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HOMOGENEOUS CIRCLE-LIKE CONTINUA
ARE C-DETERMINED

GERARDO ACOSTA

Abstract. For a metric continuum X we denote by C(X)
the hyperspace of subcontinua of X with the Hausdorff met-
ric. A class G of continua is said to be C-determined provided
that if X, Y ∈ G and the hyperspaces C(X) and C(Y ) are
homeomorphic, then continua X and Y are homeomorphic.
In 1978, Sam B. Nadler, Jr. in [Hyperspaces of Sets. Mono-
graphs and Textbooks in Pure and Applied Mathematics, Vol.
49] asked if the class of circle-like continua is C-determined.
In this paper, we provide a partial positive answer to this
question by showing that both the class of arcwise connected
circle-like continua and the class of homogeneous circle-like
continua are C-determined. By considering Knaster continua,
we present two other classes of circle-like continua which are
C-determined.

1. Introduction

A continuum is a nonempty compact connected metric space.
The hyperspace of subcontinua of a given continuum X is denoted
by C(X). We consider that C(X) is metrized by the Hausdorff
metric H. If two continua X and Y are homeomorphic, we write
X ≈ Y. Note that if X ≈ Y, then C(X) ≈ C(Y ). A class G of
continua is said to be C-determined provided that if X,Y ∈ G and
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C(X) ≈ C(Y ), then X ≈ Y ([25, Definition 0.61]). Classes of
continua which are C-determined have been studied in [1], [2], [3],
[4], [5], [10] and [21]. In [18], it is shown that the class of fans is
not C-determined.

A continuum X is said to be arc-like (respectively, circle-like) if
for any ε > 0 there is a map f from X onto an arc A (respectively,
onto a circle A) such that the diameter of f−1(y) is less than ε, for
any y ∈ A. In [17], it is shown that the class of arc-like continua is
not C-determined. In [25, Questions 0.62], Sam B. Nadler, Jr. asks
if the class of circle-like continua is C-determined. Some partial
results in the positive have been obtained in [2] and [5]. The main
purpose of this paper is to present new classes of circle-like continua
which are C-determined. Among other results, we show that the
class of homogeneous circle-like continua is C-determined.

The paper is divided into seven sections. After the Introduction,
we present in section 2 some terminology and results that will be
used later. We refer the reader to [25] and [26] for notions not
defined and used in the paper. In section 3, for a continuum X
and a proper subcontinuum K of X, we recall a technique used in
[1] for detecting either a 2-cell D in C(X), such that K belongs
to the manifold interior of D, or triods arbitrarily close to K, with
respect to the Hausdorff metric. We use this technique in section
4 to prove Theorem 4.2, which is the first important result of the
paper. In section 5, we show that the class of arcwise connected
circle-like continua is C-determined. In section 6, we show that the
class of homogeneous circle-like continua is C-determined. Finally,
in section 7, we consider the class of Knaster continua and from it
we construct two classes of circle-like continua and show that they
are C-determined.

2. Terminology and Facts

All spaces are assumed to be metric. Given a space X, we de-
note by BX(x, ε) the open ball in X centered at the point x ∈ X
and having the radius ε > 0. For a subset A of X, we define
NX(A, ε) =

⋃
a∈A BX(a, ε), and we use the symbols clX(A) and

bdX(A) to denote the closure and the boundary of A in X, respec-
tively. The symbol |A| denotes the cardinality of A. The letter I
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represents the closed unit interval [0, 1] and the letter S the unit
circle.

For n ∈ N an n-od in X is an element B ∈ C(X) for which
there exists A ∈ C(B), called a core of B, such that B − A has at
least n components. A 3-od is also called a triod. If X contains
no triods, then we say that X is atriodic. An n-cell is a space
homeomorphic to In. By [28, p. 177] and [15, p. 64], it follows that
a continuum X contains an n-od if and only if C(X) contains an
n-cell. Using this result it follows that if X and Y are continua such
that C(X) ≈ C(Y ), then X is atriodic if and only if Y is atriodic.

If D is a 2-cell in a space X, then the symbols ∂D and D◦ are
used to denote the manifold boundary and the manifold interior of
D, respectively. Note that if f : I2 → D is a homeomorphism, then
∂D = f

(
bdR2

(
I2

))
and D◦ = D − ∂D.

Theorem 2.1. [3, Theorem 3] Let X be a continuum such that
C(X) contains a 2-cell D, and let a point p ∈ X satisfy {p} ∈ D◦.
Then, for each ε > 0, there is a triod T in X such that H(T, {p}) <
ε.

Throughout this paper we are going to consider the hyperspace
F1(X) of singletons of the continuum X. We assume that F1(X) is
a subspace of C(X). Clearly, X ≈ F1(X). A proper and nondegen-
erate subcontinuum A of a continuum X is said to be terminal in
X provided that, for each B ∈ C(X) such that B ∩ A 6= ∅ either
A ⊂ B or B ⊂ A.

Theorem 2.2. [3, Lemma 6] Let X and Y be continua such that
C(X) ≈ C(Y ) and let h : C(Y ) → C(X) be a homeomorphism. If
E is terminal in X, then E is not an element of h(F1(Y )).

For a continuum X and A ∈ C(X) we put

C(A,X) = {D ∈ C(X) : A ⊂ D}.
If A = {p} ∈ F1(X) we simply write C(p,X) instead of C({p}, X).
A map is a continuous function. If A,B ∈ C(X) and A ( B, then
an order arc from A to B in C(X) is a map λ : I → C(X) such that
λ(0) = A, λ(1) = B and λ(s) ( λ(t) if s < t (see [25, definitions
1.2 and 1.7]).
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3. Locating 2-cells or triods

In this section, the letter X denotes a continuum and the letter K
a proper subcontinuum of X. We recall a technique used in section
3 of [1] for detecting either a 2-cell D in C(X) such that K ∈ D◦ or
triods arbitrarily close to K, with respect to the Hausdorff metric.
In order to do this, we require the following notion due to Alejandro
Illanes.

Definition 3.1. [16, p. 63] The semi-boundary of K is the set
SB(K) = {B ∈ C(K) : there is a map α : I → C(X) such that
α(0) = B and α(t)−K 6= ∅, for each t > 0}.

