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THE COINITIALITY OF A COMPACT SPACE

STEFAN GESCHKE

Abstract. This article deals with the coinitiality of topo-
logical spaces, a concept that generalizes the cofinality of
a Boolean algebra as introduced by Sabine Koppelberg in
[Boolean algebras as unions of chains of subalgebras, Alge-
bra Universalis 7 (1977), no. 2, 195–203]. The compact
spaces of countable coinitiality are characterized. This gives a
new characterization of Boolean algebras of countable cofinal-
ity. We also discuss cofinalities of C∗-algebras and of Banach
spaces.

Introduction

In [7], Sabine Koppelberg defined the cofinality cof(B) of an
infinite Boolean algebra B as the least limit ordinal δ such that
there is a strictly increasing sequence (Bα)α<δ of subalgebras of B
such that B =

⋃
α<δ Bα. (See also [2].)

Koppelberg showed that for every Boolean algebra B the cofi-
nality of B is at most 2ℵ0 . Moreover, every infinite Boolean al-
gebra which is almost σ-complete is of cofinality ℵ1. Almost σ-
completeness is a weakening of σ-completeness and is called count-
able separation property nowadays.

The main open question concerning cofinalities of Boolean alge-
bras is the following.

Question 0.1. Is it consistent that there is a Boolean algebra
whose cofinality is bigger than ℵ1?

2000 Mathematics Subject Classification. Primary: 54A25, 46B26; Sec-
ondary: 06E05, 06E15, 46L05.
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238 S. GESCHKE

The present article was motivated by this question. We gen-
eralize cofinalities of Boolean algebras to coinitialities of compact
spaces and characterize compact spaces of countable coinitiality by
topological means. This is a modest attempt to add a new perspec-
tive to the problem of cofinalities of Boolean algebras.

It should be mentioned that cofinalities of groups and other al-
gebraic structures have been studied extensively in the literature
(see [4, 16] and the references therein).

1. Basic definitions and elementary facts

Our notation for inverse systems follows [3], and all the topo-
logical facts that we use without reference can be found in that
book.

Definition 1.1. Let X be a topological space. The coinitiality
ci(X) of X is the least limit ordinal δ such that X is the limit of
an inverse system {Xα, πβ

α, δ} whose bonding maps πβ
α are onto and

not 1-1, provided such an inverse system exists.

Note that the coinitiality of a topological space is defined except
for trivial cases. It is defined for infinite compact spaces.

In Definition 1.1, the requirement about the inverse system is
rather weak. If X is the limit of an inverse system S = {Xα, πβ

α, δ},
δ a limit ordinal, such that the canonical maps πα : X → Xα are
not 1-1, i.e., if X is not already determined by a single Xα, then
S can be replaced by a well-ordered inverse system of limit length
≤ δ whose bonding maps are onto and not 1-1.

Note that for every X, ci(X) is a regular cardinal. If X is zero-
dimensional, let ci0(X) be the cardinal invariant obtained in Defi-
nition 1.1 when requiring the Xα to be zero-dimensional. By Stone
duality, for every Boolean algebra B, ci0(Ult(B)) = cof(B) where
Ult(B) denotes the Stone space of B. Clearly, for every infinite
compact zero-dimensional space X, ci(X) ≤ ci0(X). We will show
that in fact ci(X) = ci0(X), but the argument for this is probably
most conveniently stated in terms of C∗-algebras. Following [15],
we require every C∗-algebra to have a unit.

Definition 1.2. For an infinite dimensional C∗-algebra A, let
cofC∗(A) denote the least limit ordinal δ such that there is a strictly
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increasing sequence (Aα)α<δ of (closed) C∗-subalgebras of A such
that

⋃
α<δ Aα is dense in A.

For every compact space X, let C(X) denote the C∗-algebra
of complex continuous functions on X. Then, essentially by the
Stone-Weierstraß Theorem, for every infinite compact space X,
cofC∗(C(X)) = ci(X).

Lemma 1.3. Let X be compact and zero-dimensional. Then

ci(X) = cofC∗(C(X)) = cof(Clop(X)) = ci0(X).

Proof: We only have to show that cof(Clop(X)) ≤ cofC∗(C(X)).
Let A = C(X) and let (Aα)α<δ be a strictly increasing sequence
of C∗-subalgebras of A such that

⋃
α<δ Aα is dense in A. Let B =

Clop(X). For every α < δ let ∼α denote the equivalence relation
on X which identifies two points if they are not separated by a
function in Aα, and let fα : X → X/ ∼α denote the quotient
map. Moreover, let Bα be the image of the natural embedding
from Clop(X/ ∼α) into B.

