : c ≤ m} (m ∈M), one arrives
at a duality between caps and ideal spaces. In [21], we apply our
constructions to T1-spaces, where the “algebraic modellization” is
still more convenient.

1. Algebraic and Continuous Posets

Let us start with a short account of the vocabulary needed for
the translation between order-theoretical and topological notions
(see also [17, 18, 30]). The down-sets (or lower sets) Y of a poset or
qoset (X,≤) are characterized by the condition x≤y ∈Y ⇒ x ∈Y ;
thus, they are the unions of principal ideals

(y ] = ↓y = {x ∈X : x ≤ y} (y ∈ X)

and form both a closure system and a topology, the lower Alexan-
droff topology or Alexandroff completion A(X,≤). The up-sets (or
upper sets) constitute the upper Alexandroff topology α(X,≤) =
A(X,≥), whose least base consists of all principal filters (or prin-
cipal dual ideals)

[x) = ↑x = {y ∈ X : x ≤ y} (x ∈ X).

The closed sets with respect to that topology are precisely the
down-sets. Hence, the closure of a set Y in the Alexandroff space
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(X,α(X,≤)) is the down-closure

↓Y = {x ∈ X : x≤ y for some y ∈ Y }.

Generally, we denote by CX (OX) the lattice of all closed (open)
sets of an arbitrary topological space X . The specialization order
is given by

x ≤ y ⇔ Ox ⊆ Oy , where Ox = {U ∈ OX : x ∈ U}.

Notice that for any base B of X , we have

x ≤ y ⇔ Bx ⊆ By , where Bx = {B ∈ B : x ∈ B}.

Order-theoretical statements about spaces refer to the specializa-
tion order. Thus, CX is always contained in A(X,≤) (closed sets
are down-sets), and equality characterizes A-spaces. The point clo-
sures are the principal ideals (x ], while the core of a point x, i.e.
the intersection of all neighborhoods of x, is the principal filter [x).
The set of all base points is

BX = {x ∈ X : [x) ∈ OX} .

If Y is a subset of a qoset or space, is will be convenient to write

Yx = Y ∩ (x ] and xY = [x)∩ Y .

By an ideal of a poset (or qoset) P , we mean here (as in [29] and [30],
but deviating from [14], [35] and [28]) a directed down-set; a filter
of P is an ideal of the dually ordered set. The ideals of P form
the (directed) ideal completion IP . The subposet of all principal
ideals is designated by iP . As usual, by a join (meet) we mean a
least upper (greatest lower) bound; but notice that joins and meets
are unique only in the case of partial orders or T0-spaces. A tricky
application of Zorn’s Lemma (see [13] or [18]) shows:

Lemma 1. If all (upper bounded) non-empty well-ordered subsets of
a poset have a join then so do all (upper bounded) directed subsets.

A poset in which all directed subsets have a join is called up-com-
plete, upper Dedekind-complete, directed complete or a dcpo (some-
times also a cpo; in [9] and [18], every cpo has a least element). By
a conditionally up-complete poset or cup we mean a poset whose
upper bounded directed subsets have joins. Note that every down-
set of a dcpo is a cup. It remains open whether, conversely, any
cup is a down-set in some dcpo (but see Theorem 1).
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There is almost no dissension about the notions of continuous and
algebraic (complete) lattices [29], but in the more general setting
of posets, several degrees of generalization have been considered.
Sometimes the requirement of up-completeness is included in the
definitions (see, for example, [29] and [32]–[43]), sometimes not (see
e.g. [10, 30, 44, 45]). For a discussion and comparison of various
reasonable notions of continuity for posets, the reader may consult
[11] and [19]. In the present context, it appears useful to follow the
more general trace, where up-completeness is not assumed a priori.
Thus, we mean by a continuous poset one in which for every element
y there is a least ideal having a join above y, called the way-below
ideal of y and denoted by ⇓y. One writes x � y for x ∈ ⇓y and
calls the elements x with x � x compact. KP will designate the
subposet of all compact elements of a poset P . An algebraic poset
is then characterized by the property that each element is the join
of a directed set of compact elements. In that case, the way-below
ideal is the down-set generated by these compact elements, and con-
sequently, the poset must be continuous. Up-complete continuous
posets are also called (continuous) domains [30], but some authors
use the name “domain” for more special, more general or even un-
related notions (cf. [2]). Concerning algebraic domains, see e.g.
[16, 30, 35, 40, 45], and for generalizations to so-called Z-algebraic
posets, [18] and [47].

The Scott topology σP on an arbitrary poset P = (X,≤) consists
of all up-sets U such that any directed set having a supremum that
belongs to U must already meet U . In a continuous poset, the way-
below relation � is idempotent (“interpolation property”), and the
sets ⇑x = {y ∈ X : x� y} form a base for the Scott topology. As
in [29], ΣP will designate the topological space (X, σP ). Thus, Σ
gives rise to a concrete functor (keeping the underlying maps of the
morphisms fixed) from the category of posets and maps preserving
directed joins to the category of T0-spaces. The following facts are
folklore of domain theory (and proof ideas are to be found in [30]):

Proposition 1. If C is a down-set of an algebraic (respectively,
continuous) domain A, then C is an algebraic (respectively, contin-
uous) cup with

x� y in C ⇔ x� y in A for all x, y ∈ C.

In particular, KC = C ∩ KA and σC = σA|C .
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The statements in the previous proposition are rather subtle:

(1) If C = Ay is a principal ideal in an algebraic poset A and C is
a complete lattice in its own right, it need not even be continuous;
furthermore, an element x ∈ C that is compact in A may fail to be
compact in C.

(2) A principal ideal in an algebraic domain is again one, but
even complete algebraic lattices may possess down-sets that are
not domains.

(3) Although all intervals of complete algebraic lattices are al-
gebraic, an interval or principal filter in an algebraic domain need
not even be continuous [16, 30].

Respective counterexamples are sketched in the subsequent dia-
grams, where the subposets are indicated by bold black dots.
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Theorem 1. The algebraic cups are the down-sets of algebraic do-
mains.

Proof. For any algebraic cup A, there is a well-defined embedding

ι : A→ IKA, x 7→ Kx = KA ∩ (x]

in the algebraic domain IKA of all ideals of the subposet K = KA.
The image ι(A) is a down-closed ideal extension, that is, a down-
set of the ideal completion IKA: indeed, for I ∈ IKA, the inclusion
I ⊆ Kx entails that I has the upper bound x, hence a join a in A,
so I coincides with Ka, by compactness of the elements in K and
directedness of I . Replacing the ideals Kx by their preimages x,
one obtains an algebraic domain that contains A as a down-set. �
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Specific algebraic domains are the noetherian posets, in which all
ascending sequences become stationary (Ascending Chain Condi-
tion). Using the Principle of Dependent Choices (see e.g. [27]), a
weak form of the Axiom of Choice, one observes:

Corollary 1. Noetherian posets are characterized by each of the
following properties:

– every non-empty subset has a maximal element,

– every directed subset has a greatest element,

– every non-empty well-ordered subset has a compact join,

– the poset is up-complete, and every element is compact.

We call a poset pre-noetherian if each of its elements is compact.

At the end of this preliminary section, let us recall a conve-
nient characterization of completely distributive lattices L (cf.Raney
[46]): for every element x∈L , there is a least down-set with join
above x. By reasons of analogy, completely distributive (complete)
lattices are also called supercontinuous , and algebraic completely
distributive lattices are called superalgebraic , being join-generated
by supercompact (that is, completely join-prime) elements; by def-
inition, an element p is supercompact or completely join-prime iff it
is contained in any down-set whose join dominates p.

2. Algebraic Posets as Ideal Extensions

For algebraic posets, one would expect an ideal-theoretical char-
acterization, in the same vein as the algebraic domains are, up to
isomorphism, the ideal completions IP , consisting of all ideals of
arbitrary posets P , which in turn are isomorphic to the subposet
KA of all compact elements of A = IP (the principal ideals of P ).
But there is a crucial difference between that classical result and
the situation of arbitrary posets: if up-completeness is dropped,
algebraic posets need not be determined (up to isomorphism) by
their subposet of compact elements, and a representing ideal sys-
tem will not be the whole ideal completion. Therefore, we need the
more general notion of ideal extensions of a poset (cf. [14]). These
are collections of ideals that contain at least all principal ideals; we
call such an ideal extension I algebraic if for any directed subsys-
tem of I possessing a join in I, this join is the set-theoretical union.
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Among all ideal extensions, the algebraic ones may be characterized
by the property that the principal ideals are precisely the compact
members. Special algebraic ideal extensions are the down-closed
ideal extensions, i.e. those which are down-sets of the ideal com-
pletion. By Theorem 1 and its proof, they correspond to the al-
gebraic cups. Note that an up-complete algebraic ideal extension
must already be the whole ideal completion. The following result is
probably known to workers in domain theory, so we omit the proof;
for a similar result about “unionized” subset systems, see [47].

Lemma 2. A poset A is algebraic iff it is isomorphic to an algebraic
ideal extension of some poset (that is isomorphic to KA).

In order to extend the known equivalence between ideal comple-
tions and algebraic domains (see e.g. [16] or [18]) to arbitrary ideal
extensions I, it is helpful to regard them as pairs (P, I), where P
is the underlying poset. (Notice that P is completely determined
by I, being the union

⋃
I together with the order given by x ≤ y

iff y∈I ∈I implies x∈I .) As morphisms between ideal extensions
(P, I) and (P ′, I ′) we take isotone quasi-closed maps, i.e. maps
ϕ : P → P ′ such that x ≤ y implies ϕ(x) ≤ ϕ(y), and I ∈ I implies
↓ϕ(I) ∈ I ′.

