
Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



TOPOLOGY
PROCEEDINGS
Volume 30, No. 1, 2006

Pages 187-195

TOPOLOGICAL FUNDAMENTAL GROUPS
CAN DISTINGUISH SPACES WITH

ISOMORPHIC HOMOTOPY GROUPS

PAUL FABEL

Abstract. There is a natural functor πtop
1 which imparts a

topology on the based fundamental group of a space X. We
exhibit examples in which πtop

1 succeeds in distinguishing the
homotopy of the spaces X and Y when such tools as the
Whitehead theorem and shape theory are unsuccessful.

1. Introduction

For CW complexes the familiar Whitehead theorem [6] ensures
that a map f : X → Y is a homotopy equivalence, provided f
induces an isomorphism on homotopy groups. However, the con-
clusion of the Whitehead theorem can fail for more general spaces.

To help overcome such failure, we investigate a functor πtop
1 [1]

with the potential to distinguish the homotopy types of X and Y
in the presence of a weak homotopy equivalence f : X → Y. The
functor πtop

1 endows the familiar fundamental group π1(X, p) with
the quotient topology inherited from the space of based loops over
X.

We should mention that πtop
1 is one of at least three natural

topologies on the fundamental group. For example, for planar sets
X, one can pull back a topology onto π1(X, p) via the canonical
monomorphism φ : π1(X, p) → φ : π^

1 (X, p) into the first shape
group [5], the target understood as the inverse limit of discrete
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groups. The Hawaiian earring shows the shape group topology can
be courser than that of πtop

1 [4].
There is also a finer topology suggested by [2], in which, roughly

speaking, one considers two loops classes [f ] and [g] to be close if
there exists a small loop α so that f ∗ α is path homotopic to g.
However, the Hawaiian earring shows this topology can depend on
the choice of basepoint and in particular, this fine topology is not
an invariant of homotopy type.

We begin by calling into question whether or not πtop
1 (X, p) is, in

fact, a topological group. We then provide an argument (also indi-
cated in [1]) that πtop

1 (X, p) is, indeed, an invariant of the homotopy
type of the based underlying space X.

We then exhibit examples in which πtop
1 succeeds in distinguish-

ing the homotopy type of X and Y when the hypothesis of the
Whitehead theorem is satisfied.

Moreover, in our second example, πtop
1 succeeds in distinguishing

X and Y , while shape theory fails in the following sense. We exhibit
path connected metric compacta X and Y and a weak homotopy
equivalence f : X → Y showing that the homotopy groups of X
and Y are equivalently embedded in the respective homotopy shape
groups. However, πtop

1 (X) and πtop
1 (Y ) are not homeomorphic and

thus, X and Y have distinct homotopy type.

2. Preliminaries

If X is any space and p ∈ X, let Cp(X) = {f : [0, 1] → X such
that f is continuous and f(0) = f(1) = p}. Endow Cp(X) with the
compact open topology.

The topological fundamental group π1(X, p) is the set of path
components of Cp(X) endowed with the quotient topology under
the canonical surjection q : Cp(X) → π1(X, p) satisfying q(f) =
q(g) if and only if f and g belong to the same path component of
Cp(X). Thus, a set U ⊂ π1(X) is open if and only if q−1(U) is open
in Cp(Y ).

Remark 2.1. A query of Tyler Lawson (via personal correspon-
dence March 2006) suggests a gap in the proof of Proposition 3.1
of [1] which asserts that πtop

1 (X, p) is a topological group under
the standard group operations. (The gap is created by the general
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failure of the product of quotient maps to be a quotient map [7, Ex-
ample 8, p. 141].) Thus, the issue at stake is whether multiplication
is jointly continuous over π1(X)× π1(X).

Problem. Suppose X is any topological space. Is πtop
1 (X, p) a

topological group with the standard group operations? Suppose
X is the Hawaiian earring (HE), the union of a null sequence of
simple closed curves joined at a common point p. Is πtop

1 (HE, p) a
topological group?