Let α < δ. Since Aα is a proper C∗-subalgebra of A, ∼α is not
just equality. It follows that Bα is a proper subalgebra of B. Since
the sequence (Aα)α<δ is increasing, also the sequence (Bα)α<δ is
increasing. This implies cof(Clop(X)) ≤ δ, provided we can show
that B =

⋃
α<δ Bα.

Let b ∈ B. Consider the characteristic function χb : X → {0, 1}
of b. Since b is clopen, χb is continuous and thus, χb ∈ A. Since⋃

α<δ Aα is dense in A, there are α < δ and f ∈ Aα such that

sup
x∈X

|f(x)− χb(x)| < 1
2
.

Now b = f−1
[(

1
2 , 3

2

)]
and X \b = f−1

[(−1
2 , 1

2

)]
. Therefore b ∈ Bα.

It follows that B =
⋃

α<δ Bα. ¤

We conclude this section with a few observations concerning up-
per bounds for the coinitiality of compact spaces. For an infinite
compact space X, let a(X) denote the altitude of X, the least limit
ordinal δ such that there is a strictly decreasing sequence (Fα)α<δ

of closed subsets of X with |⋂α<δ Fα| = 1. It is clear that the
altitude of an infinite space is an infinite regular cardinal. Observe
that a compact space has altitude ℵ0 if and only if it contains a
non-trivial convergent sequence.
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Lemma 1.4. (a) If X is an infinite closed subspace of a compact
space Y , then ci(Y ) ≤ ci(X).

(b) If X is an infinite compact space, then ci(X) ≤ a(X).
(c) For every infinite compact space X, ci(X) ≤ cf(w(X)) where

w(X) denotes the weight of X.
(d) For every infinite compact space X, ci(X) ≤ 2ℵ0.

For compact zero-dimensional spaces and ci0, (a), (c), and (d)
are due to Koppelberg [7], and (b) is due to Eric K. van Douwen
[2].

Proof: The proofs of (a) and (b) are easy. The proof of (c) is
also easy if one considers X as a subspace of [0, 1]w(X). (d) follows
from (a), (c), and the fact that every infinite compact space has
an infinite closed subspace that is separable and hence has weight
≤ 2ℵ0 . ¤

Note that it is consistent that ci(X) < 2ℵ0 holds for every com-
pact space X. Just take a model of set theory where 2ℵ0 is singular.
In fact, in such a model, we have a(X) < 2ℵ0 for every compact
space X.

In the zero-dimensional case, much more information has been
provided by Piotr Koszmider [8], who showed that it is consistent
to have pa(X) ≤ ℵ1 for every Boolean space X while 2ℵ0 > ℵ1.
Here pa(X) is the pseudo-altitude of X, the least character of a
non-isolated point in a closed subspace of X. It is easily checked
that pa(X) is an upper bound for a(X) and hence for ci(X).

We will go back to this type of results at the end of the next
section.

2. Martin’s Axiom and convergent sequences

Koppelberg [7] showed that under Martin’s Axiom, every Boolean
algebra of size < 2ℵ0 is of countable cofinality. The following
stronger statement (modulo Stone duality) seems to be set-theoretic
folklore (see [11]):

Under MA, every infinite compact space of weight < 2ℵ0 has a
non-trivial convergent sequence.

However, Koppelberg’s proof of her result is still useful since,
turned into topology, it actually gives the following.
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Theorem 2.1. Assume Martin’s Axiom for countable partial or-
ders. Then every infinite compact space of weight < 2ℵ0 has a
non-trivial convergent sequence.

Since it is not completely straight forward to turn Koppelberg’s
algebraic argument into topology, we give a proof of this theorem.

Proof: First, assume that X is scattered. After removing the
isolated points from X, we are left with a closed subspace X ′ of
X. Since X is scattered, X ′ has an isolated point p. Being isolated
X ′, p has an open neighborhood O ⊆ X such that X ′ ∩ O = {p}.
Since X is scattered, X is zero-dimensional and we can choose O
to be clopen. The compact set O is a one-point compactification of
a discrete space and therefore contains a convergent sequence.

Now assume that X is not scattered. Then by passing to a closed
subspace of X if neccessary, we may assume that X has no isolated
points.