In [16, Theorem 1.2] it is shown that K ∈ SB(K) and that if
B ∈ SB(K), then there exists a minimal element (with respect to
the inclusion) C ∈ SB(K) such that C ⊂ B. It is also shown that
SB(K) = {B ∈ C(K) : there is an order arc α : I → C(X) such
that α(0) = B and α(t)−K 6= ∅, for each t > 0}. In Chapter X of
[19] more properties of the semi-boundary are presented.

The following result is easy to prove.

Lemma 3.2. Suppose that A ∈ C(X) is such that A ∩K 6= ∅ and
A−K 6= ∅. If C is a component of A ∩K, then C ∈ SB(K).

We denote by m(K) the set of minimal elements in SB(K). By
considering the cardinality of m(K), it is possible to detect either
a 2-cell D in C(X) such that K ∈ D◦ or triods arbitrarily close to
K. Theorem 3.3 generalizes [1, Theorem 3.6].

Theorem 3.3. Let n ∈ N. If m(K) has at least n mutually disjoint
elements then, for each ε > 0, there is an n-od T in X such that
H(T, K) < ε.

Proof: Let us assume that E1, E2, . . . , En are mutually disjoint
elements in SB(K). In order to construct an n-od T with the de-
sired properties, fix i ∈ {1, 2, . . . , n} and let αi : I → C(X) be an
order arc such that αi(0) = Ei and αi(t) − K 6= ∅ for any t > 0.
Since the set

U1 =
{

A ∈ C(X) : A ⊂ (X − (E2 ∪ E3 ∪ · · · ∪ En)) ∩NX

(
K,

ε

n

)}

is open in C(X), E1 ∈ U1, and α1 is continuous, there is t > 0

such that F1 = α1(t) ∈ U . Then E1  F1, F1 − K 6= ∅, F1 ∩
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(E2 ∪ E3 ∪ · · · ∪ En) = ∅, and F1 ⊂ NX

(
K, ε

n

)
. This implies that

H(K,K ∪ F1) < ε
n . Now, considering the open set

U2 =
{

A ∈ C(X) : A ⊂ (X − (F1 ∪ E3 ∪ E4 ∪ · · · ∪ En)) ∩NX

(
K,

ε

n

)}

in C(X) that contains E2, we can find, in a similar way, an element
F2 ∈ C(X) such that E2  F2, F2−K 6= ∅, F2∩(F1∪E3∪E4∪· · ·∪
En) = ∅ and H(K∪F1,K∪F1∪F2) < ε

n . Proceeding in this way, we
find subcontinua F1, F2, . . . , Fn of X such that if i ∈ {1, 2, . . . , n},
then Ei  Fi and Fi−K 6= ∅. Moreover, F1∩(E2∪E3∪· · ·∪En) = ∅,
H(K,K ∪ F1) < ε

n and, for any i ≥ 2,

Fi ∩ (F1 ∪ F2 ∪ · · · ∪ Fi−1 ∪ Ei+1 ∪ Ei+2 ∪ · · · ∪ En) = ∅
and

H(K ∪ F1 ∪ F2 ∪ · · · ∪ Fi−1,K ∪ F1 ∪ F2 ∪ · · · ∪ Fi) <
ε

n
.

Then T = K ∪F1 ∪F2 ∪ · · · ∪Fn is an n-od, with core K, such that
H(T, K) < ε. ¤
Theorem 3.4. [1, Theorem 3.15] If K is decomposable and m(K)
has at least two elements, then either there is a 2-cell D in C(X)
such that K ∈ D◦ or, for each ε > 0, there is a triod T in X such
that H(T,K) < ε.

Corollary 3.5. If X is atriodic, K is decomposable, and m(K) has
at least two elements, then there is a 2-cell D in C(X) such that
K ∈ D◦.

When K is indecomposable, we have the following result that
generalizes [1, Theorem 3.17].

Theorem 3.6. If K is indecomposable and C(X)−{K} is arcwise
connected, then for each ε > 0 and each n ∈ N, there is an n-od T
in X such that H(T, K) < ε.

Proof: Fix a ∈ K. Since C(X) − {K} is arcwise connected and
{a}, X ∈ C(X)−{K} there is a map α : I → C(X)−{K} such that
α(0) = {a} and α(1) = X. Consider the map β : I → C(X) defined
by β(t) =

⋃
α([0, t]). Note that β(0) = {a}, β(1) = X, and β(s) ⊂

β(t) if s ≤ t. Define t0 = max{t ∈ I : β(t) ⊂ K} and Ea = β(t0).
Since K is a proper subcontinuum of X, we have t0 < 1. Note that
if t ∈ [0, t0], then α(t) ⊂ β(t) ⊂ β(t0) = Ea ⊂ K. In particular, for
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t = 0 it follows that a ∈ Ea. Moreover α([0, t0]) ⊂ C(K) is arcwise
connected. Thus, if

⋃
α([0, t0]) = K, then by [25, Theorem 1.50],

we have K ∈ α([0, t0]). Since this is a contradiction, we infer that⋃
α([0, t0]) 6= K, so Ea  K. Since t0 < 1 the map γ = β|[t0,1]

satisfies that γ(t0) = Ea and γ(t) −K 6= ∅ for each t > t0. Thus,
Ea ∈ SB(K).

We have shown that for any a ∈ K, there is Ea ∈ SB(K)−{K}
such that a ∈ Ea. Clearly, Ea is contained in the composant of a
in K. Now let ε > 0 and n ∈ N. Since X contains uncountably
many composants, we can take n points a1, a2, . . . , an in different
composants of K. For each i ∈ {1, 2, . . . , n} let Ei ∈ SB(K) −
{K} be such that ai ∈ Ei. Since composants of X are mutually
disjoint, the sets E1, E2, . . . , En are mutually disjoint as well. The
rest follows from Theorem 3.3. ¤

Now assume that |m(K)| = 1. The next result deals with the
case in which m(K) = {K}.
Theorem 3.7. m(K) = {K} if and only K is terminal in X.

Proof: Assume first that m(K) = {K}. If K is not terminal in
X, then there is A ∈ C(X) such that A ∩K 6= ∅, A −K 6= ∅, and
K−A 6= ∅. Fix a component C of A∩K and note that C  K. By
Lemma 3.2 C ∈ SB(K), and since m(K) = {K}, it follows that
K ⊂ C. Then K ⊂ C  K, a contradiction, so K is terminal in X.