Remark 2.2. The foregoing problem cannot be settled easily by
embedding πtop

1 (HE) in the inverse limit of free groups [4].

Remark 2.3. Corollary 3.4 of [1] asserts that πtop
1 is a functor

from the homotopy category of spaces to the category of topological
groups. However, the proof that πtop

1 is an invariant of homotopy
type of X does not require knowledge that multiplication in πtop

1 (X)
is jointly continuous and can be carried out as follows.

Summary. Because Π : Cp(X) → π1(X, p) is a quotient map, if Z
is any space and R : Cp(X) → Z is constant on the path compo-
nents, then there exists a map r : π1(X, p) → Z such that r(Π) = R.
In particular, if α : [0, 1] → X is any path, and if g : X → Y
is any map, then the induced isomorphism αˆ : π1(X, α(0)) →
π1(X, α(1)) is a homeomorphism, and the induced homomorphism
g∗ : π1(X, p) → π1(Y, g(p)) is continuous. (Recall the isomorphism
αˆ is determined by conjugation with the (fixed) path α.) Conse-
quently, if f : X → Y is a homotopy equivalence, then the stan-
dard proof that f∗ : π1(X, p) → π1(Y, f(p)) is an isomorphism [7,
Theorem 11.3]) shows f∗ is a homeomorphism. In particular, the
topology of πtop

1 (X, p) is invariant under the homotopy type of the
(based) underlying space X.

3. Definitions

If An is a sequence of planar compacta, then An → A in the
Hausdorff metric if for each ε > 0 there exists N so that if n ≥ N ,
then for each a ∈ A there exists an ∈ An such that |a− an| < ε
and for each an ∈ An there exists a ∈ A such that |a− an| < ε.
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For path connected spaces, if πn(X) denotes the nth homotopy
group, the map f : X → Y is a weak homotopy equivalence if
f∗n : πn(X) → πn(Y ) is an isomorphism for n ≥ 1.

A Peano continuum is a path connected locally path connected
metric space. The space X is discrete if each subset of X is open.

Given a sequence of maps fn : Xn → Xn−1, the inverse limit
space lim←Xn = {(x1, x2, ..)|fn(xn) = xn−1}, and inherits the
product topology from X1 ×X2....

We discuss a minimum of shape theory in order to formulate a
sense in which shape theory can fail to distinguish the spaces X
and Y.

Suppose X ⊂ R2 and X is closed and path connected and p ∈ X.
Suppose X = ∩∞n=1Un where Un is open and Un+1 ⊂ Un. Then
inclusion jk : X ↪→ Uk determines a map j : X → lim← Uk and
a canonical homomorphism from the nth homotopy groups φn :
πn(X, p) → lim← πn(Uk, p). The group lim← πn(Uk, p) is the nth
shape homotopy group of X and is denoted π`

n (X, p). Moreover,
the group π`

n (X, p) admits a natural topology as the inverse limit
of discrete spaces π1(Un, p).

A homotopy equivalence f : X → Y suggests a commutative dia-
gram such that Γn is both an isomorphism and a homeomorphism.

πn(X)
φX→ π`

n (X)
f∗ ↓ Γn ↓

πn(Y )
φY→ π`

n (Y ).

However, Theorem 5.3 shows that a weak homotopy equivalence f :
X → Y can determine a comparable diagram and this motivates
the following definition.

Definition 3.1. Suppose D2 and D1 are path connected planar
continua and suppose for each n ≥ 0 there exists Γn : π`

n (D2) →
π`

n (D1) such that Γn is both an isomorphism and a homeomor-
phism. Suppose φi

n : πn(Di) → π`
n (Di) denotes the canonical

homomorphism and suppose there exists a weak homotopy equiv-
alence f : D2 → D1 such that φ2

nf∗n = Γnφ1
n for each n. Then the

shape homotopy groups do not distinguish D2 and D1.