We construct a closed subspace of X that maps (via a continuous
mapping) onto 2ω. Let (Os)s∈2<ω be a family of nonempty open
subsets of X such that for all s, t ∈ 2<ω,

(1) if s and t are incomparable (with respect to ⊆), then cl(Os)
and cl(Ot) are disjoint, and

(2) if s ⊆ t, then Ot ⊆ Os.
Since X has no isolated points, one can easily choose the family
(Os)s∈2<ω by induction on the length of s.

Let Y =
⋂

n∈ω

⋃
s∈2n cl(Os). For every x ∈ 2ω, let f−1(x) =⋂

n∈ω cl(Ox¹n). This defines a continuous surjection f : Y → 2ω.
By passing to a closed subspace of Y if neccessary, we may as-

sume that f is irreducible; that is, no proper closed subspace of Y
is mapped onto 2ω by f .

We will apply Martin’s Axiom to the countable Boolean algebra
Clop(2ω) of clopen subsets of 2ω. Since w(X) < 2ℵ0 , w(Y ) < 2ℵ0 .
Let B be a base for the topology on Y of size < 2ℵ0 . For every open
set O ⊆ Y let

DO = {A ∈ Clop(2ω) : f−1[A] ⊆ O ∨ f−1[A] ∩O = ∅}.
We show that every DO is dense in Clop(2ω).

Let A be a nonempty clopen subset of 2ω. If f−1[A] is disjoint
from O, then A ∈ DO. If f−1[A] intersects O, then f−1[A] ∩ O is
a nonempty open subset of Y and thus, by the irreducibility of f ,
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f ¹ Y \ (f−1[A]∩O) is not onto. In particular, there is a nonempty
clopen set A′ ⊆ 2ω such that A′ ⊆ 2ω \ f [Y \ (f−1[A] ∩ O)]. Now
it is easily checked that A′ ⊆ A and f−1[A′] ⊆ O. This shows the
density of DO.

By Martin’s Axiom, there is an ultrafilter H ⊆ Clop(2ω) that
intersects DO for every O ∈ B. Let p be the element of 2ω cor-
responding to H; i.e., let p be the unique element of

⋂
H. Let

y ∈ f−1(p). We will show that y is of countable character in Y .
This clearly implies that there is a sequence in Y , and therefore in
X, that converges to y.

We show that {f−1[A] : A ∈ H} is a local base at y. Let U ⊆ Y
be a neighborhood of y. Then there is O ∈ B such that y ∈ O ⊆ U .
By the choice of H, there is A ∈ H ∩ DO. By the choice of y,
y ∈ f−1[A]. Since A ∈ DO and y ∈ O, f−1[A] ⊆ O. ¤

Note that this proof actually shows that the weight of a compact
space without a non-trivial convergent sequence is at least cov(M),
the smallest size of family of nowhere dense sets that covers 2ω.

Another formulation of Theorem 2.1 is the following dichotomy.

Corollary 2.2. Assume Martin’s Axiom for countable partial or-
ders. Then every infinite compact space X either has an infinite
closed subspace of countable weight or all of its infinite closed sub-
spaces are of weight at least 2ℵ0

Without some instance of Martin’s Axiom, this dichotomy can
fail even in the Boolean case. Winfried Just and Koszmider [6]
showed that it is consistent that there is a Boolean algebra of size
< 2ℵ0 without a countably infinite homomorphic image. Dualizing
this we obtain a compact zero-dimensional space of weight < 2ℵ0

without an infinite closed subspace of countable weight.

By Lemma 1.4, Theorem 2.1 implies the following.

Corollary 2.3. Assume Martin’s Axiom for countable partial or-
ders. Then every infinite compact space of weight < 2ℵ0 is of coini-
tiality ℵ0.

Corollary 2.4. The following statement is consistent with ZFC:

For every compact space X, ci(X) ≤ ℵ1 < 2ℵ0 .
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Proof: Just add ℵω1 Cohen reals to a model of CH. In the re-
sulting model, we have cf(2ℵ0) = ℵ1, and Martin’s Axiom holds for
countable partial orders. If X is a compact space of weight 2ℵ0 ,
then ci(X) ≤ ℵ1 by Lemma 1.4. If X is a compact space of weight
< 2ℵ0 , then ci(X) ≤ ℵ0 by Corollary 2.3. ¤

Note that this result is close to, but incomparable (at least with-
out further work) with Koszmider’s result about pseudo-altitudes
of Boolean spaces mentioned at the end of section 1. Also note that
in the proof of Corollary 2.4 we really need that in Corollary 2.3
we do not assume all of MA since MA implies that 2ℵ0 is regular.