On the other hand, we consider so-called directed based sets
(A,B), consisting of a quasi-ordered set A and a subset B such
that each Bx is directed and x ≤ y ⇔ Bx ⊆ By for all x, y ∈ A.
In case A is a poset, the latter condition means join-density of
B in A, and we speak of a directed based poset . As morphisms
between directed based (po-)sets (A,B) and (A′, B′), it is reason-
able to take isotone (i.e. order preserving) maps φ : A→A′ that
preserve the bases (i.e. φ(B) ⊆ B′) and interpolate : for a ∈ A

and b′ ∈ B′ with b′ ≤ φ(a), there is a b ∈ B such that b ≤ a

and b′ ≤ φ(b). In the full subcategory of algebraic posets, re-
garded as directed based posets (A,KA), the morphisms preserve
not only compactness but also directed joins. For any morphism
φ : A→A′ between directed based posets (A,B) and (A′, B′),
the restriction ϕ : B→B′ with ϕ(b) = φ(b) is well-defined, iso-
tone, and satisfies ↓ ϕ(Ba) = B′φ(a) for each a ∈ A. Thus,
ϕ is in fact a morphism between the ideal extensions E(A,B) =
(B, {Ba : a ∈ A}) and E(A′, B′) = (B′, {B′a′ : a′ ∈ A′}). By
join-density of B in A, the poset A is isomorphic to {Ba : a ∈ A}.
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Moreover, the morphism φ may be reconstructed from ϕ by the
equation φ(a) =

∨
ϕ(Ba) (using interpolation and join-density of

B′).

Conversely, any morphism ϕ between ideal extensions (P, I) and
(P ′, I ′) gives rise to a map

φ = I+ϕ : I → I ′, I 7→ ↓ϕ(I),

and it is easy to verify that φ is a morphism between the directed
based posets (I, iP ) and (I ′, iP ′). Furthermore, the restricted map
φ|iP : iP → iP ′, sending Pa to P ′ϕ(a), is essentially the same as
the original ϕ. In all, we have the following:

Theorem 2. Mapping each directed based poset (A,B) to the ideal
extension (B, {Ba : a ∈ A}) and restricting each morphism to the
bases, one obtains an equivalence E between the category of directed
based posets and the category of ideal extensions. The inverse equiv-
alence is established by the functor I+.

For the full subcategory of algebraic posets with maps preserving
compactness and directed joins, we conclude (using Theorem 1):

Corollary 2. Under the above equivalence, algebraic posets corre-
spond to algebraic ideal extensions, algebraic cups to down-closed
ideal extensions, and algebraic domains to ideal completions.

Though an algebraic poset is neither determined by the lattice
of its Scott-closed sets nor by the subposet of its compact elements,
these two structures determine each other up to isomorphism.

Proposition 2. Via relativization, the Scott completion CΣA of
an algebraic poset A is isomorphic to the Alexandroff completion
AKA of the subposet KA of all compact elements. Hence, KA is
isomorphic to the poset of all supercompact elements of CΣA.

Proof. Put K = KA. Let us show that an isomorphism between
CΣA and AK is provided by the relativization map C 7→ C∩K. In
the reverse direction, one associates with every down-set D ∈ AK
the σ-closure D in A. Then, for any C ∈ CΣA and a ∈ C, one
gets a =

∨
Ka ∈ C ∩K, because Ka is directed, and the inclusion

C ∩K ⊆ C is obvious. On the other hand, any down-set D in K is
clearly contained in D∩K, and each x ∈ D∩K belongs to D since
that down-set meets the open core [x). Thus, the closure map is in
fact inverse to the relativization map. �
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3. A-, B- and C-Spaces

In some sense, the “continuous” or “local” counterparts of the
“rather discrete” B-spaces (having minimal bases) are the so-called
core spaces or C-spaces [11, 17], in which every point has a neigh-
borhood base consisting of (not necessarily open) cores.

For easy reference, let us list various known characterizations of
A-, B- and C-spaces (cf. [17]).

Proposition 3. Let X be a topological space.

A. The following are equivalent:

(a) X is an A-space.

(b) CX is a topology.

(c) OX is a closure system.

(d) The closure operator preserves arbitrary unions.

(e) Each point has a least neighborhood (i.e. all cores are open).

(f ) X has a least base, consisting of all cores.

(g) The open sets are the up-sets of a (unique) quasi-order.

B. The following are equivalent:

(a) X is a B-space.

(b) CX is a (super)algebraic lattice.

(c) OX is a superalgebraic lattice.

(d) The closure operator is given by x ∈ Y ⇔ BX ∩ (x ] ⊆ ↓Y .

(e) Each point has a neighborhood base of open cores.

(f ) X has a base consisting of cores.

(g) The open sets are the up-sets generated by subsets of BX.

C. The following are equivalent:

(a) X is a C-space.

(b) CX is a (super)continuous lattice.

(c) OX is a supercontinuous lattice.

(d) The closure operator preserves intersections of down-sets.

(e) X is locally compact and has a base of open filters.

(f ) X is locally supercompact.

(g) The open sets are the up-sets Yρ of an idempotent relation ρ.
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Corollary 3. A topological space X is a B-space iff it has an
A-subspace Y with OX ' OY (namely the space of all base points).

Part A of Theorem 3 is essentially due to Alexandroff [3]. Notice
that the closed sets of a B-space X form an algebraic lattice, but
not necessarily an algebraic closure system, which would mean that
X is an A-space. In Part C, supercompactness of a set C means
that any open cover of C has already a member that contains C,
and a locally supercompact space is one in which every point has a
neighborhood base of supercompact sets. The cores are precisely
the supercompact up-sets. (A weaker notion of supercompactness,
occurring in other topological contexts, is not relevant to our pur-
poses.) Implicitly, some of the equivalences in Parts B and C arise
in the work of Hoffmann [32, 33, 34]. But, in [34], an incorrect link
was taken over from [4] (corrected in [35]). For the first compre-
hensive characterization of C-spaces, see [11], and [24] for the more
general case of arbitrary closure spaces. The only implication in
Part C that probably requires a choice principle is (c)⇒(e) :

Lemma 3. Given Dependent Choices, every supercontinuous frame
is spatial; in particular, C-spaces then have a base of open filters.

Examples. (A) Every semigroup, endowed with the closure system
of all ideals, is an A-space.

(B) Every ordinal with the Scott topology is a B-space, but not
an A-space unless it is finite.

(C) Powers of the real unit interval with the Scott topology are
C-spaces in which no proper core is open, so they are not B-spaces.

Thus, every A-space is a B-space, and every B-space is a C-space,
but neither of these implications may be inverted generally.

In [17], purely order-theoretical descriptions have been given for
A-, B- and C-spaces (cf. Proposition 3 (g)). Since these character-
izations will be of interest for some of our later investigations, we
recall here briefly the main definitions and facts. A relation ρ on a
set X is interpolating if

x ρ z implies that there is a y with x ρ y ρ z,

and basically reflexive if

x ρ z implies that there is a y with x ρ y ρ y ρ z.
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Note that a relation is idempotent iff it is both transitive and in-
terpolating. By an auxiliary order or auxiliary relation [29, 30] for
a quasi-order ≤ there is meant a transitive relation ρ such that the
sets ρ y = {x : x ρ y} are ideals with x ≤ y ⇔ ρ x ⊆ ρ y . A map ϕ
between auxiliary ordered sets (X, ρ) and (X ′, ρ′) is interpolating if
for x′ρ′ ϕ(z) there is a y with x′ρ′ ϕ(y) and y ρ z. Thus, ρ is inter-
polating iff so is the identity map on X . Interpolating maps are of
basic relevance to the theory of computation, where the elements
x with x ρ y are interpreted as “states of approximation” for the
object y to be computed. The preceding definition is in accordance
with that from Section 2, because there is a one-to-one correspon-
dence between basically reflexive auxiliary orders and B-spaces (by
taking the elements with x ρ x as base points; cf [24]).

Theorem 3. Assigning to each topological space X its interior
relation ρ, given by xρ y iff y is an inner point of the core of x,
one obtains one-to-one correspondences between

– A-spaces and reflexive auxiliary orders, i.e. quasi-orders,

– B-spaces and basically reflexive auxiliary orders,

– C-spaces and interpolating (idempotent) auxiliary orders.

These correspondences give rise to isomorphisms between the re-
spective categories of spaces and of auxiliary orders with interpolat-
ing isotone maps. The associated quasi-orders are the specialization
orders (hence antisymmetric iff the T0-axiom holds).

4. Monotone Convergence Spaces

Aiming for a topological description of pre-noetherian, algebraic
or continuous (but not necessarily up-complete) posets, we need a
few more order-topological notions. For any topological space X ,
we mean by the patch topology the join of the given topology and
the lower topology, which has the cores as subbasic closed sets. In
particular, the Lawson topology [29, 30, 40] is the patch topology of
the Scott topology. On Rn, it coincides with the Euclidean topol-
ogy. Therefore, the subsequent considerations generalize known
facts from real analysis. By definition, a net ν : D→X

– is monotone (increasing) if m ≤ n implies ν(m) ≤ ν(n),

– is upper bounded (ub) by x ∈X if ν(n) ≤ x for all n∈D,

– has a least upper bound if this holds for its range ν(D).
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Lemma 4. For a monotone net ν : D→X in a space X and for
any point x ∈ X, the following conditions are equivalent:

(a) x is a (least) upper bound and a limit of ν.