Assume now that K is terminal in X. If m(K) 6= {K}, then there
is E ∈ m(K) such that E  K. Fix k ∈ K−E and let α : I → C(X)
be an order arc such that α(0) = E and α(t)−K 6= ∅ for any t > 0.
Since the set U = {B ∈ C(X) : B ⊂ X − {k}} is open in C(X)
and contains E, there is ε > 0 such that BC(X)(E, ε) ⊂ U . Since α
is continuous, there is t1 > 0 such that A = α(t1) ∈ BC(X)(E, ε).
Thus, k /∈ A. It follows that A∩K 6= ∅, A−K 6= ∅, and K−A 6= ∅,
contradicting the terminality of X. ¤

4. The Classes F(X) and U(X)

For a given continuum X consider the class F(X) of continua
with the following properties:

(1) no two distinct members of F(X) are homeomorphic;
(2) C(Y ) ≈ C(X) for each Y ∈ F(X);
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(3) F(X) is the maximal class, satisfying conditions (1) and
(2); i.e., if Z is a continuum such that C(Z) ≈ C(X), then
Z ≈ Y for some Y ∈ F(X).

We say that X has unique hyperspace ([3, Definition 1]) provided
that F(X) = {X}. If the class F(X) is finite and consists of more
than one element, then we say that X has almost unique hyperspace
([2, Definition 1.1]).

Theorem 4.1. [3, Theorem 2] Hereditarily indecomposable con-
tinua have unique hyperspace.

For a continuum X consider the class U(X) of all proper and
nondegenerate subcontinua K of X with the following properties:
K is decomposable, |m(K)| = 1 and the only element in m(K) is a
proper subcontinuum of K. The next result is of particular interest
in this paper. It will be used to obtain families of atriodic continua
with either unique or almost unique hyperspace.

Theorem 4.2. Let X and Y be (nondegenerate) continua such that
C(X) ≈ C(Y ) and let h : C(Y ) → C(X) be a homeomorphism.
Then the following assertions are true
(4.2.1) X is atriodic if and only if Y is atriodic;
(4.2.2) if X is atriodic, then h(F1(Y )) ⊂ F1(X) ∪ {X} ∪ U(X);
(4.2.3) if X is atriodic and indecomposable, then h(F1(Y )) ⊂ F1(X)

∪U(X);
(4.2.4) if X is atriodic and U(X) = U(Y ) = ∅, then X ≈ Y.

Proof: Assertion (4.2.1) was stated before. To show (4.2.2), let us
assume that X is atriodic. Fix y ∈ Y, put K = h({y}) and consider
that K is a proper and nondegenerate subcontinuum of X. By [25,
Lemma 11.2] C(Y ) − {{y}} is arcwise connected, so C(X) − {K}
is arcwise connected as well. Thus, if K is indecomposable, by
Theorem 3.6, X contains a triod. Since this contradicts (4.2.1),
K is decomposable. If m(K) has at least two elements then, by
Corollary 3.5, there is a 2-cell D in C(X) such that K ∈ D◦. Then
E = h−1(D) is a 2-cell in C(Y ) such that {y} ∈ E◦. Then, by
Theorem 2.1, Y contains a triod. Since this contradicts (4.2.1),
m(K) has exactly one element. Let us assume that m(K) = {E}. If
E = K then, by Theorem 3.7, K is terminal in X. This contradicts
Theorem 2.2 since K = h({y}). Thus, E is a proper subcontinuum
of K. This shows that K ∈ U(X), so (4.2.2) holds.
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To show (4.2.3), let X be atriodic and indecomposable. Assume
that there is y ∈ Y such that h({y}) = X. Since C(Y ) − {{y}}
is arcwise connected ([25, Lemma 11.2]), it follows that C(X) −
{h({y})} = C(X)−{X} is arcwise connected. However, since X is
indecomposable, by [25, Theorem 1.51], C(X)−{X} is not arcwise
connected. This contradiction, together with (4.2.2), shows that
h(F1(Y )) ⊂ F1(X) ∪ U(X), so (4.2.3) holds.

To show (4.2.4), assume that X atriodic and U(X) = U(Y ) = ∅.
Then, by (4.2.2), h(F1(Y )) ⊂ F1(X) ∪ {X} and since Y is con-
nected and nondegenerate, we have h(F1(Y )) ⊂ F1(X). Since Y is
atriodic and h−1 : C(X) → C(Y ) is a homeomorphism, by (4.2.2),
h−1(F1(X)) ⊂ F1(Y )∪{Y }. This implies that h−1(F1(X)) ⊂ F1(Y ),
so F1(X) = h(h−1(F1(X)) ⊂ h(F1(Y )) ⊂ F1(X) and then h(F1(Y ))
= F1(X). Thus, X ≈ Y. ¤

For a homeomorphism h : C(Y ) → C(X) condition h(F1(Y )) ⊂
F1(X) implies that Y is homeomorphic to a nondegenerate subcon-
tinuum of X. This follows from the fact that Y ≈ F1(Y ) ≈ h(F1(Y ))
and h(F1(Y ) is a nondegenerate subcontinuum of F1(X), which is
homeomorphic to X.

Theorem 4.3. Let X be an atriodic continuum such that F1(X)∪
{X}∪U(X) ≈ X. Assume that for any nondegenerate subcontinuum
Z of X such that Z 6≈ X and for any W ∈ F(Z), we have X 6≈ W.
Then X has unique hyperspace.

Proof: Let Y be a continuum such that C(X) ≈ C(Y ) and
let h : C(Y ) → C(X) be a homeomorphism. By (4.2.2), we have
h(F1(Y )) ⊂ F1(X)∪{X}∪U(X). Thus, Y ≈ Z, for some nondegen-
erate subcontinuum Z of X. Assume Z 6≈ X. Since C(X) ≈ C(Z),
it follows that X ≈W, for some W ∈ F(Z). This is a contradiction,
so Z ≈ X and then Y ≈ X. ¤
Corollary 4.4. Let X be an atriodic continuum such that F1(X)∪
{X}∪U(X) ≈ X. If any nondegenerate subcontinuum Z of X such
that Z 6≈ X has unique hyperspace, then X has unique hyperspace
as well.