3. Compact spaces of countable coinitiality

Our next goal is to characterize the compact spaces of countable
coinitiality.

A sequence (xn)n∈ω in a topological space X is discrete if the
sequence is 1-1 and {xn : n ∈ ω} is discrete with respect to the
subspace topology inherited from X. If X is regular Hausdorff, a
sequence (xn)n∈ω ∈ Xω is discrete iff there is a family (Un)n∈ω of
pairwise disjoint open sets such that for all n ∈ ω, xn ∈ Un.

For an ultrafilter p over ω and a sequence (xn)n∈ω in a compact
space X let limp(xn)n∈ω denote the p-limit of (xn)n∈ω, i.e., the
unique element of

⋂
A∈p cl({xn : n ∈ A}).

Lemma 3.1. Let X be an infinite compact space such that for every
discrete sequence (x0, y0, x1, y1, . . . ) ∈ Xω there is a free ultrafilter
p over ω such that

limp(xn)n∈ω 6= limp(yn)n∈ω.

Then ci(X) > ℵ0.

Proof: We first observe that X does not contain a non-trivial
convergent sequence.

Suppose that (an)n∈ω is a sequence in X that converges to some
point a ∈ X and is not eventually constant. After thinning out
this sequence, we may assume that it is discrete. Putting xn = a2n

and yn = a2n+1, we obtain two sequences such that for every free
ultrafilter p over ω,

limp(xn)n∈ω = a = limp(yn)n∈ω,
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contradicting our assumption on X. This shows that X has no
non-trivial converging sequences.

Now suppose that X is the limit of an inverse system S =
{Xn, πm

n , ω} whose bonding maps are onto and not 1-1. For each
n ∈ ω, let πn denote the canonical map from X to Xn.

In X we choose sequences (xn)n∈ω and (yn)n∈ω such that, for
some strictly increasing sequence (kn)n∈ω of natural numbers, for
every n ∈ ω, πkn(xn) = πkn(yn) but πkn+1(xn) 6= πkn+1(yn).

Claim. There are open sets U0, V0 ⊆ X such that x0 ∈ U0,
y0 ∈ V0, and for infinitely many n ∈ ω, {xn, yn} is disjoint from the
closure of U0 ∪ V0.

We pick U0 first. Suppose there is no open neighborhood U of
x0 such that for infinitely many n ∈ ω, xn, and yn are outside U .
Then for every m ∈ ω, the sequences (πm(xn))n∈ω and (πm(yn))n∈ω,
which eventually agree, converge to πm(x0). It follows that the
sequences (xn)n∈ω and (yn)n∈ω converge to x0. At least one of the
two sequences is not eventually constant. But this contradicts the
fact that in X there are no non-trivial converging sequences.

It follows that for some open neighborhood U of x0 there are
infinitely many n ∈ ω such that xn and yn are outside U . Let
U0 be an open neighborhood of x0 such that cl(U0) ⊆ U . After
thinning out the sequence ((xn, yn))n∈ω, we may assume that all
xn and all yn, n > 0, are outside cl(U0). By the same argument
as for U0, we can pick an open neighborhood V0 of y0 as required.
This finishes the proof of the claim.

By iterated application of the claim, we can thin out the se-
quence ((xn, yn))n∈ω such that, after renumbering, the sequence
(x0, y0, x1, y1, . . . ) is discrete. Now let p be any free ultrafilter over
ω.

For every m ∈ ω, we have

limp(πm(xn))n∈ω = limp(πm(yn))n∈ω

since the sequences (πm(xn))n∈ω and (πm(yn))n∈ω eventually agree.
It is easily checked that this implies

limp(xn)n∈ω = limp(yn)n∈ω,

contradicting our assumption on X. ¤
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Let us call a sequence (xn)n∈ω a double sequence if it is discrete
and if for every free ultrafilter p over ω,

limp(x2n)n∈ω = limp(x2n+1)n∈ω.

Theorem 3.2. Let X be a compact space. Then ci(X) = ℵ0 iff X
contains a double sequence.

Proof: If X is a compact space of countable coinitiality, then X
contains a double sequence by Lemma 3.1.

Now suppose that X contains a double sequence (xn)n∈ω. By
Lemma 1.4, it suffices to show that Y := cl({xn : n ∈ ω}) is of
countable coinitiality. For every k ∈ ω, let ∼k denote the equiva-
lence relation on Y that for every m ≥ k identifies x2m and x2m+1.
For every x ∈ Y , let [x]k denote the ∼k-class of x.