(b) x is an upper bound and an accumulation point of ν.

(c) x is a limit of ν in the space with the patch topology.

(d) The principal ideal (x] is the closure of ν(D) in X.

In T0-spaces, these facts imply that x is the unique supremum of ν.

Proof. (a)⇒(b) is clear.

(b)⇒(c). Any neighborhood U of x that is open in the original
topology contains some ν(m), and for all n ∈ D with n ≥ m, it
follows that ν(m) ≤ ν(n) ∈ ↑U = U . For x ∈ X \ [y), we have
ν(D) ⊆ (x ] ⊆ X \ [y). Thus, ν converges to x both in the original
and in the lower topology, hence also in the patch topology.

(c)⇒(d). By (c), x is a fortiori a limit of ν in the original space.
Hence, any closed set containing the range ν(D) must also contain
the limit x and, being a down-set, the whole point closure (x]. It
remains to verify that, conversely, ν(D) is contained in (x ]. If not,
choose an m ∈ D with ν(m) 6≤ x; then x lies in the patch-open set
U = X\[ν(m)). Thus, there is an n ∈ D with ν(n) ∈ U and n ≥ m,
so that ν(n) ≥ ν(m), in contrast to ν(n) ∈ U = X \ [ν(m)).

(d)⇒(a). By (d), x is an upper bound of ν(D) ⊆ ν(D), and if y is

any other upper bound of ν(D), it follows that (x] = ν(D) ⊆ (y],
i.e. x ≤ y. For each U ∈ Ox, we find an m ∈ D with ν(m) ∈ U

(since x ∈ ν(D)). By monotonicity of ν and directedness of D, this
already entails that ν converges to x. �

A T0-space is called

– sober if the point closures are the only irreducible closed
sets,

– a monotone convergence (mc) space if every monotone net
in the space has a join (supremum) and converges to it,

– a conditional monotone convergence (cmc) space if every ub
monotone net in the space has a join and converges to it,

– a weak monotone convergence space or simply a weak space
if any monotone net having a join converges to that join.
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In each of these definitions, “monotone net” may be replaced with
“directed subset” (regarded as a net) or with “ideal”. From Lemma
4, one immediately deduces the fact that the mc spaces are those
T0-spaces in which the closure of any directed subset is a point
closure, i.e. the d-spaces or temperate spaces in the sense of Wyler
[48]. Similarly, the cmc spaces are those T0-spaces in which the
closure of any upper bounded directed subset is a point closure;
and the weak mc spaces are just those T0-spaces whose topology
is weaker than the Scott topology (w.r.t. specialization), whence
they simply are referred to as weak spaces. (Conditional) monotone
convergence spaces, also called order-consistent spaces in [29], are
well known from real analysis; moreover, they play quite a role in
domain theory (see [30] and the references therein).

Corollary 4. Among the T0-spaces, the cmc spaces are character-
ized by each of the following conditions:

(a) Every ub monotone net has a join and converges to it.

(b) Every ub monotone net converges in the patch topology.

(c) Every ub directed set has a join, and the space is weak.

(d) Every ub directed set has a join and meets each neighborhood
of that join.

Analogous characterizations hold for mc spaces. The (conditional)
mc spaces are precisely the (conditionally) up-complete weak spaces.

None of the implications

sober ⇒ mc space ⇒ cmc space ⇒ weak (mc) space

may be inverted in general (but see Proposition 5).

Examples.

(1) Any complete chain (e.g. the unit interval) with the Scott
topology is a sober C-space.

(2) While every dcpo whith the Scott topology is an mc space,
Johnstone’s example [39] shows that a dcpo with the Scott
topology is not always sober.

(3) The real line with the Scott topology is a cmc space but not
up-complete, hence not an mc space.

(4) The rational line with the Scott topology is a weak space
but not conditionally up-complete, hence not a cmc space.
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(5) An infinite set with the cofinite topology is an mc space but
not sober, and its topology is strictly coarser than the Scott
topology of the specialization order (which is discrete).

The topological characterization of pre-noetherian, algebraic and
continuous posets is prepared by calling a poset P an

– A-poset if the Scott and Alexandroff topology agree on P ,

– B-poset if the Scott topology on P has a least base,

– C-poset if the Scott topology on P is locally supercompact.

Proposition 4. For each element y of an arbitrary poset P , put
P σ

y = {x ∈ P : ∃U ∈ σP (y ∈ U ⊆ [x))} . Then P is an

– A-poset iff P σ
y = (y ] for each y ∈ P ,

– B-poset iff each y is the directed join of P σ
y = KP ∩ (y ],

– C-poset iff each P σ
y is directed with join y.

The A-posets are the pre-noetherian posets, the B-posets are the
algebraic posets, and the C-posets are the continuous posets.

Proof. In order to check that if P is a C-poset then each P σ
y is

directed with join y, consider a finite subset F of P σ
y and choose

open sets Ux with y ∈ Ux ⊆ [x) (x ∈ F ). Since X = ΣP is a
C-space, we find an open U and a point u such that

y ∈ U ⊆ [u) ⊆
⋂
{Ux : x ∈ F} ⊆

⋂
{[x) : x ∈ F} .

Hence, u is an upper bound of F in P σ
y , proving directedness of P σ

y .
For y 6≤ z, the set V = X \ (z] is an open neighborhood of y, and
as before we find a point x ∈ P σ

y with x 6≤ z, which shows that y is
the join of P σ

y . Conversely, if P σ
y is directed with join y then y has

a neighborhood base of cores in ΣP , because for y ∈ V ∈ σP there
is an x ∈ P σ

y ∩ V , hence an open subset U with y ∈ U ⊆ [x) ⊆ V .
Concerning B-posets, note that an element c is compact iff [c) is

an open core in the Scott topology; consequently, for an algebraic
poset, the set of all open cores is the least base of the Scott topology.
The remaining statements about A-, B- and C-spaces are easily
verified (in ZF without choice). In order to see that a continuous
poset is a C-poset, use the fact that the sets ⇑ x = {y∈P : x� y}
are Scott open, by the interpolation property (see [29, 30]). �
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The concrete specialization functor Σ− associates with any topo-
logical space the underlying set equipped with the specialization
order (and keeps the underlying maps fixed). This functor gives
rise to various categorical isomorphisms:

Theorem 4. The Scott functor Σ and the specialization functor
Σ− induce mutually inverse isomorphisms between the categories of

– weak A-spaces and A-posets (pre-noetherian posets),

– weak B-spaces and B-posets (algebraic posets),

– weak C-spaces and C-posets (continuous posets).

The spaces on the left hand are cmc spaces iff the corresponding
posets on the right hand are cups, and the spaces are mc spaces iff
the corresponding posets are up-complete (domains).

Proof. We emphasize again that no choice principles are needed for
the subsequent arguments. For any poset P , it is clear that ΣP
is a weak space with Σ−ΣP = P . If P is a C-poset then ΣP is a
C-space, by Proposition 4.

Conversely, if X is an arbitrary C-space then its topology is finer
than the Scott topology on P = Σ−X : indeed, for each y ∈ X , the
set of all points x such that the core [x) is a neighborhood for y
is directed with join y, by the neighborhood base property; hence,
every Scott-open neighborhood of y must contain such cores [x)
and is therefore open in the given C-space topology. Thus, a weak
C-space X carries the Scott topology, i.e. X = ΣΣ−X , and Σ−X is
a C-poset. In all, this establishes the claimed isomorphism between
the category of C-posets (with maps preserving directed joins) and
the category of weak C-spaces. The cases of A- and B-spaces are
easily accomplished.

The isomorphisms between the respective categories of (condi-
tionally) up-complete posets and (conditional) monotone conver-
gence spaces are now immediate conseqences of Corollary 4. �

Theorem 4 shows, among other interesting correlations between
ordered and topological structures, that the topology of any weak
monotone convergence space with a minimal base is entirely deter-
mined by its specialization order: it must be the associated Scott
topology.
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5. Sober A-, B- and C-Spaces

Examples (2) and (5) in the previous section have shown that the
class of sober spaces is properly contained in that of all monotone
convergence spaces. Nevertheless, one can prove (using the interior
relation ρ from Theorem 3):

Proposition 5. A C-space (in particular, an A- or B-space) is
sober iff it is a monotone convergence space.

Proof. Let C be an irreducible closed set in a C-space X that is
also a monotone convergence space. Then the set

ρC = {x ∈ X : ∃y ∈ C (x ρ y)} = {x ∈ X : C ∩ [x)◦ 6= ∅}

is directed: given a finite F ⊆ ρC, irreducibility of C yields a
y ∈ C∩

⋂
{ [x)◦ : x ∈ F}, and as y has a neighborhood base of cores,

we find some w ∈
⋂
{ [x)◦ : x ∈ F} with y ∈ C ∩ [w)◦ 6= ∅. Thus, w

is an upper bound of F in ρC. By up-completeness, ρC has a join
z, and by weakness, it follows that C is the closure of {z} : indeed,
x ∈ ρC implies C ∩ [x) 6= ∅, a fortiori x ∈ C, and consequently
z =

∨
ρC lies in C. On the other hand, every neighborhood of any

y ∈ C intersects ρC, whence C ⊆ ρC ⊆ (z] = {z}. �

Now, from Theorem 4, we immediately infer (cf. [17]):

Theorem 5. Via the specialization functor and the Scott functor,

– the sober A-spaces correspond to the noetherian domains,

– the sober B-spaces correspond to the algebraic domains,

– the sober C-spaces correspond to the continuous domains.