Corollary 4.5. Let X be an atriodic continuum such that U(X) =
∅. Assume that for any nondegenerate subcontinuum Z of X such
that Z 6≈ X and for any W ∈ F(Z) we have X 6≈ W. Then X has
unique hyperspace.
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Corollary 4.6. Let X be an atriodic continuum such that U(X) =
∅. If any nondegenerate subcontinuum Z of X such that Z 6≈ X has
unique hyperspace, then X has unique hyperspace as well.

In [22, Theorem 1], it was shown that if X is an arc-like con-
tinuum with exactly two arc-components, then one of them is an
arc and the other is a ray, i.e., a homeomorphic image of the real
half-line [0,∞). Then X is a compactification of a ray with an arc
as its remainder, i.e., an Elsa continuum, according to Nadler’s
terminology in [24]. In [3, Theorem 4], it is shown that compact-
ifications of the space [0,∞) with nondegenerate remainder have
unique hyperspace. Thus, Elsa continua, in particular, have unique
hyperspace. As an immediate consequence, it follows that the class
of Elsa continua is C-determined. In [6, Theorem 4.7], it is shown
that there are uncountably many Elsa continua, no two of which
are homeomorphic.

5. Arcwise connected circle-like continua

In this section, we present a class of circle-like continua which is
C-determined. Let us note that there are circle-like continua that
do not have unique hyperspace. To see this, simply take X as the
unit circle and Y as the unit interval. Then C(X) ≈ C(Y ) and
X 6≈ Y. Now consider the subset V =

{(
x, sin

(
1
x

))
: 0 < x ≤ 1

}
of

the plane R2 as well as subcontinua

X0 = V ∪({0} × [−1, 1]) , X1 = V ∪({0} × [−2, 1]) , Y1 = X1∪T1

where T1 is an arc with end-points a0 = (1, sin 1) and b0 = (0,−2)
such that T1∩X1 = {a0, b0}. The continuum Y1 is called the Warsaw
circle, X0 is the sin( 1

x)-continuum, and X1 is the sin( 1
x)-continuum

with the limit arc extended with an arc through the end-point c0 =
(0,−1). Note that Y1 = X0/{a0, c0} = X1/{a0, b0}. Since X0 is an
Elsa continuum, it has unique hyperspace. One is tempted to think
that both X1 and Y1 have unique hyperspace. However, this is not
the case and indeed the following result is true.

Theorem 5.1. [2, Theorem 3.1] Let X be a continuum with the
following properties:
(5.1.1) X is irreducible between points p and q;
(5.1.3) C(p,X) and C(q,X) are arcs in C(X);
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(5.1.3) whenever a continuum X ′ = P∪X∪Q is obtained by joining
to X two disjoint arcs P and Q such that P ∩X = {p} and
Q ∩ X = {q}, where p and q are end-points of P and Q,
respectively, it follows that X ≈ X ′.

Let M be an arc with end-points p and q such that X ∩M = {p, q}.
If Y = X ∪M, then C(X) ≈ C(Y ).

Hence, by the previous theorem, C(X1) ≈ C(Y1). Thus, the War-
saw circle, which is a non-locally connected and arcwise connected
circle-like continuum, does not have unique hyperspace. However,
such continuum has almost unique hyperspace, since it is possible
to show that F(X1) = F(Y1) = {X1, Y1}. Hence, it is natural to
consider the class ACc of circle-like continua which are arcwise con-
nected and ask if its elements have almost unique hyperspace and
behave like X1 and Y1.

A generalized Warsaw circle is an arcwise connected, circle-like
continuum which is different from a circle. In [23, Theorem 6],
Nadler proved that a continuum X is a generalized Warsaw circle
if and only if there is a one-to-one and onto map f : [0,∞) → X
such that

f([0, 1]) = clX(f([t,∞)))− f([t,∞)) for each t > 1.

Let Wc be the class of generalized Warsaw circles. By the previous
characterization, each element X of Wc can be written in the form
X = V ∪ R ∪ M, where V ∪ R is a compactification of the ray
V = [a,∞) with the remainder an arc R = bc and M is an arc
with end-points a and b such that M ∩ (V ∪R) = {a, b}. Note that
X = (V ∪ R)/{a, b}. The following result is stated in [2, Theorem
4.7]. Since its proof is not explicitly given in [2] and is not difficult
using Theorem 4.2, we present the proof here.

Theorem 5.2. Let X1 = V ∪R be a compactification of the space
V = [a,∞) with an arc R = bc as the remainder. Let us assume
that M is an arc with end-points a and b such that M ∩X1 = {a, b}
and define X = X1 ∪ M. If Y is a continuum such that C(X) ≈
C(Y ) then either Y ≈ X or Y ≈ X1 ∪ T, where T is an arc with b
as an end-point of T such that X1 ∩ T = {b}.
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Proof: Let X and Y be as assumed. It is easy to see that
U(X) = C(c,R) − {{c}}, so if h : C(Y ) → C(X) is a homeomor-
phism, by (4.2.2), h(F1(Y )) ⊂ F1(X) ∪ C(c,R) ∪ {X}. Since {X}
is isolated with respect to F1(X) ∪ C(c,R), we have h(F1(Y )) ⊂
F1(X) ∪ C(c,R). Note that C(c,R) is an order arc in C(X) from
{c} to R such that C(c,R) ∩ F1(X) = {c}. Thus, F1(X) ∪ C(c,R)
is locally connected at any point of C(c,R) − {{c}}. Moreover, if
Γ is a nondegenerate subcontinuum of F1(X) ∪ C(c,R) that inter-
sects C(c,R) − {{c}}, then Γ is locally connected at any point of
Γ ∩ (C(c,R)− {{c}}) . We claim that

1) h(F1(Y )) ∩ C(c,R) = {{c}}.
To prove 1), assume, on the contrary, that there is a point y ∈

Y such that A = h({y}) ∈ C(c,R) − {{c}}. Then h(F1(Y )) is
a nondegenerate subcontinuum of F1(X) ∪ C(c,R) that intersects
C(c,R)−{{c}}, so h(F1(Y )) is locally connected at A. This implies
that Y is locally connected at y, so Y is connected im kleinen at y.
However, since R is the remainder of the compactification X1 of V,
by [13, Theorem 2], C(X) is not connected im kleinen at A. Then
C(Y ) is not connected im kleinen at {y}, so by [12, Corollary 4], Y
is not connected im kleinen at y. This contradiction shows 1).