We show that Y/ ∼k is Hausdorff for every k ∈ ω. Let k ∈ ω and
let x, y ∈ Y be such that x 6∼k y. In order to show that [x]k and
[y]k have disjoint open neighborhoods in Y/ ∼k, we have to show
that x and y have disjoint open neighborhoods that are unions of
∼k-classes.

If one of the points x and y is a member of the sequence (xn)n∈ω,
then this is easily checked using the fact that the xn are isolated
points of Y since the sequence (xn)n∈ω is discrete.

If neither x nor y is an element of {xn : n ∈ ω}, then we choose
disjoint open neighborhoods U and V of x and y, respectively. We
call a subset A of Y symmetric if for every m ∈ ω,

x2m ∈ A ⇔ x2m+1 ∈ A.

Note that every symmetric set is the union of ∼k-classes.
Now consider the sets

S = {m ∈ ω : x2m ∈ U ∧ x2m+1 6∈ U}
and

T = {m ∈ ω : x2m+1 ∈ U ∧ x2m 6∈ U}
Since U is disjoint from {x2m+1 : m ∈ S}, x 6∈ cl({x2m+1 : m ∈ S}).
Since (xn)n∈ω is a double sequence, we also have x 6∈ cl({x2m : m ∈
S}). By the same argument, x 6∈ cl({x2m+1 : m ∈ T}).

Therefore, x ∈ U0 = U \ cl({x2m : m ∈ S} ∪ {x2m+1 : m ∈
T}). The set U0 is symmetric. In the same way, we can obtain a
symmetric open neighborhood V0 ⊆ V of y. Now U0 and V0 are
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disjoint open neighborhoods of x and y, respectively, and they are
unions of ∼k-classes. This shows that Y/ ∼k is Hausdorff.

Clearly, Y is the inverse limit of the spaces Y/ ∼k, k ∈ ω. It
follows that ci(Y ) = ℵ0. ¤

Corollary 3.3. For every infinite F -space X, ci(X) = ℵ1.

Proof: If X is an infinite compact F -space and (xn)n∈ω is a
discrete sequence in X, then for every A ⊆ N, cl({xn : n ∈ A}) is
disjoint from cl({xn : n ∈ ω \ A}). In particular, (xn)n∈ω is not a
double sequence. Now by Theorem 3.2, ci(X) ≥ ℵ1.

Moreover, for every discrete sequence (xn)n∈ω in X, cl({xn : n ∈
ω}) ∼= βω. By the results of Koppelberg [7], ci(βω) = cof(P(ω)) =
ℵ1. By Lemma 1.4, ci(X) ≤ ℵ1. ¤

Note that the compact spaces of the form Y = cl({xn : n ∈ ω}),
where (xn)n∈ω is a double sequence, can be described as follows.
Let Z be a compact space with a countably infinite, discrete, dense
subset C. Since C is discrete and Z = cl(C), every z ∈ C is an
isolated point of Z. Let D(Z, C) be the disjoint union of Z \C and
2 × C. We describe a topology on D(Z, C) by defining the basic
open sets.

For all z ∈ C and all i ∈ 2, the singleton {(i, z)} is open
in D(Z, C). For every open set O ⊆ Z, the set (O \ C) ∪ 2 ×
(O ∩ C) is open. It is easily checked that D(Z,C) is compact.
Moreover, if (zn)n∈ω is a 1-1 enumeration of C, then the sequence
((0, z0), (1, z0), (0, z1), (1, z1), . . . ) is a double sequence. In particu-
lar, ci(D(Z,C)) = ℵ0.

Obviously, there is a largest space of the form D(Z, C), namely
D(βω, ω). Every other space D(Z, C) is a continuous image of
D(βω, ω) via a continuous map that is induced by a 1-1 map from
ω into C.

Corollary 3.4. For every compact space X, ci(X) = ℵ0 iff there
is an injective map f : 2× ω → X that has a continuous extension
to D(βω, ω).

Let D be the subalgebra of P(ω) × P(ω) consisting of all pairs
(a, b) such that the symmetric difference of a and b is finite. Using
Stone duality, Corollary 3.4 implies the following.
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Corollary 3.5. For every Boolean algebra A, cof(A) = ℵ0 iff there
is a homomorphism h : A → D whose image contains all atoms of
D.