Concerning the case of B-spaces (“monotope spaces”), see also
Hofmann and Mislove [36]. For generalizations to Z-sober spaces,
Z-algebraic posets and Z-continuous posets, see [18] and [19].

Whereas soberness is extremely non-invariant under lattice iso-
morphisms (for any sober space there is a non-sober one having an
isomorphic lattice of open sets), it turns out that within the class of
T0-A-spaces, soberness may be characterized by a lattice-invariant
property. By a superatomic lattice, we mean a superalgebraic lat-
tice in which every non-trivial interval has an atom; in superalge-
braic lattices, the latter is equivalent to the existence of (unique)
irredundant meet-decompositions into completely meet-irreducible
elements (see e.g. [8]). The following fact was shown in [17]:
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Lemma 5. A T0-A-space is sober iff its topology is superatomic.

For any complete lattice L, the ∨-spectrum Σ̌L is the set P̌L of all
∨-primes endowed with the hull-kernel topology, whose open sets
are all sets of the form P̌L\(a] (a ∈ L). The set P̂L of all ∧-primes

and the (∧-)spectrum Σ̂L are defined dually; hence, Σ̂L is the ∨-
spectrum of the dual lattice. It is well known that both spectra are
always sober spaces, and that the category of spatial frames is dual
to the category of sober spaces via the spectrum functor and the
open set lattice functor in the reverse direction [29, 30, 38].

Summarizing the previous facts, we arrive at the following basic
results of domain theory, parts of which are due to Hoffmann [34],
Hofmann and Mislove [36], Lawson [40] and others (see also [30]).
As we have seen, the approach via A-, B- and C-spaces is very
natural and convenient (cf. [17] and [18]).

Corollary 5. For a topological space X with topology τ , the fol-
lowing conditions are equivalent:

(1A) Σ−X is a noetherian poset whose Scott topology is τ .

(2A) X is an mc space and OX is superatomic.

(3A) X is a sober A-space.

Similarly, the following statements are equivalent:

(1B) Σ−X is an algebraic domain whose Scott topology is τ .

(2B) X is an mc space and OX is superalgebraic.

(3B) X is a sober B-space.

Moreover, the following statements are equivalent:

(1C) Σ−X is a continuous domain whose Scott topology is τ .

(2C) X is an mc space and OX is supercontinuous.

(3C) X is a sober C-space.

Via the open set functor and the spectrum functor, the following
pairs of categories are duals of each other:

– sober A-spaces (A-posets) and superatomic lattices

– sober B-spaces (B-posets) and superalgebraic lattices

– sober C-spaces (C-posets) and supercontinuous lattices.
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6. Sobrification and Duality

Abstractly (that is, categorically), the sobrification Σ◦X of a
space X is the sober reflection of that space; concretely, it may be
constructed by taking the ∧-spectrum Σ̂OX of the open set lattice
[29, 30, 38], or equivalently, the ∨-spectrum Σ̌ CX of the closed
set lattice [32]. The latter representation is often more convenient,
because in that version, the sobrification map sends each point to
its closure. The following observation is due to Hoffmann [32]:

Theorem 6.A. The sobrification of an A-space is the ideal com-
pletion of the associated quasi-ordered set with the Scott topology.

This result may be extended, mutatis mutandis, to B-spaces and
even to C-spaces. The original space and its sobrification always
have isomorphic lattices of closed (or open) sets. We conclude
from Proposition 3.B that the sobrification of a B-space is a sober
B-space, hence an algebraic domain with the Scott topology, by
Theorem 5. As expected, that algebraic domain arises as the ideal
completion of a subposet of the original space.

Theorem 6. B. For any B-space X with base point set BX, the
sobrification is the ideal completion IBX, endowed with the Scott
topology. In the T0 case, the sobrification map induces a bijection
between the base points of X and the compact elements of IBX.

Proof. Mutually inverse isomorphisms between the closed set lat-
tice CX and the down-set lattice ABX are given by mapping each
closed set C to its trace C ∩BX and, in the reverse direction, each
down-set of BX to its closure (cf. Proposition 2). Since the irre-
ducible closed sets are the ∨-prime members of CX and the ideals
of BX are the ∨-prime members of ABX, the relativization map
yields an isomorphism between P̌CX and IBX . Consequently, by
Theorem 5, we have a homeomorphism between Σ̌CX and ΣIBX .
Now, the open cores are precisely the supercompact elements of the
open set lattices. It follows that the sobrification map induces a bi-
jection between the base points of the original space and those of
its sobrification, i.e. the compact elements of the domain IBX . �

For the case of an algebraic poset, regarded as a B-space with the
Scott topology, this amounts to a result due to Mislove [45]:
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Corollary 6. For any algebraic poset P , the sobrification of ΣP
is the Scott space ΣA of an algebraic domain A whose compact
elements coincide (up to the embedding) with those of the poset P .

There is a nice analogue of Theorem 6.B for C-spaces, which
occurs implicitly in [17] and [42]. By Theorem 3, every C-space is
completely determined by its interior relation x ρ y ⇔ y ∈ [x)◦.
Generally, for any idempotent relation ρ, a rounded down-set or
ρ-down-set is a set of the form ρY = {x : x ρ y for some y ∈ Y }; if
it is an ideal (w.r.t. the quasi-order ≤ given by x≤ y ⇔ ρx ⊆ ρy),
one speaks of a rounded ideal [30, 31, 42]); rounded up-sets and
rounded filters are defined dually. Now, we observe (cf. [6]):

Lemma 6. For any C-space X, the rounded up-sets are the open
sets, and the rounded filters are the ∨-prime open sets. On the other
hand, the assignments C 7→ ρC and D 7→ D yield mutually inverse
isomorphisms between the supercontinuous lattice of closed sets and
the lattice of rounded down-sets. Under these isomorphisms, the
irreducible closed sets correspond to the rounded ideals.

Hence, the rounded ideals may serve as the points of the sobrifica-
tion, whose topology is supercontinuous. By Proposition 3C and
Theorem 5, it is the Scott topology. Thus, one has (cf. [42]):

Theorem 6.C. Up to homeomorphism, the sobrification of any
C-space X is the poset I◦X of all rounded ideals, equipped with the
Scott topology. Thus, I◦X is a continuous domain.

With any topological space X , one may associate not only its so-
brification Σ◦X ' Σ̌CX ' Σ̂OX , but also the “cosobrification”
ΣcX ' Σ̌OX ' Σ̂ CX , i.e. the ∨-(∧-)spectrum of the open (closed)
set lattice. By an A∗-space, we mean a B-space whose poset of
∨-prime open sets satisfies the Ascending Chain Condition. From
the general Stone duality developed in [18] and [20], one derives:

Proposition 6. The contravariant cosobrification functor Σc, send-
ing any continuous map ϕ to the preimage map ϕ←, induces

– a duality between sober A-spaces and sober A∗-spaces

– a self-duality for sober B-spaces (hence for algebraic domains)

– a self-duality for sober C-spaces (hence for continuous domains).

The self-duality of continuous domains is the Lawson duality [40].
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Equivalences, dualities and reflections for
B- and C-spaces
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7. B-extensions

While the class of A-spaces is closed under the formation of sub-
spaces and rather special from the purely topological point of view,
the existence of minimal bases is considerably less restrictive and
extremely non-hereditary: as we shall see below, every topological
space arises as a dense subspace of a B-space. Here, density has
not only a topological but also an order-theoretical meaning. To
be more precise: given a base space (X,B), that is, a topological
space X with a distinguished base B, we mean by a B-extension for
(X,B) any B-space X ′ such that

(B1) the least base of X ′ induces B by relativization,

(B2) each base point of X ′ is a meet (that is, a greatest lower
bound w.r.t. specialization) of a non-empty subset of X .

Condition (B1) entails thatX is a subspace of X ′, and (B2) assures
topological density of X in X ′, because every open core meets X .
Recall that meets need not be unique in the absence of the T0-
axiom. Below we provide an alternate description of B-extensions
by means of quasi-isomorphisms, i.e. surjections ϕ between quasi-
ordered sets such that x ≤ y ⇔ ϕ(x) ≤ ϕ(y). Of course, such a
map is an isomorphism whenever its domain is a poset.

Lemma 7. A space X ′ is a B-extension of a base space (X,B) iff
X ′ is a B-space containing X as a subspace such that

(B3) the map b 7→ bX = {x ∈ X : b ≤ x} yields a quasi-iso-
morphism between BX ′ and B , ordered by dual inclusion.

The meets in (B2) are unique iff the map in (B3) is an isomor-
phism. This certainly holds if X ′ is a T0-space.

Proof. Recall that b ≤ x means b ∈ {x}. Clearly, (B1) and (B2)
together imply (B3), which in turn entails (B1). If for some b in
BX ′, the set bX were to have a lower bound x′ in X ′ such that
x′ 6≤ b, then there would exist an open core cX ′ with x′∈ cX ′ but
b 6∈ cX ′, i.e. c ≤x′ but c 6≤ b. However, assuming (B3), this would
lead to bX 6⊆ cX , contradicting the previous assumptions c≤x′ and
bX ⊆ x′X . By contraposition, each b ∈ BX ′ is a greatest lower
bound of bX , and by our general convention to exclude the empty
set from any base, bX is non-empty.
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If b′ is another greatest lower bound of bX (which is not forbid-
den a priori, because specialization need not be a partial order),
then bX ′ = b′X ′, hence b′ ∈ BX ′ and bX = b′X ; but then the map
in (B3) cannot be an isomorphism. �

Condition (B3) allows one to translate topological properties of
the base B into order-theoretical properties of the base point set
BX ′, and vice versa.