By 1), we have h(F1(Y )) ⊂ F1(X). Now, since X is not locally
connected, by [25, Theorem 1.92], Y is not locally connected as
well. Thus, Y is homeomorphic to a nondegenerate subcontinuum
of X which is not locally connected. Hence, either Y ≈ X, Y ≈ X1

or Y ≈ X1 ∪ T, where T is an arc with b as an end-point of T
such that X1 ∩ T = {b}. Note that X1 is an Elsa continuum, so by
[3, Theorem 4], X1 has unique hyperspace. Hence, if Y ≈ X1, it
follows that Y has unique hyperspace. Thus, X ≈ X1, which is a
contradiction. This shows that either Y ≈ X or Y ≈ X1∪T, where
T is as indicated. ¤

Let X = X1 ∪ M be as assumed in Theorem 5.2. Combining
theorems 5.1 and 5.2, it follows that F(X) = {X, X1∪T}, where T is
as described in Theorem 5.2. Hence, the elements ofWc have almost
unique hyperspace. Using this and the fact that each element of
ACc is either a circle or a generalized Warsaw circle, we obtain the
following result, which is a partial answer to the question whether
the class of circle-like continua is C-determined.
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Theorem 5.3. [2, Theorems 4.12 and 4.13] The class ACc of arc-
wise connected circle-like continua is C-determined. Moreover, if
X and Y are circle-like continua such that C(X) ≈ C(Y ), then X
is arcwise connected if and only if Y is arcwise connected.

Since there are uncountably many Elsa continua, no two of which
are homeomorphic, the class Wc of generalized Warsaw circles con-
tains uncountable many elements, no two of which are homeomor-
phic.

6. Homogeneous circle-like continua

A space X is homogeneous if for any two points x, y ∈ X there
exists a homeomorphism f : X → X such that f(x) = y. Let us con-
sider the classes HIc and HOMc of hereditarily indecomposable
circle-like continua and of homogeneous circle-like continua, respec-
tively. The circle is the only element of HOMc which is arcwise
connected. R. H. Bing constructed a planar hereditarily indecom-
posable circle-like continuum which is not arc-like. He called it
the pseudo-circle. Lawrence Fearnley [11] and James T. Rogers,
Jr. [27] proved that the pseudo-circle is not homogeneous. They
also showed that if X is a homogeneous, hereditarily indecompos-
able circle-like continuum then X is arc-like, so X is a pseudo-arc.
Thus, among hereditarily indecomposable circle-like continua, the
pseudo-arc is the only one which is homogeneous.

A pseudo-solenoid is any hereditarily indecomposable circle-like
continuum which is not arc-like. Note that a pseudo-circle is a
planar pseudo-solenoid. Since the pseudo-arc is the only hereditar-
ily indecomposable arc-like continuum ([7, Theorem 1]), it follows
that each element of HIc is either a pseudo-solenoid or a pseudo-
arc. Moreover, since any proper and nondegenerate subcontinuum
of a circle-like continuum is arc-like, each proper and nondegener-
ate subcontinuum of a pseudo-solenoid is a pseudo-arc. Although
pseudo-solenoids are not homogeneous, all of them have unique hy-
perspace by Theorem 4.1.

Theorem 6.1. The class HIc of hereditarily indecomposable circle-
like continua is C-determined.

An arc-continuum is a continuum such that all its proper and
nondegenerate subcontinua are arcs. Solenoids different from the
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circle are homogeneous arc-continua. Using Corollary 4.5, we have
the following result.

Theorem 6.2. Solenoids different from the circle have unique hy-
perspace.

Proof: Let X be a solenoid different from the circle. Since
any proper and nondegenerate subcontinuum of X is an arc with
two minimal elements in its semi-boundary, we have U(X) = ∅.
Moreover, if Z is a nondegenerate subcontinuum of X which is
not homeomorphic to X, then Z is an arc and X 6≈ W for any
W ∈ F(Z) = {I, S}. Then, by Corollary 4.5, X has unique hyper-
space. ¤

Besides solenoids, there are other indecomposable arc-continua,
like Knaster continua. We will analyze this class in section 7. In
[2, Theorem 2.3], it is shown, without using Theorem 4.2, that
indecomposable arc-continua have unique hyperspace. The proof
for solenoids different from the circle and for Knaster continua is
shorter, as we saw in the proof of Theorem 6.2 and as we will see
in the proof of Theorem 7.1.

An arc of pseudo-arcs is any arc-like continuum which admits a
continuous decomposition into pseudo-arcs with the decomposition
space an arc. Bing and F. B. Jones have shown that an arc of
pseudo-arcs exists and that any two of them are homeomorphic ([9,
Theorem 10]). Thus, the arc of pseudo-arcs is unique. Note that
each proper and nondegenerate subcontinuum of the arc of pseudo-
arcs is either a pseudo-arc or an arc of pseudo-arcs. Using this fact
and Theorem 4.2, we have the following result.

Theorem 6.3. The arc of pseudo-arcs has unique hyperspace.

Proof: Let X be the arc of pseudo-arcs and P be a continuous
decomposition of X into pseudo-arcs with the decomposition space
an arc. Without loss of generality, we can assume that the decom-
position space is I. Let g : X → I be the quotient map. We claim
that

1) if A is a proper and nondegenerate subcontinuum of X such
that g(A) is nondegenerate and 0, 1 /∈ g(A), then |m(A)| ≥
2.
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To show 1), let A be as assumed. Then g(A) is an arc in I with
end-points s and t and 0 < s < t < 1. Hence, m(g(A)) = {{s}, {t}}
and since s 6= t, there exist two disjoint subcontinua B1 and B2 of
I such that s ∈ B1, t ∈ B2, B1 − g(A) 6= ∅, and B2 − g(A) 6= ∅.
Then g−1(B1) and g−1(B2) are two disjoint subcontinua of X such
that g−1(B1) ∩ A 6= ∅, g−1(B2) ∩ A 6= ∅, g−1(B1) − A 6= ∅, and
g−1(B2) − A 6= ∅. Let C1 be a component of g−1(B1) ∩ A and
C2 be a component of g−1(B2) ∩A. By Lemma 3.2, it follows that
C1, C2 ∈ SB(A). Since g−1(B1)∩g−1(B2) = ∅, we have C1∩C2 = ∅.
Thus, |m(A)| ≥ 2, so 1) holds.