Koppelberg [7] constructed a Boolean algebra of countable co-
finality without a countably infinite quotient. A Boolean algebra
has a countably infinite quotient iff its Stone space has a non-trivial
converging sequence. Since βω does not have a non-trivial converg-
ing sequence, neither does D(βω, ω). So by Corollary 3.5, D is the
canonical example of a Boolean algebra of countable cofinality but
without a countably infinite quotient.

Since a compact space is of countable altitude iff it has a non-
trivial converging sequence, both Boolean algebras, Koppelberg’s
example and D, answer the following question of J. Donald Monk
[12] positively:

Is there a Boolean algebra of countable cofinality, whose Stone
space is of uncountable altitude?

We can say a bit more about the altitude of D(βω, ω). By a
result of Bohuslav Balcar, Petr Simon, and Peter Vojtas [1, Theo-
rem 3.5], a(βω) = ℵ1. Since βω is a closed subspace of D(βω, ω),
a(D(βω, ω)) = ℵ1.

4. Remark on the cofinality of a Banach space

Definition 4.1. For an infinite dimensional Banach space X, let
cof(X) denote the least limit ordinal δ such that there is a strictly
increasing chain (Xα)α<δ of closed subspaces of X such that⋃

α<δ Xα is dense in X.

In [14], Edward Odell asks whether (in our notation) every in-
finite dimensional Banach space is of countable cofinality. In [5],
W. B. Johnson and H. P. Rosenthal showed that a Banach space
is of cofinality ℵ0 iff it has an infinite dimensional separable quo-
tient. Thus, Odell’s question is equivalent to the famous separable
quotient problem for Banach spaces, which asks whether every infi-
nite dimensional Banach space has an infinite dimensional separable
quotient.

The current state of this problem seems to be as follows: For
all standard (infinite dimensional) Banach spaces, it is known that
they have an infinite dimensional separable quotient and thus, their
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cofinality is ℵ0 (see [13]). The general case, however, is open. It fol-
lows from Theorem 1.1 in [10] that for every infinite compact space
X, the Banach space C(X) has an infinite dimensional separable
quotient. This was pointed out by H. Elton Lacey [9].

A direct proof might go like this: By the argument in the proof
of Theorem 2.1, an infinite compact space X has a non-trivial con-
vergent sequence or there is a closed subspace of X that maps onto
2ω. In the first case, the space c of convergent sequences of real
numbers is a quotient of C(X). In the second case, the (Haar-)
measure on 2ω can be pulled back to a measure µ on X. The space
L1(2ω) ∼= L1(X,µ) embeds into the dual of C(X). It is well known
that `2 embeds into L1([0, 1]) ∼= L1(2ω). Hence, `2 embeds into the
dual of C(X). It follows that `2 is a quotient of C(X). In both
cases, we obtain a separable, infinite dimensional quotient of C(X).

By Corollary 3.3, it follows that

ℵ0 = cof(C(X)) < cofC∗(C(X)) = ℵ1

for every infinite compact F -space X.
The characterization of Banach spaces of countable cofinality

in terms of separable quotients fails for C∗-algebras: Let X =
D(βω, ω). Then cofC∗(C(X)) = ℵ0 by Corollary 3.4. As men-
tioned above, X does not have a non-trivial converging sequence.
Dually, C(X) has no infinite dimensional separable quotient (as a
C∗-algebra).

Let us conclude by mentioning some simple facts about cofinali-
ties of Banach spaces. For a topological space X, let d(X) denote
the density of X, the least size of a dense subset of X. The following
lemma is the parallel of Lemma 1.4 for Banach spaces.

Lemma 4.2. Let X be an infinite dimensional Banach space.
(a) cof(X) ≤ cf(d(X)).
(b) If Y is an infinite dimensional Banach space and f : X → Y

is a continuous epimorphism, then cof(X) ≤ cof(Y ).
(c) cof(X) ≤ 2ℵ0,

Proof: (a) and (b) are easy.
For (c), note that for every infinite dimensional Banach space X,

there is a continuous homomorphism f : X → `∞ whose image is
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infinite dimensional. Just fix a sequence (fn)n∈ω of linearly inde-
pendent functionals of norm 1 on X and put f(x) := (fn(x))n∈ω

for every x ∈ X.
The image Y of f equipped with the quotient norm is an infinite

dimensional Banach space of size 2ℵ0 . Now cof(X) ≤ 2ℵ0 follows
from (a) and (b). ¤
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