We call a B-extension minimal if no proper subspace is a
B-extension of the given base space.

Proposition 7. A minimal B-extension X ′ of (X,B) is character-
ized by the additional condition

(B4) Each point b′ in the remainder X ′\X is a T0-base point;
i.e. the core b′X ′ is open and distinct from any other core.

Hence, X is meet-dense in any minimal B-extension X ′ of (X,B),
and if X is T0, then so is X ′.

Proof. Let X ′ be a B-extension and b′ ∈ X ′ \X . If b′ is not a
base point or b′X ′ = cX ′ for a c 6= b′ then X ′′ = X ′ \ {b′} turns
out to be a smaller B-extension with BX ′′ = BX ′ \ {b′}: indeed,
b ∈ BX ′′ implies bX ′′ = U ∩ X ′′ = U \ {b′} for some U ∈ OX ′,
and it follows that bX ′ = U (if bX ′ = U ∪ {b′} then b ∈ U and
b ≤ b′ entail b′ ∈ U and bX ′ = U again). In any case, b ∈ BX ′.
Conversely, b ∈ BX ′ and b 6= b′ implies bX ′ ∈ OX ′ and b ∈ X ′′,
hence bX ′′ = bX ′ ∩X ′′ ∈ OX ′′, i.e. b ∈ BX ′′.

Now, it is clear that X ′′ has a base of open cores (induced by the
minimal base of X ′), and X ′′ is a B-extension of X since by (B3),
the map b 7→ bX is a quasi-isomorphism between BX ′\{b′} = BX ′′

and B.

On the other hand, assume thatX ′\X is a subset of BX ′, and let
X ′′ be any B-extension of (X,B) contained in X ′. For b′ ∈ X ′ \X ,
we have b′ ∈ BX ′, so (B1) for X ′ entails b′X ∈ B, and (B1) for X ′′

yields a b′′ ∈ BX ′′ with b′X = b′′X . By (B2), it follows that b′′ ≤ b′;
as b′′ ∈ X ′′ ⊆ X ′, we have b′′ ∈ X or b′′ ∈ X ′ \X ⊆ BX ′. In any
case, b′ ≤ b′′ ≤ b′ (using (B3) for X ′), whence b′X ′ = b′′X ′, and the
condition that b′ be a T0-base point forces b′ = b′′. We conclude
that X ′ = (X ′ \X)∪X ⊆ X ′′, and consequently X ′ = X ′′. �
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Theorem 7. Every base space (X,B) has a minimal B-extension
XB, which is unique up to homeomorphism.

Proof. Let X◦ denote the set of all cores, put X◦
B

= X◦∪ B, and
choose a bijection γ : YB→B0 = B \X◦, where YB is a set disjoint
from X . (To make the construction unique, one may take YB =
{(C,X) : C ∈ B0} and γ(C,X) = C; then the Axiom of Foundation
ensures X ∩ YB = ∅.) Furthermore, put XB = X∪ YB and extend γ
to a surjection from XB onto X◦

B
by setting γ(x) = [x) for x ∈ X .

Define a quasi-order on XB by

x ≤ y in XB iff γ(x) ⊇ γ(y) in X◦
B
.

We denote by B the preimage γ←(B) = {b ∈ XB : γ(b) ∈ B} and
claim that the sets Bx (x ∈ XB) are directed. Consider a finite
F ⊆ Bx; for each b ∈ F , we have b ≤ x, that is, γ(x) ⊆ γ(b). Thus,
γ(x) ⊆ U =

⋂
{γ(b) : b ∈ F} ∈ OX , and since γ(x) is either the

core [x) or a member of B, the base property of B yields in any case
some c ∈ B with γ(x) ⊆ γ(c) ⊆ U ; in other words, c is an upper
bound of F in Bx. Moreover, for x 6≤ y in XB, there is a b ∈ B

with b ≤ x but b 6≤ y: if γ(x) ∈ B, simply take b = x; otherwise, x
must belong to X , and then x 6≤ y means γ(y) 6⊆ [x) =

⋂
Bx, hence

γ(y) 6⊆ C for some C = γ(b) ∈ Bx, i.e. γ(x) ⊆ γ(b). Thus, we have
x ≤ y ⇔ Bx ⊆ By, and consequently

B′ = {bXB : b ∈ B}

is the minimal base of a B-space XB whose specialization order is
the above relation ≤ (see [24] and Proposition 9). Moreover, B′

induces the given base B on X : in fact, each C ∈ B is of the form
γ(b) for some b ∈ B, and it follows that bX = γ(b) = C, since for
x ∈ X , we have

x ∈ C ⇔ [x) ⊆ C ⇔ γ(x) ⊆ γ(b) ⇔ b ≤ x ⇔ x ∈ bX.

From this and Lemma 7, we see at once that XB is a B-extension
of (X,B). By definition, each point b in the remainder XB \X is
contained in YB, hence in the base point setB; moreover, if [b) = [c)
for some c ∈ XB then either c ∈ YB , whence γ(b) = bX = cX = γ(c)
and therefore b = c (by injectivity of γ on YB), or c ∈ X , in which
case we obtain γ(b) = bX = [c) ∈ X◦, while b ∈ YB excludes
γ(b) ∈ X◦. By Proposition 7, this establishes minimality of XB
among all B-extensions of (X,B).
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It remains to verify the uniqueness statement. Let X ′ be any
minimal B-extension for (X,B). Define a map µ : X ′→XB by
µ(x) = x for x ∈ X and µ(b) = γ−1(bX) for b ∈ X ′ \X ⊆ BX ′.
Then µ is well-defined and bijective, by definition of γ and the fact
that the points of X ′ \X bijectively correspond to the members of
B0 via b 7→ bX (Lemma 7 and Proposition 7). For b ∈ BX ′, we
have either b ∈ X and µ(b) = b ∈ BX ⊆ BXB, or b ∈ X ′ \X and
µ(b) = γ−1(bX) ∈ BXB (since µ(b)XB ∈ B′ ⊆ OX ′). Conversely, if
µ(x) ∈ BXB then either µ(x)= x ∈ BX⊆BX ′ or x∈X ′\X⊆BX ′.
Furthermore, by Proposition 7,

x′≤y′ ⇔ y′X⊆x′X ⇔ γ(µ(y′))⊆ γ(µ(x′)) ⇔ µ(x′)≤µ(y′).

Thus, µ is an order isomorphism inducing a bijection between the
base point sets and is therefore a homeomorphism between X ′ and
XB. �

The advantage of B-extensions is evident: B-spaces have a rather
simple computational structure, and order-theoretical properties
of B-extensions reflect topological properties of the original base
space, by virtue of the quasi-isomorphism between the least base
of the B-extension and the prescribed base of the subspace. For
instance, we have as an immediate consequence of Theorem 7:

Corollary 7. Every topological space X is a dense subspace of a
B-space X ′ having the same weight. In particular, X is second
countable iff so is X ′.

Example. Consider the reals R with the countable base

B = { ]r,∞ [ : r ∈ Q (i.e. r is rational) }

for the Scott topology. The B-extension RB is obtained by “dou-
bling” each rational number r ∈ Q to a covering pair r < r′ and
taking the principal filters r′RB as members of the minimal base.
Adding further “copies” r′′ and putting r′ ≤ r′′ ≤ r′ yields B-spaces
X ′ so that the inclusion map from R into X ′ admits many exten-
sions to RB (sending r′ to itself or alternatively to r′′). Of course,
the spaces X ′ obtained that way are not T0.
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8. The B-reflection and the B-sobrification

The last example demonstrates that the spaces XB cannot serve
as universal “B-reflections” for arbitrary base spaces, by lack of the
required uniqueness property of extensions – but a slight modifica-
tion will provide a T0-B-reflection for arbitrary base spaces (X,B).

As in the previous section, we denote by X◦ the collection of all
cores [x) with x ∈ X . We order the union X◦

B
= X◦∪ B by dual

inclusion and define a topology on X◦
B

by declaring as basic open
sets the principal filters (!)

[B) = {U ∈ X◦B : U ⊆ B} (B ∈ B).

It is easy to see that these sets actually form a base for a topology.
Observing that each element of X◦

B
is an intersection of members

of B, we have for U, V ∈ X◦
B

the equivalence

V ⊆ U ⇔ ∀B ∈ B (U ∈ [B) ⇒ V ∈ [B)).

Hence, the specialization order of the space X◦
B

is dual inclusion.
Thus, X◦

B
is T0 and has a base of open cores. Clearly, the map

ι = ιX,B : X→X◦B, x 7→ [x)

is one-to-one iff the original space is T0. For each B ∈ B, we have

ι←([B)) = {x ∈ X : [x) ⊆ B} = B,

showing that the map ι induces an isomorphism between the bases
B and { [B) : B ∈ B} (and that ι is a topological embedding in
the T0 case). Moreover, X◦ is meet-dense in X◦

B
since each basic

set is a union, hence a meet (w.r.t. specialization) of cores. By
definition, the points of X◦

B
\X◦ are T0-base points. Thus,

for each base space (X,B), the space X◦
B

is a minimal
B-extension of the T0-reflection X◦.

In case X was T0, the map γ in the construction of XB is easily
seen to be a homeomorphism onto X◦

B
.