Put T0 = g−1(0), T1 = g−1(1) and let A ∈ U(X). Note that g(A)
is either a one-point set or a proper and nondegenerate subcontin-
uum of I. In the former case, A ⊂ g−1(t) for some t ∈ I, so A is
hereditarily indecomposable. Hence, A /∈ U(X). In the second case,
by 1), g(A) ∈ [C(0, I) ∪ C(1, I)]− {{0}, {1}}. This implies that

2) U(X) ∪ {X} = [C(T0, X) ∪ C(T1, X)]− {T0, T1} .

Note that C(T0, X) and C(T1, X) are order arcs in C(X) from
T0 to X and from T1 to X, respectively. Moreover C(T0, X) ∩
C(T1, X) = {X}, so C(T0, X) ∪ C(T1, X) is an arc in C(X) with
end-points T0 and T1. Moreover [C(T0, X)∪C(T1, X)]∩F1(X) = ∅.

Let Y be a continuum such that C(X) ≈ C(Y ) and let h : C(Y ) →
C(X) be a homeomorphism. Since X is atriodic, by (4.2.2) and 2),

h(F1(X)) ⊂ F1(X) ∪ U(X) ∪ {X} ⊂ F1(X) ∪C(T0, X) ∪C(T1, X).

Now since X is not locally connected, by [25, Theorem 1.92], Y is
not locally connected. Thus, h(F1(Y ))∩ [C(T0, X)∪C(T1, X)] = ∅
since otherwise h(F1(Y )) ⊂ C(T0, X)∪C(T1, X) and then h(F1(Y ))
is locally connected, so Y is locally connected too. This shows that
h(F1(Y )) ⊂ F1(X) and then Y is homeomorphic to a nondegenerate
subcontinuum of X, so Y is either a pseudo-arc or an arc of pseudo-
arcs. In the former case, it follows, by Theorem 4.1, that X is a
pseudo-arc as well. Since this is a contradiction, Y ≈ X. ¤

A continuum X is said to be a solenoid of pseudo-arcs if X is
circle-like and admits a continuous decomposition into pseudo-arcs
with the decomposition space a solenoid. If X is a solenoid of
pseudo-arcs and the decomposition space is a circle, then X is said
to be a circle of pseudo-arcs. It is known that for any solenoid Σ,
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there is a unique solenoid of pseudo-arcs X whose decomposition
space is Σ ([20, Theorem 3]). Such a solenoid of pseudo-arcs is
homogeneous ([29, Theorem 9]). Note that each proper and non-
degenerate subcontinuum of a solenoid of pseudo-arcs is either a
pseudo-arc or an arc of pseudo-arcs. Using this fact and Corollary
4.6, we have the following result.

Theorem 6.4. Solenoids of pseudo-arcs have unique hyperspace.

Proof: Let X be a solenoid of pseudo-arcs and P be a continuous
decomposition of X into pseudo-arcs with the decomposition space,
Σ, a solenoid. Let g : X → Σ be the quotient map and A be a proper
and nondegenerate subcontinuum of X. Then g(A) is either a one-
point set or an arc in Σ. In the former case, A ⊂ g−1(t) for some
t ∈ Σ, so A is hereditarily indecomposable. This implies that A /∈
U(X). Assume then that g(A) is an arc in Σ. Then proceeding as
in the proof of claim 1) of Theorem 6.3, it follows that |m(A)| ≥ 2,
so A /∈ U(X). This shows that U(X) = ∅. By theorems 4.1 and 6.3,
any nondegenerate subcontinuum of X which is not homeomorphic
to X has unique hyperspace. Thus, by Corollary 4.6, X has unique
hyperspace. ¤

Charles L. Hagopian and Rogers [14] showed that every homoge-
neous circle-like continuum is either a pseudo arc, a solenoid, or a
solenoid of pseudo-arcs (with the circle and the circle of pseudo-arcs
considered as special cases of solenoids and solenoids of pseudo-arcs,
respectively). Since each of such continua, different from the circle,
has unique hyperspace, we obtain the following result, which is an-
other partial answer to the question whether the class of circle-like
continua is C-determined.

Theorem 6.5. The class of homogeneous circle-like continua is
C-determined.

Moreover, since the elements of the classes HIc and HOMc,
different from the circle, have unique hyperspace, by Theorem 5.3,
we have the following result.

Theorem 6.6. The class ACc ∪HIc ∪HOMc is C-determined.
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7. Knaster continua

In terms of inverse limits, a continuum X is arc-like (respec-
tively, circle-like) if X can be written as the inverse limit of arcs
(respectively, circles) with surjective bonding maps. By a Knaster
continuum, we understand the inverse limit of copies of I with sur-
jective open bonding maps. For a continuum X and a point x ∈ X,
we say that x is an end-point of X if x is an end-point of any arc
in X that contains x. If K is a Knaster continuum, then K is an
indecomposable arc-continuum with either exactly one end-point
or exactly two end-points. Moreover, if K has exactly two end-
points, p and q, then such points belong to different composants of
K. Using Theorem 4.2, we have the following result.

Theorem 7.1. Knaster continua have unique hyperspace.