Remark 3.2. In general, shape theory has the potential to dis-
tinguish a weak homotopy equivalence f : X → Y from a genuine
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homotopy equivalence. (Consider, for example, inclusion of a one
point set into the “topologist’s sine curve” ∂U , as in Theorem 5.3.)

4. Example 1: πtop
1 versus the Whitehead theorem

We exhibit a weak homotopy equivalence j : X → Y such that j∗

is not a homeomorphism of πtop
1 . Let p = (0, 0). For n ∈ {1, 2, 3, ...},

let the simple closed curve Cn ⊂ R2 denote the boundary of the
triangle with vertices {(0, 0), ( 1

n , 1), ( 1
n − 1

3n3 , 1 − 1
2n)}. Let X =

∪∞n=1Cn. Note X is compact and {p} ∪X\X is the line segment
L = [(0, 0), (0, 1)]. Let Y = X and let j : X → Y denote the
inclusion map.

Remark 4.1. If n 6= 1, then πn(X) = πn(Y ) = 0 [3].

Lemma 4.2. The homomorphism induced by the inclusion of
j∗ : πtop

1 (X, p) → πtop
1 (Y, p) is an isomorphism but not a home-

omorphism. Thus, j is not a homotopy equivalence. Moreover,
πtop

1 (X) and πtop
1 (Y ) are not homeomorphic and thus, X and Y do

not have the same homotopy type.

Proof: Let E2 ⊂ R2 denote the closed unit disk. To prove j∗ is
one to one, suppose f : ∂E2 → X is inessential in Y and suppose
f(0) = f(1) = p. Let F : E2 → Y satisfy F∂E2 = f. Consider the
open set U = F−1(Y \p) ⊂ E2. If Ui is a component of U such that
F (Ui) ⊂ L\p, then F (∂Ui) = p. Thus, we may redefine F over each
Ui to be the constant p. This new function is continuous and shows
f is inessential in X and hence, j∗ is one to one.

To prove j∗ is onto, suppose f is any loop in Y based at p. Since
im(f) is a Peano continuum, im(f) ∩ X is a strong deformation
retract of im(f) ∪ L via linear contraction along L. Applying the
deformation retraction to im(f) shows f is path homotopic to a
loop in X. Thus, j∗ is an isomorphism.

To see that πtop
1 (X, p) is discrete, note X is locally contractible.

Consequently, if fn → f in Cp(X), then fn will eventually be path
homotopic to f , and in particular, πtop

1 (X, p) is discrete.
On the other hand, there exist essential loops fn : [0, 1] → Cn

converging to an (inessential) loop f : [0, 1] → L. Since Π :
Cp(Y ) → πtop

1 (Y, p) is continuous, it follows that [fn] → [f ] and
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hence, πtop
1 (Y, p) is not discrete. Thus, j is not a homotopy equiv-

alence, and X and Y do not have the same homotopy type. ¤

5. Example 2: πtop
1 versus shape theory

We exhibit spaces D2 and D1 and a weak homotopy equivalence
f : D2 → D1 such that the shape groups do not distinguish D2

and D1 in the sense of Definition 3.1 but such that πtop
1 succeeds

in distinguishing the homotopy type of D1 and D2.
The space Di is the union of a contractible continuum and count-

ably many large loops joined at a common point p. In particular,
D1 is the space Y from Lemma 4.2 and D2, roughly speaking, is
obtained as follows. Starting with U, the closure of the bounded
complementary domain of a standard topologist’s sine curve, attach
loops C∗

n “converging” to a nonseparating “sin( 1
x) subcontinuum”

A ⊂ ∂U .
To be more precise, let A = {[−2, 0] × {0}} ∪ {(x, y) ∈ R2|x =

sin( 1
y )−1 and 0 ≤ y ≤ 1}. Let p = (0, 0). Next, construct a sequence

of simple closed curves C∗
n converging to A in the Hausdorff metric

and satisfying the following:

(1) C∗
n ∩A = {(0, 0)} and C∗

n ∩ C∗
m = {(0, 0)} if n 6= m.