We are now going to show that, with respect to suitable mor-
phisms, the space X◦

B
may be regarded as the T0-B-reflection of

(X,B). The morphism class to be chosen in order to make the cate-
gorical machinery run might look a bit exotic at first glance. What
we have to consider are basic open and continuous maps (which
occur also in similar contexts of order-topological adjunctions or
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reflections; see e.g. [18] and [37]). Basic continuity of a map ϕ

between base spaces (X,B) and (X ′,B′) means that the preimage
ϕ←(B′) of any basic open set B′ ∈ B′ belongs to the base B (which
implies topological continuity, but not conversely); and basic open-
ness means that for each C ∈ B, there is a least B′ ∈ B′ with
ϕ(B) ⊆ B′. Thus, a map ϕ : (X,B)→(X ′,B′) is basic open and
continuous iff the restriction ϕ← : B′→B is well-defined and has
a right adjoint ϕ+ : B→B′ (where the bases are ordered by dual
inclusion; thus, B ⊆ ϕ←(B′) ⇔ ϕ+(B) ⊆ B′). Obviously, basic
open and continuous maps are stable under composition; hence,
they may serve as morphisms for a category of base spaces. A map
is called core continuous if preimages of open cores are open cores.

Lemma 8. For a map ϕ : X→X ′ between B-spaces (regarded as
base spaces with the minimal bases), the following are equivalent:

(a) ϕ is basic open and continuous.

(b) ϕ is core continuous and sends base points to base points.

(c) ϕ is interpolating and induces a right adjoint map between
BX and BX ′.

Proof. (a)⇒(b). By definition, ϕ is continuous as a map between
base spaces iff it is core continuous. For b ∈ BX and b′ ∈ BX ′, we
get (using the fact that continuous maps are isotone):

ϕ+([b)) ⊆ [b′) ⇔ [b) ⊆ ϕ←([b′)) ⇔ b′ ≤ ϕ(b) ⇔ [ϕ(b)) ⊆ [b′) .

Since each core in X ′ is an intersection of open cores, it follows that
ϕ+([b)) must coincide with [ϕ(b)), and that ϕ(b) belongs to BX ′.

(b)⇒(c). By core continuity, preimages of principal filters in BX ′

are principal filters in BX , and ϕ is interpolating (Theorem 3).

(c)⇒(a). Let ψ : BX ′→ BX be the left adjoint of ϕ : BX→ BX ′.
Thus, ψ(b′) ≤ b ⇔ b′≤ ϕ(b), and the interpolation property yields

ϕ←([b′)) = {x ∈ X : b′ ≤ ϕ(x)} =

{x ∈ X : ∃b ∈ BX (b′ ≤ ϕ(b), b≤ x)} = [ψ(b′))

for each b′ ∈ BX ′, assuring that ϕ is (core) continuous, hence iso-
tone. For each b ∈ BX , the open core [ϕ(b)) is the least basic open
set containing ϕ([b)), showing that ϕ is basic open. �

Now, we are ready for the main reflection theorem:
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Theorem 8. The category of T0-B-spaces with base point preserv-
ing and core continuous maps is reflective in the category of base
spaces with basic open and continuous maps, and bireflective in the
category of T0-base spaces. For each base space (X,B), a reflection
is given by the core map

ιX,B : X→X◦B, x 7→ [x) .

Proof. (1) The map ι = ιX,B is basic open and continuous, since

ι← : {[B) : B ∈ BX◦B = B}→ B, [B) 7→ B =
⋃

[B)

is an isomorphism (thus, ι is a “quasi-homeomorphism” [30]).

(2) Now, to the universal property. Let ϕ be a basic open and
continuous map from (X,B) to a T0-B-space X ′, regarded as a
base space with minimal base {[b′) : b′ ∈ BX ′}. There is a well-
defined map ϕ̂ : X◦

B
→X ′ with ϕ̂([x)) = ϕ(x) for x ∈ X and

ϕ̂(B) = minϕ+(B) for B ∈ B. Note that for open cores [x) ∈ B,
we have ϕ̂([x)) = ϕ(x) = minϕ+([x)), since for b′∈BX ′,

ϕ+([x))⊆ [b′) ⇔ [x)⊆ϕ←([b′)) ⇔ x ∈ ϕ←([b′)) ⇔ ϕ(x) ∈ [b′).

By definition, ϕ̂ sends base points to base points.
Let us show that ϕ̂ is core continuous. For b′ ∈ BX ′, the pre-

image C = ϕ←([b′)) lies in B, and ϕ̂←([b′)) is the core [C) in X◦
B
,

since for B ∈ B,

B⊆C ⇔ ϕ+(B)⊆ [b′) ⇔ b′ ≤ ϕ̂(B) ⇔ B ∈ ϕ̂←([b′)) ,

and for x ∈ X ,

[x)⊆C ⇔ x∈ϕ←([b′)) ⇔ ϕ(x) = ϕ̂([x))∈ [b′) ⇔ [x)∈ ϕ̂←([b′)) .

(3) Any basic continuous map Φ between X◦
B

and a T0-base space
(X ′,B′) is uniquely determined by its values on ι(X). Indeed, using
the unique map Ψ : B′→B with Φ←(B′) = [Ψ(B′)), we can show
that for each U ∈ X◦

B
, the image Φ(U) is the (unique!) meet of the

set Φ(ι(U)) = {Φ([x)) : x ∈ U}:

x′ ≤ Φ(U) ⇔ ∀B′ ∈ B′ (x′ ∈ B′ ⇒ Φ(U) ∈ B′)

⇔ ∀B′ ∈ B′ (x′ ∈ B′ ⇒ U ⊆ Ψ(B′))

⇔ ∀x ∈ U ∀B′ ∈ B′ (x′ ∈ B′ ⇒ ι(x) ⊆ Ψ(B′))

⇔ ∀x ∈ U ∀B′ ∈ B′ (x′ ∈ B′ ⇒ Φ(ι(x)) ∈ B′)

⇔ ∀x ∈ U (x′ ≤ Φ(ι(x))) .
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(4) The uniqueness part of the universal property immediately
follows from (3), which also shows that in case (X,B) is T0, the map
ι is not only a monomorphism but also an epimorphism, hence a
bimorphism. �

We know from Theorem 6.B that the base points of a T0-B-space
X are those of its sobrification Σ◦X = Σ̌ CX = ΣIBX ; in partic-
ular, the sobrification embedding preserves base points and is core
continuous. Moreover, if we have any base point preserving and
core continuous map ϕ : X→X ′ into a sober B-space, then the
unique extension to Σ◦X is base point preserving and core continu-
ous, too. Composing the sober reflection with the B-reflection (and
ordering the bases by dual inclusion), we arrive at

Proposition 8. For any base space (X,B), the ideal completion IB
with the Scott topology is the B-sobrification, that is, the universal
sober B-reflection in the category of base spaces with basic open
and continuous maps. In particular, X is a dense subspace of the
sober B-space ΣIB (hence of an algebraic domain) whose least base
induces the given base B.

Clearly, ΣIB will in general not serve as a minimal B-extension,
but it is minimal among all sober B-extensions (in the T0 case).

By virtue of the isomorphism between the respective bases, we
finally obtain a result of particular relevance to the theory of com-
putational models for spaces:

Corollary 8. A T0-space has a countable base iff it is a dense
subspace of an ω-algebraic (countably based) domain endowed with
the Scott topology.

Stronger results are available for T1-spaces (with distinguished
bases) and for zero-dimensional spaces. The investigation of models
for such spaces is deferred to a separate note [21], and algebraic
models for metrizable spaces (and some of their generalizations)
are presented in a common note with A. Pultr [22].
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9. Lattice-Theoretical Representation of Spaces

From the work of Hoffmann [34] and Lawson [40] (see also [38])
we know that the algebraic (respectively, continuous) domains are
precisely the prime spectra of superalgebraic (respectively, super-
continuous) lattices (cf. Corollary 5). Are there similar characteri-
zations for general algebraic (continuous) posets? A quick inspec-
tion shows that such a strict correspondence as in the up-complete
case is impossible, because many non-isomorphic algebraic (or con-
tinuous) posets may have isomorphic lattices of Scott-closed sets.
However, the following concept, introduced in [15], leads to a so-
lution (cf. Theorem 2): by a based lattice we mean a pair (C, P )
constituted by a complete lattice C and a join-dense subset (join-
base) P of C; if P consists of join-prime (respectively completely
join-prime) elements then we speak of a (∨-)prime-based (respec-
tively, completely prime-based) lattice; we say (C, P ) is consistently
prime-based if, moreover, for any directed subset D of P having
a join in P , this is also the join of D in C, and (C, P ) is cup
prime-based if, in addition, P is a cup. By definition, the spatial
coframes are just the first components C of prime-based lattices
(C, P ), and the superalgebraic ones are those of completely prime
based lattices. A morphism between prime-based lattices preserves
joins and induces a map between the join-bases. We cite from [15]:

Lemma 9. Sending each based lattice (C, P ) to the pair (P, C)
where C = {Pa : a∈C}, one obtains an equivalence between the cat-
egory of based lattices (with maps preserving joins and join-bases)
and the category of (not necessarily topological) T0-closure spaces.