Proof: Let K be a Knaster continuum and Y be a continuum
such that C(K) ≈ C(Y ). Since K is not locally connected, by [25,
Theorem 1.92], Y is not locally connected as well. Let h : C(Y ) →
C(K) be a homeomorphism. Since K is atriodic, it follows, by
(4.2.2), that h(F1(Y )) ⊂ F1(K)∪ {K} ∪ U(K). Let us assume that
K contains exactly one end-point, p. Then U(K)∪{K} = C(p,K)−
{{p}}, since any proper and nondegenerate subcontinuum of K
that does not contain p is an arc in K with exactly two minimal
elements in its semi-boundary. Note that C(p,K) is an order arc
in C(K) from {p} to K such that C(p,K) ∩ F1(K) = {p}. Thus,
F1(K) ∪ {K} ∪ U(K) = F1(K) ∪ C(p,K) is locally connected at
any point of C(p,K) − {{p}}. Moreover, if Γ is a nondegenerate
subcontinuum of F1(K)∪C(p,K) that intersects C(p, K)−{{p}},
then Γ is locally connected at any point of Γ ∩ (C(p,X)− {{p}}) .
We claim that

1) h(F1(Y )) ∩ C(p,K) = {{p}}.
To show 1), assume, on the contrary, that there is a point y ∈ Y
such that A = h({y}) ∈ C(p,K) − {{p}}. Then h(F1(Y )) is a
nondegenerate subcontinuum of F1(K) ∪ C(p,K) that intersects
C(p,K)−{{p}}, so h(F1(Y )) is locally connected at A. This implies
that Y is locally connected at y, so Y is connected im kleinen at
y. However, since K is a Knaster continuum and p ∈ A, by [13,
Theorem 2], C(K) is not connected im kleinen at A. Then C(Y ) is
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not connected im kleinen at {y} so, by [12, Corollary 4], Y is not
connected im kleinen at y. This contradiction shows 1).

By 1), it follows that h(F1(Y )) ⊂ F1(K). Thus, Y is homeomor-
phic to a nondegenerate subcontinuum of K, so either Y is an arc
or Y ≈ K. In the former case, it follows that either K is an arc or
a circle. In any situation, we obtain a contradiction, so Y ≈ K.

Now assume that K has exactly two end-points, p and q. Then
p and q belong to different composants of K. Moreover, U(K) ∪
{K} = [C(p,K) ∪ C(q, K)] − {{p}, {q}}. Note that C(p,K) and
C(q, K) are order arcs in C(K) from {p} to K and from {q} to K,
respectively. Moreover, C(p,K)∩C(q, K) = {K}. Then C(p,K)∪
C(q, K) is an arc in C(K) such that [C(p,K)∪C(q, K)]∩F1(K) =
{{p}, {q}}, so F1(K)∪{K}∪U(K) = F1(K)∪C(p,X)∪C(q,X) is
locally connected at any point of [C(p,K) ∪C(q, K)]− {{p}, {q}}.
Proceeding as in the proof of 1), it can be shown that h(F1(Y )) ∩
[C(p,K) ∪ C(q,K)] = {{p}, {q}}, so h(F1(Y )) ⊂ F1(K) and from
this inclusion, it follows that Y ≈ K. ¤

As a consequence of the previous result, the class K of Knaster
continua is C-determined.

Theorem 7.2. Let X be an indecomposable arc-continuum with no
end-points. Then X has unique hyperspace.

Proof: Let X be as assumed. Since any proper and nondegener-
ate subcontinuum of X is an arc with two minimal elements in its
semi-boundary, we have U(X) = ∅. The rest follows from Corollary
4.5. ¤

The proof of 1) of Theorem 7.1 will be used later. As a partic-
ular case of Theorem 7.1, both the buckethandle continuum and
the double buckethandle continuum have unique hyperspace. The
buckethandle continuum has exactly one end-point, while the dou-
ble buckethandle continuum has exactly two end-points.

Let K be a Knaster continuum with exactly one end-point, p .
Let Kp denote the union of K with an arc attached through p, i.e.,
Kp = K ∪A, where A is an arc with p as one of its end-points and
such that A ∩K = {p}.
Theorem 7.3. Let K be a Knaster continuum with exactly one
end-point, p. Then Kp has unique hyperspace.
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Proof: Put Kp = K ∪ A, where A is as indicated above. Let a
be the other end-point of A. Note that

U(Kp) ∪ {Kp} = [C(a,Kp) ∪ C(K, Kp)]− {{a},K}
since any other proper and nondegenerate subcontinuum of Kp

has exactly two minimal elements in its semi-boundary. Note that
C(a,Kp) is an order arc in C(Kp) from {a} to Kp, while C(K, Kp)
is an order arc in C(Kp) from K to Kp. Note also that C(a, Kp) ∩
F1(Kp) = {{a}} and C(K,Kp)∩[F1(Kp)∪C(a,Kp)] = {Kp}. Then
F1(Kp) ∪ {Kp} ∪ U(Kp) = F1(Kp) ∪ C(a,Kp) ∪ C(K, Kp) ≈ Kp .
Let Z be a nondegenerate subcontinuum of Kp such that Z 6≈ Kp .
Then Z is either an arc or Z = K. Then, using Theorem 7.1, it
follows that F(Z) = {I, S} or F(Z) = {Z}. Thus, Kp 6≈W , for any
W ∈ F(Z). Then, by Theorem 4.3, Kp has unique hyperspace. ¤

Let K be a Knaster continuum K with exactly two end-points, p
and q. We consider continua Kp, Kq, Kpq, W (K), and V (K) defined
as follows:

(1) Kp is defined as before, i.e., by attaching an arc through p ;
(2) Kq is obtained from K by attaching an arc through q;
(3) Kpq is obtained from Kp by attaching an arc through q;
(4) W (K) is obtained from Kpq by identifying its two points of

irreducibility;
(5) V (K) = K/{p, q}, i.e., V (K) is obtained from K by identi-

fying p and q.
Note that Kpq = A ∪ K ∪ B, where A and B are disjoint arcs, p
is an end-point of A, q is an end-point of B, A ∩ K = {p}, and
B ∩ K = {q}. Moreover, if a is the other end-point of A and b is
the other end-point of B, then W (K) = Kpq/{a, b}. Note also that
W (K) = Kpq ∪M , where M is an arc with end-points a and b such
that Kpq ∩M = {a, b}. We also have that W (K) = K ∪N , where
N is an arc with end-points p and q such that K ∩N = {p, q}. By
Theorem 5.1, we have the following result.

Theorem 7.4. Let K be a Knaster continuum with exactly two
end-points, p and q. Then C(Kpq) ≈ C(W (K)).

Note that each continuum of the form Kpq is arc-like, while each
of the form W (K) is circle-like. By the previous result, neither Kpq

nor W (K) have unique hyperspace. To analyze the structure of
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the class F(Kpq), we have to analyze first the structure of the class
F(Kp).