(2) If 0 < y < 1, then ((∞,∞)× {y}) ∩ C∗
n = {(x1, y), (x2, y)}

with sin( 1
y )− 1 < x1 < x2 and 0 < x2 − x1 < 1

n .

(3) ((−∞,∞)× {1}) ∩ C∗
n = {( 1

n , 1)}
(4) If y /∈ [0, 1], then ((−∞,∞)× {y}) ∩ C∗

n = ∅.
(5) Each curve C∗

n is the union of finitely many line segments,
none of which are nontrivial horizontal segments.

(6) The curve C∗
n+1 < C∗

n in the sense that for 0 < y ≤ 1,
C∗

n+1 ∩ {(−∞,∞)× {y}} < C∗
n ∩ {(−∞,∞)× {y}}.

Define the continuum B = A ∪ C∗
1 ∪ C∗

2 ....
To create D2, “thicken” A as follows. Consider the union of

three line segments β = [(−2, 0), (−10, 0)] ∪ [(−10, 0), (−10, 1))] ∪
[(−10, 1), (sin(1)− 1, 1)]. Let U denote the bounded component of
R2\(β ∪B). Let D2 = B ∪ U .

Define a map f : B → D1 such that f(A) = L and such that
f maps C∗

n homeomorphically onto Cn as follows. For (x, y) ∈
A, let f(x, y) = (0, y). Let f( 1

n , 1) = ( 1
n , 1). If 0 < y < 1, map
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C∗
n ∩ (R× y) onto Cn ∩ (R× y) such that f preserves the order of

the x coordinates.
Extend f : D2 → D1 such that f(x, y) = (0, y) for (0, y) ∈ U.

(Such extension is continuous by the pasting Lemma [7, p. 108].)
Let X∗ = {0, 0} ∪ C∗

1 ∪ C∗
2 ....

The following technical facts are used in the proof of Theorem
5.3.

Lemma 5.1. Let p = {(0, 0)}. Suppose β : [a, b] → U is a path
such that β(a) ∈ p. Suppose the sequence of paths βn : [a, b] → D2

satisfies βn → β uniformly and ε > 0. Let E = X∗ ∩ {R × [ε, 1]}.
Then there exists N such that if n ≥ N then im(βn) ∩ E = ∅.

Proof: First observe that if C is a subcontinuum of U and if γ
denotes the component of C ∩A containing p, and if γ is nonempty
and nontrivial, then C is not locally path connected. Next note
im(βn) → im(β) in the Hausdorff metric. To obtain a contradic-
tion, suppose there exists (xnk

, ynk
) ∈ im(βnk

) for a subsequence
βn1,βn2 , .... Then im(βnk

) contains an arc γnk
connecting (xnk

, ynk
)

to βnk
(0). Recall C∗

n → A in the Hausdorff metric. Thus, if γ is
a subsequential limit of γnk

, then γ ⊂ A and γ is nonempty and
nontrivial and p ∈ γ. On the other hand, γ ⊂ im(β) and im(β) is a
locally path connected continuum and we have a contradiction. ¤

Remark 5.2. Suppose 1 > ε > 0 and U = X∗ ∩ {R× (1− ε,∞)}.
Then X∗\U is contractible, and if α ∈ Cp(X∗) and V = α−1(U),
then the homotopy path class of α is determined by αV , the restric-
tion of α to V.

Theorem 5.3. The map f : D2 → D1 is a weak homotopy equiva-
lence and shows that the shape homotopy groups do not distinguish
D2 and D1 in the sense of Definition 3.1.

Proof: Let E2 ⊂ R2 denote the closed unit disk. To see that f is
a weak homotopy equivalence, note Di is path connected and thus,
πn(Di) = 0 if n 6= 1 [3].