For our purposes, several subequivalences between categories of
topological spaces (regarded as closure spaces) and their lattice-
theoretical counterparts are of interest:

Theorem 9. Under the above functorial equivalence, the following
pairs of subcategories are equivalent:

prime-based lattices and T0-spaces,
completely prime-based lattices and T0-A-spaces,
prime-based superalgebraic lattices and T0-B-spaces,
prime-based supercontinuous lattices and T0-C-spaces,
consistently prime-based lattices and weak spaces.
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Proof. For any T0-space X , the map

ηX : X→ iX = {(x] : x∈X}, x 7→ (x]

is an order isomorphism between X , ordered by specialization, and
iX , ordered by inclusion. The pair (C, P ) = (CX, iX) is a prime-
based lattice, and via ηX , the original space X is homeomorphic to
the space iX with closed set lattice CiX = {Pa : a ∈C}. On the
morphism level, the equivalence functor acts by restriction to the
selected join-bases of ∨-prime elements. Continuity of the restricted
maps is easily checked. The statements about A-, B- and C-spaces
follow at once from the results in Section 3.

It remains to confirm the claim about weak spaces. As before,
put (C, P ) = (CX, iX), this time for a weak space X . Then, for
each directed subset ηX(D) of P with join ηX(x) = (x] =

∨
P ηX(D)

in P , we have x =
∨
D in X , and as X is a weak space, (x] = D =∨

C ηX(D) in C (see Lemma 4 and Corollary 4). Thus, (C, P ) is
consistently prime-based. Conversely, if that is assumed and D is
a directed subset of X with x =

∨
D, then ηX(x) =

∨
ηX(D) in P

and in C, i.e. (x] = D. Hence, X is a weak space. �

Combining Theorem 4 with Theorem 9, we obtain:

Corollary 9. The restriction functor (C, P ) 7→P yields an equiva-
lence between consistently prime-based superalgebraic (resp. super-
continuous) lattices and algebraic (resp. continuous) posets. An
equivalence functor in the reverse direction is obtained by assigning
to any algebraic or continuous poset P the pair (CΣP, iP ).

Applying the equivalences in Theorem 9 to such pairs (C, P ) whose
second component is the subposet of all ∨-prime elements of C,
one arrives at the known equivalences between spatial (co-) frames
and sober spaces, and also between superalgebraic (respectively, su-
percontinuous) lattices and algebraic (respectively, continuous) do-
mains (see [17, 30, 40], and [25] for a generalization to Z-continuous
posets and Z-supercompactly generated lattices).

Since B-spaces may be viewed as a generalization of algebraic
posets, it appears desirable to represent them in a purely order-
theoretical fashion. Again, single posets do not suffice, but one
needs directed based sets (A,B) and isotone interpolating maps as
morphisms, as introduced in Section 2. Now, one easily finds the
desired representation (cf. [17, 24] and Theorem 3):
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Proposition 9. Assigning to any B-space X the pair (Σ−X,BX),
one obtains a concrete isomorphism between the category of B-
spaces (with continuous maps) and the category of directed based
sets (with isotone interpolating maps). The reverse categorical iso-
morphism sends any directed based set (A,B) to the underlying set
of A topologized by taking {bA : b ∈ B} as a base for the open sets.

Algebraic posets, regarded as pairs (A,KA), nicely fit into this
framework: together with maps preserving compactness and direc-
ted joins as morphisms, they form a full subcategory of the category
of directed based posets with isotone interpolating maps. Indeed,
the categorical isomorphism in Proposition 9 extends that between
weak B-spaces and algebraic posets (Theorem 4), in particular that
between sober B-spaces and algebraic domains (Theorem 5).

Compare Theorem 2 with Proposition 9: composing the duality
in the former with the categorical isomorphism in the latter, one
obtains a duality between T0-B-spaces and ideal extensions. In the
next section, that duality will arise in a more general framework.

10. Dualities for Base Spaces and Ideal Spaces

In Section 2, we have established an equivalence between alge-
braic posets and algebraic ideal extensions. For a duality between
algebraic posets (or weak B-spaces) and algebraic ideal extensions,
we need different morphism classes. Here, a much more comprehen-
sive point of view, including not only weak B-spaces but all T0-base
spaces on the topological side, will be useful. The following general
construction is a slight modification of the basic duality presented
in [20]. By a cover of a set X we mean a collection B of non-empty
subsets with union X ; if, moreover, for x 6= y in X there is a B ∈ B
with x ∈ B, y 6∈ B or x 6∈ B, y ∈ B, we speak of a T0-cover. The
pair (X,B) is referred to as a (T0-)cover space . For x ∈ X , con-
sider the generalized neighborhood system Bx = {B ∈ B : x ∈ B} .
The (upper) specialization order , defined by x ≤ y ⇔ Bx ⊆ By ,

is antisymmetric iff the cover space satisfies the T0-axiom. Notice
that each B ∈ B is an up-set with respect to that specialization
order. A (cover) continuous map between cover spaces (X,B) and
(X ′,B′) is a map ϕ : X→X ′ with ϕ←(B′) ∈ B for each B′ ∈ B′.
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Lemma 10. The category of T0-cover spaces is self-dual. The
duality is established by the contravariant functor sending any T0-
cover space (X,B) to the “dual” T0-cover space

D(X,B) = (B,BX) with BX = {Bx : x ∈ X}

and any continuous map ϕ between T0-cover spaces (X,B) and
(X ′,B′) to the preimage map ϕ← : B′→B. The open set lattice
{
⋃
X : X ⊆ B} of (X,B) is order-dual to the open set lattice of

D(X,B), by virtue of the map U 7→ {B ∈ B : B 6⊆ U}.

For the proof, see [20]. Note that the specialization order of the
dual T0-cover space D(X,B) is set inclusion. One may also define
the dual for arbitrary cover spaces and finds that the “double dual”
DD(X,B) is the T0-reflection of the original cover space (X,B).

By a T0-base we mean a T0-cover B such that each of the neigh-
borhood systems Bx is a filter base. In other words, the T0-bases
are precisely the bases of T0-topologies, and the corresponding pairs
(X,B) may be regarded as T0-base spaces, or as topologically based
posets, i.e. posets with a T0-base consisting of up-sets. Recall that
a cover continuous map is also continuous as a map between the
corresponding spaces, and that we exclude the empty set from any
base. Therefore, cover continuity also entails topological density.
To avoid that restriction, one has to relax the continuity condi-
tion and to allow ϕ←(B′) to be a member of B or empty, for each
B′ ∈ B′. The subsequent considerations then have to be adapted
appropriately. The category of T0-B-spaces may be embedded in
the category of T0-base spaces, by passing from the topologies to
their least bases; however, in doing so, one has to take as morphisms
between B-spaces the core continuous maps (see Section 8).

On the “algebraic side”, we call a T0-cover B ideal and the pair
(X,B) an ideal space if each B ∈ B is an ideal with respect to the
dual specialization order. There is an obvious one-to-one correspon-
dence between ideal extensions and ideal covers containing all cores.

Theorem 10. The duality of T0-covers induces dualities between

(1) T0-base spaces and ideal spaces,
(2) T0-B-spaces and ideal extensions,
(3) weak B-spaces and algebraic ideal extensions,
(4) cmc B-spaces and down-closed ideal extensions,
(5) sober (mc) B-spaces and ideal completions.
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Proof. In view of the general self-duality for T0-cover spaces, the
validity of these statements has to be checked on the object level
only.

(1) A T0-cover B is a T0-base iff each Bx is an ideal of the poset B.

(2) If B is the least base of a T0-B-space X then it consists of open
cores B = [b); therefore, the dual ideal cover {Bx : x∈X} contains
all principal ideals (B ] = {C ∈ B : B = [b) ⊆ C} = Bb (b ∈ BX).
Conversely, if (P, I) is an ideal extension then the dual T0-base
{Ip : p ∈ P} consists of open cores:

Ip = {J ∈ I : (p ] ⊆ J} = [I) for I = (p ] ∈ I.

(3) Suppose B = { [b) : b ∈ P = KA} is the least base of a weak B-
space associated with an algebraic poset A (see Theorem 4). Then
the ideal extension (B, {Ba : a ∈ A}) is isomorphic to the alge-
braic ideal extension (P, {Pa : a∈A}) via the isomorphism b 7→ [b)
(cf. Lemma 2 and Corollary 2).

On the other hand, if (P, I) is any algebraic ideal extension,
we may assume (again by Lemma 2) that P = KA for some al-
gebraic poset A and I = {Pa : a ∈ A}. Then the T0-base space
(I, {Ip : p ∈ P}) is isomorphic to the weak B-space associated with
A, by virtue of the isomorphism that sends a to Pa.

(4) Analogous arguments hold for cmc B-spaces and down-closed
ideal extensions.

(5) Finally, if B is the least base of a sober B-space X associ-
ated with an algebraic domain A then the algebraic ideal extension
{Bx : x∈X} is isomorphic to A and therefore up-complete, hence
an ideal completion. And conversely, the dual T0-cover of an ideal
completion is the least base of a (Scott-topologized) algebraic do-
main, hence of a sober B-space. �

Corollary 10. The category of algebraic posets (cups, domains)
with core continuous maps is dual to the category of algebraic (down-
closed, up-complete) ideal extensions with continuous maps.

In the diagram on the next page, we indicate by ' categori-
cal isomorphisms, by ∼ categorical equivalences, by � categorical
dualities, and by vertical lines full categorical inclusions.
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The reader might guess that the dualities mentioned in Proposi-
tion 6 are somehow induced by the duality between T0-base spaces
and ideal spaces – and that is the case indeed, as we shall see below.

An ideal base space (X,B) is both an ideal space and a base
space; in other words, B is a base consisting of open filters (i.e.
∨-prime open sets) of some T0-space. By Theorem 10,

the self-duality of T0-cover spaces induces one of ideal base spaces.