Theorem 7.5. Let K be a Knaster continuum with exactly two
end-points, p and q. Then Kp and Kq have unique hyperspace.

Proof: Put Kp = K ∪ A, where A is an arc with p as one of its
two end-points and A ∩K = {p}. Let a be the other end-point of
A. It is easy to see that

U(Kp) ∪ {Kp} = [C(a,Kp) ∪ C(q, Kp)]− {{a}, {q}}.
Note that C(a,Kp) is an order arc in C(Kp) from {a} to Kp , while
C(q, Kp) is an order arc in C(Kp) from {q} to Kp . Moreover,
C(a,Kp) ∩C(q,Kp) = {Kp} and [C(a,Kp) ∪C(q, Kq)] ∩ F1(Kp) =
{{a}, {q}}.

Let Y be a continuum such that C(Kp) ≈ C(Y ) and let h : C(Y )
→ C(Kp) be a homeomorphism. By [25, Theorem 1.92] and (4.2.2),
Y is not locally connected and h(F1(Y )) ⊂ F1(Kp) ∪ C(a,Kp) ∪
C(q, Kp). Note that C(q,Kp) = C(q, K) ∪ C(K,Kp) and that
C(K, Kp) is an order arc in C(Kp) from K to Kp . Proceeding
as in the proof of 1) of Theorem 7.1, it follows that h(F1(Y )) ∩
C(q, K) = {q}. Thus, h(F1(Y )) ⊂ F1(Kp) ∪ C(a,Kq) ∪ C(K, Kp).
This implies, since Y is not locally connected and F1(Kp)∪C(a,Kq)
∪ C(K, Kp) ≈ Kp, that either Y ≈ K or Y ≈ Kp . In the former
case, we have, by Theorem 7.1, that Kp ≈ K. This is a contradic-
tion, so Y ≈ Kp . This shows that Kp has unique hyperspace. The
proof for Kq is similar. ¤

Let Kp be the class of decomposable continua of the form Kp ,
where K is a Knaster continuum. As a consequence of theorems
7.3 and 7.5, we have the following result.

Theorem 7.6. The class Kp is C-determined.

The next result shows that continua Kpq and W (K) have almost
unique hyperspace.

Theorem 7.7. Let K be a Knaster continuum with exactly two
end-points, p and q. Then F(W (K)) = {Kpq,W (K)}.

Proof: The inclusion {Kpq,W (K)} ⊂ F(W (K)) follows from
Theorem 7.4. To show the other inclusion, let Y be a continuum
such that C(W (K)) ≈ C(Y ). Take a homeomorphism h : C(Y ) →
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C(W (K)). It is easy to see that U(W (K)) = ∅ so, by (4.2.2),
h(F1(Y )) ⊂ F1(W (K)). Using this and the fact that Y is not locally
connected, it follows that Y is homeomorphic to a nondegenerate
subcontinuum of W (K) which is not locally connected. Then ei-
ther Y ≈ K, Y ≈ Kp, Y ≈ Kq, Y ≈ Kpq, or Y ≈ W (K). If
Y ≈ K then, since C(Y ) ≈ C(W (K)) and K has unique hyper-
space (as does Y ), we have W (K) ≈ K, which is a contradiction.
If Y ≈ Kp , we proceed in a similar way, using the fact that Kp has
unique hyperspace, to obtain a contradiction. We proceed in the
same fashion if Y ≈ Kq. Thus, either Y ≈ Kpq or Y ≈ W (K), i.e.,
F(W (K)) ⊂ {Kpq,W (K)}. ¤

LetWc be the class of continua of the form W (K), where K is any
Knaster continuum with exactly two end-points. As an immediate
consequence of Theorem 7.7, we obtain the following result, which
is another partial answer to the question whether the class of circle-
like continua is C-determined.

Theorem 7.8. The class Wc is C-determined.

Now consider the class Kpq of continua of the form Kpq, where K
is any Knaster continuum with exactly two end-points. By Theo-
rem 7.7, it follows that F(Kpq) = F(W (K)) = {Kpq,W (K)}. Thus,
we have the following result.

Theorem 7.9. The class Kpq is C-determined.

Recall that K is the class of Knaster continua. Combining the-
orems 7.1, 7.6, and 7.10, it follows that the class K ∪ Kp ∪ Kpq is
C-determined. We can also combine theorems 7.1, 7.6, and 7.8 to
conclude that the class K ∪ Kp ∪Wc is C-determined as well.

Now consider the class Vc of continua of the form V (K), where
K is any Knaster continuum with exactly two end-points.

Theorem 7.10. Let K be a Knaster continuum with exactly two
end-points, p and q. Then V (K) has unique hyperspace.

Proof: Recall that V (K) = K/{p, q}. Note that any proper and
nondegenerate subcontinuum of V (K) is an arc with exactly two
minimal elements in its semi-boundary. Thus, U(V (K)) = ∅. The
rest follows from Corollary 4.5. ¤
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Note that Theorem 7.10 also follows from [2, Theorem 2.3] since
V (K) is an indecomposable arc-continuum. As in immediate con-
sequence of Theorem 7.10, we have the following result.

Theorem 7.11. The class Vc is C-determined.

Note that the members of the class Vc are circle-like. Combining
theorems 6.6, 7.8, and 7.11, it follows that the class ACc ∪ HIc ∪
HOMc ∪Wc ∪ Vc is C-determined.

Let B be the double buckethandle continuum. Note that W (K)
and V (K) are two circle-like continua which are not homeomorphic.
One is tempted to think that hyperspaces C(W (K)) and C(V (K))
are homeomorphic. However, this is not the case, by theorems 7.7
and 7.10.

Note added. This paper is the first of a series of papers devoted
to answering the question whether the class of circle-like continua
is C-determined. The author concluded this paper during his stay
at West Virginia University in Morgantown, West Virginia, and
thanks Professor Sam B. Nadler, Jr. for his help with the paper.

References

[1] Gerardo Acosta, On compactifications of the real line and unique hyper-
space, Topology Proc. 25 (2000), Spring, 1–25.

[2] , Continua with almost unique hyperspace, Topology Appl. 117
(2002), 175–189.

[3] , Continua with unique hyperspace, in Continuum Theory. Ed. Ale-
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