To prove f∗ : π1(D2, p) → π1(D1, p) is one to one, suppose
α : ∂E2 → D2 is a based loop such that f(α) is inessential in
D1. Recall the space X from Lemma 4.2 and note f maps X∗
homeomorphically onto X. Note im(α) is a Peano continuum. Let
U denote the union of the bounded components of R2\im(α). Let
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E = X∪im(α)∪U. Notice E ⊂ D2, and X∗ is a strong deformation
retract of E. Thus, α is path homotopic to a loop β in X∗ such that
f(β) is inessential in D1. Recalling the proof of Lemma 4.2, we ob-
tain a map F : E2 → D1 extending f(β) such that im(F ) ⊂ X.
The map f−1(F ) extends β and shows α is inessential in D2.

In similar fashion, the proof of Lemma 4.2 also shows that f∗
is onto as follows. Given a loop α in D1, we homotop α in D1 to
a loop αˆ such that im(αˆ) ⊂ X. Now let βˆ = f−1

X∗(αˆ). Thus,
f(β) = αˆ.

Next we “thicken” ∪n
i=1C

∗
i and ∪n

i=1Ci with planar open sets Un

and Vn, respectively, so that D2 = ∩∞n=1Un and D1 = ∩∞n=1Vn and
so that Definition 3.1 is satisfied as follows. Let Fn denote the
free group on letters {w1, ..wn} and let γn : Fn → Fn−1 denote the
canonical epimorphism deleting all occurrences of the letter wn. If,
to the letter wi, we associate counterclockwise loops respectively
in C∗

i and Ci, then we can choose Un and Vn such that the ho-
momorphisms induced by inclusion i∗n : π1(Un) → π1(Un−1) and
j∗n : π1(Vn) → π1(Vn−1) are canonically equivalent to γn. ¤

Theorem 5.4. The spaces πtop
1 (D2, p) and πtop

1 (D1, p) are not home-
omorphic. Hence, f : D2 → D1 is not a homotopy equivalence, and
D2 and D1 are not homotopy equivalent.

Proof: To see that πtop
1 (D2, p) and πtop

1 (D1, p) are not homeo-
morphic, recall in D1 there exist essential loops βn : [0, 1] → Cn

such that βn → β with β inessential. Thus, since Π : Cp(D2) →
πtop

1 (D2, p) is continuous, the sequence [βn] converges to [β] in
πtop

1 (D1, p) and in particular, πtop
1 (D1, p) is not a discrete space.

Now we show πtop
1 (D2, p) is discrete by proving that Cp(D2) has

open path components.
Since f is a weak homotopy equivalence, it follows from Lemma

4.2 that inclusion κ : X∗ → D2 is also a weak homotopy equiv-
alence. In particular, if α ∈ Cp(D2), then the path class of α is
determined by αC where C = α−1(X∗).

Now suppose α ∈ Cp(D2) and αn → α in Cp(D2). First note
there exist finitely many components [ai, bi] of α−1(U) such that
α([ai, bi])∩{R× (1

2 ,∞) 6= ∅. Moreover, since κ is a weak homotopy
equivalence for sufficiently large n, Lemma 5.1 shows that αn[ai,bi]

makes no essential contribution to the path class of αn.
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Now let V = α−1(X∗∩(1
2×∞)). Let Vn = α−1

n (X∗∩(R×(2
3×∞)).

For sufficiently large n, we have Vn ⊂ S(α). It follows from Remark
5.2 that the path class of αn is determined by the restriction to
S(α). Moreover, since αn → α uniformly over S(α), αn and α
eventually determine the same word in the free group on infinitely
many generators F (w1, w2, ...). Hence, α and αn are eventually path
homotopic. ¤
Remark 5.5. It follows from Theorem 5.3 and Lemma 4.2 that
inclusion κ : X∗ ↪→ D2 is a weak homotopy equivalence inducing
a homeomorphism κ∗ : πtop

1 (X∗, p) → πtop
1 (D2, p). However, shape

theory shows κ is not a homotopy equivalence. Since X∗ has the
homotopy type of an open planar set, π^

1 (X∗, p) is the (countable)
direct limit of free groups. On the other hand, π^

1 (D2, p) is the
(uncountable) inverse limit of free groups.
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