A space having a base of open filters is called a D-space, also strongly
locally connected or a “space having a dual” (Hoffmann [32]), in
view of the fact that its lattice of open sets is dual to the lattice of
closed sets of another space. Thus, a D-space is characterized by
the condition that not only the lattice of open sets, but also that of
closed sets is a spatial frame. The Principle of Dependent Choices
ensures that every supercontinuous lattice is a spatial frame, and
consequently, that every C-space is a D-space (see Lemma 3; if
one wants to avoid choice principles rigorously, one has to consider
C-D-spaces instead of C-spaces in order to make all conclusions
sound.)

Example. A D-space that fails to be a C-space is obtained as
follows: consider a countable power P of the half-open unit interval
]0, 1]. Then ΣP is a D-space, since σP is the product topology of
the Scott topologies on the factors, which are strongly connected
(having the dense point 1) and D-spaces (cf. [11, 32, 35]). Though
being up-complete, P is not continuous – in fact, the way-below
relation is empty, and consequently, ΣP cannot be a C-space (cf.
Corollary 5).

Apparently, D-spaces are in one-to-one correspondence with those
base spaces (X,B) whose base B consists of all ∨-prime members of
the generated topology; we might call them D-base spaces. On the
other hand, the “dual” D(X,B) = (B,BX) of a T0-D-(base) space
is a D-base space iff X is sober. Indeed, under the isomorphism
between the closed set lattice of X and the open set lattice of its
dual (Lemma 10), the ∨-prime closed sets of X correspond to the
∨-prime open sets of the dual; hence, X is sober (i.e. the point
closures are the only ∨-prime closed sets) iff BX is the set of all ∨-
prime open sets of (B,BX). Summing up the preceding thoughts,
we arrive at
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Proposition 10. Let X be any topological space and B = P̌OX
the set of all open filters.

(1) X is a D-space (i.e. B is a base) iff the open set lattice OX
is dually isomorphic to OΣcX (under the bijective map
BX : OX→OΣcX, U 7→ {B ∈ B : B 6⊆ U}).

(2) A D-space X is sober iff the map βX :X→ ΣcΣcX, x 7→ Bx

is a homeomorphism.

(3) The self-duality of T0-cover spaces induces a self-duality of
sober D-spaces, which in turn induces that of sober B-spaces
and that of sober C-(D-)spaces.

11. Algebraic Cups with Point Generators

The equivalence between weak B-spaces and algebraic posets and
the duality to algebraic ideal extensions (see Corollary 10) extends
to some further dualities and equivalences that are particularly
helpful in constructing “algebraic models”, not only for T0-B-spaces
but also for arbitrary T0-(base) spaces.

In order to obtain the desired algebraic counterparts of T0-base
spaces, we need a refinement of the notion of algebraic cups (see
Theorem 4 again). Thus, we introduce so-called caps as pairs
(A,M) consisting of a conditionally up-complete algebraic poset
A and a point-generator M , that is, a cofinal subset (i.e. A = ↓M)
such that each compact element of A is a meet of elements of M .

Examples. (1) Of course, every algebraic cup A may be regarded
as a cap (A,A).

(2) By Zorn’s Lemma, every algebraic domain A (but not every
algebraic cup!) has a least meet-dense subset M , consisting of all
completely meet-irreducible elements. The pair (A,M) is then a
cap.

(3) Let X be a Boolean space, or any T1-space having a compact-
open base. Then (OX, {X \ {x} : x ∈ X}) is a cap. Since OX is
an algebraic lattice, this is a special instance of (2).

(4) In a tree-like algebraic cup with the subsequent diagram, the
maximal elements form a point generator that is not meet-dense in
the whole cup (which is a dcpo).



484 MARCEL ERNÉ
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(5) “Generic” examples of caps are obtained as follows. Given
any ideal space (X, I), put

↓I = {I ∈ I(X,≥) : I ⊆ J for some J ∈ I} .

Recall that ideals here refer to the dual specialization order ≥ of the
cover space (X, I). Then (↓I, I) is a cap: indeed, ↓I is a down-
set in the algebraic domain I(X,≥), the compact members of ↓I
are precisely the principal ideals (use the cover conditionX =

⋃
I),

and any such principal ideal is an intersection of ideals belonging to
I, by the T0-axiom. We shall see soon that every cap is isomorphic
to one of this type (cf. Theorem 1).

In the spirit of general Galois connections (see e.g. [23] or [29]),
we consider the following type of morphisms between caps (A,M)
and (A′,M ′) with base point sets K = KA and K ′ = KA′: a
partial Galois morphism is a pair (ϕ, ψ) of maps ϕ : M →M ′ and
ψ : K ′→K such that

ψ(k′) ≤ m ⇔ k′ ≤ ϕ(m)

for all k′ ∈ K ′ and m ∈M . In that situation, we say ψ is the lower
partial adjoint of ϕ, which in turn is the upper partial adjoint of
ψ. As for “full” Galois connections, one easily verifies that either
partial adjoint is isotone and determines the other uniquely (by the
density properties). Moreover, the class of partial lower, respec-
tively, upper adjoints is closed under composition. A topological
interpretation of such partial adjoints is given in

Lemma 11. Let (A,M) and (A′,M ′) be caps with base point sets
K = KA and K ′ = KA′. Then:

(1a) I(A,M) = (K, {Km : m ∈M}) is an ideal space.
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(2a) T(A,M) = (M, {kM : k ∈ K}) is a T0-base space.

(1b) A map ψ : K ′→K has a partial upper adjoint ϕ : M →M ′

iff it is a continuous map between the ideal spaces I(A′,M ′)
and I(A,M).

(2b) A map ϕ : M →M ′ has a partial lower adjoint ψ : K ′→K

iff it is a continuous map between T(A,M) and T(A′,M ′).

The proof of these statements is straightforward. Now, we are
prepared for the promised dualities and equivalences.

Theorem 11. The category of caps with partial upper adjoints is

(0) dual to the category of caps with partial lower adjoints via
Galois connection, passing to the partial adjoints,

(1) dual to the category of ideal spaces, by associating with any
cap (A,M) the ideal space I(A,M) = (K, {Km : m ∈M})
and passing to the partial lower adjoints,

(2) equivalent to the category of T0-base spaces, by sending a cap
(A,M) to theT0-base space T(A,M) = (M, {kM : k ∈K})
and keeping the underlying maps of the morphisms fixed.

Proof. Part (0) is clear by the previous remarks.

Concerning (1), we refer to Example (5) above and observe:

(1c) An arbitrary ideal space (P, I) is isomorphic to I(↓I, I) by
virtue of the principal ideal map x 7→

⋂
{I ∈ I : x ∈ I}.

This together with (1b) in Lemma 11 shows that the concrete func-
tor I, sending (A,M) to (K, {Km : m ∈M}), is dense, full and
faithful, hence an equivalence (see [1]) between the category of caps
with partial lower adjoints and that of ideal spaces. Composition
with the duality from (0) yields the claimed duality in (1).

(2) By Parts (2a) and (2b) of Lemma 11, T gives rise to a well-
defined full and faithful functor from caps to T0-base spaces. To
prove density, we consider the poset ÎB of all filters in B with non-
empty intersection and show:

(2c) (̂IB,BX) is a cap, and T(̂IB,BX) is isomorphic to (X, I).

Indeed, for filters F ⊆ B, the condition x ∈
⋂
F means F ⊆ Bx.

Hence, ÎB is the down-set generated by BX = {Bx : x ∈ X} in

the algebraic domain IB, and consequently, ÎB is an algebraic cup
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with cofinal subset BX (Theorem 1). Each compact member of

ÎB, that is, each principal ideal (B] = {C ∈ B : B ⊆ C}, is the
intersection of all Bx containing B. By the T0-axiom, we have a
bijection βX : X→BX , x 7→ Bx, which provides an isomorphism
between (X,B) and

T(̂IB,BX) = (BX , {{Bx : (B]⊆Bx} : B∈B}) .

Thus, T is full, faithful and dense, hence an equivalence. �

We complement (1) by the remark that in the opposite direc-
tion, a duality functor between ideal spaces and caps is obtained
by sending each ideal space (P, I) to the cap (↓I, I). Composition
of that functor with the equivalence in (2) returns the basic duality
in Theorem 10.

A perhaps more natural choice of morphisms between two caps
(A,M) and (A′,M ′) would be to take those maps φ : A→A′ which
are core continuous and preserve point generators (φ(M) ⊆ M ′).
As topological counterparts to such “full” morphisms, we need a
specific class of morphisms, the F-continuous maps: these are con-
tinuous maps ϕ : (X,B)→(X ′,B′) such that for each B ∈ B, the
system {B′ ∈ B′ : ϕ(B) ⊆ B′} is a filter in B. The latter condition
is certainly fulfilled for all basic open maps, but it also holds au-
tomatically whenever each Bx is closed under finite intersections.
As specific morphisms between ideal spaces, we take those contin-
uous maps which have the additional property that inverse images
of arbitrary (equivalently, of principal) ideals are again ideals. We
call such maps I-continuous. It is readily checked that a map ϕ be-
tween caps is a full morphism iff it is an F-continuous map between
the corresponding T0-base spaces, which means that the map ϕ←

between the “dual” ideal spaces is I-continuous. Thus, Theorem 11
is supplemented by

Proposition 11. The category of caps and full morphisms is equiv-
alent to the category of T0-base spaces with F-continuous maps and
dual to the category of ideal spaces with I-continuous maps.

Corollary 11. The duality of T0-cover spaces restricts to a duality
between T0-base spaces with F-continuous maps and ideal spaces
with I-continuous maps.
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