
Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



TOPOLOGY
PROCEEDINGS
Volume 30, No. 1, 2006

Pages 251-263

NON-CLASSICALITY AND QUANDLE
DIFFERENCE INVARIANTS

NATASHA HARRELL AND SAM NELSON

Abstract. Non-classical virtual knots may have upper and
lower quandles which are not isomorphic. We exploit this
property to define quandle difference invariants, which can
detect non-classicality by comparing the numbers of homo-
morphisms into a finite quandle from a virtual knot’s up-
per and lower quandles. The invariants for small-order finite
quandles detect non-classicality in several interesting virtual
knots. We compute the difference invariant with the six small-
est connected quandles for all non-evenly intersticed Gauss
codes with four crossings. For non-evenly intersticed Gauss
codes with four crossings, the difference invariants detect non-
classicality in 86% of codes which have non-trivial upper or
lower counting invariant values.

1. Introduction

Virtual knots are equivalence classes of Gauss codes under the
equivalence relation determined by Reidemeister moves. A Gauss
code is realizable if it determines a planar knot diagram; virtual
knots which include realizable Gauss codes are classical and those
which do not are non-classical. See [12] and [2] for more.

Detecting the non-classicality of a virtual knot is not always sim-
ple since each classical knot type includes some Gauss codes which
cannot be realized without virtual crossings. Various methods have
been proposed for detecting non-classicality of Gauss codes; see [13]
and [5].
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In this paper, we define quandle difference invariants which can
detect non-classicality of certain virtual knots. We show that quan-
dle difference invariants detect non-classicality in some interesting
examples of virtual knots, including one virtual knot whose non-
classicality is not detected by the (upper) knot quandle or by the 1-
or 2-strand bracket polynomials, though its non-classicality is de-
tected with the 3-strand bracket polynomial in [5]. We describe an
algorithm and provide an implementation in Maple for computing
these invariants from a Gauss code and a finite quandle matrix.

In order to test the effectiveness of quandle difference invariants
at detecting non-classicality, we generated a list of all Gauss codes
with three and four crossings, eliminating codes which are obviously
classical or trivial. From this list, we then computed the quandle
difference invariant for each such code; the results are collected in
Table 4.

The paper is organized as follows. Section 2 gives a brief review of
virtual knots, section 3 introduces the quandle difference invariants
and 2-component invariants, and section 4 contains computational
results. The Maple code used to obtain these results is available at
www.esotericka.org/quandles; bugfixes and improvements will
be made as necessary.

2. Virtual knots and non-classicality

We begin with a definition from [12].

Definition 1. Let K be an oriented knot diagram with crossings
labeled with names and signs. A Gauss code is a sequence of cross-
ing labels with over/under and sign information recorded in the
order encountered while following the orientation of the knot; it
is defined up to cyclic permutation. A Gauss diagram is obtained
from a Gauss code by writing the code counterclockwise around a
circle and joining the two instances of each crossing with an arrow
oriented “in the direction of gravity,” that is, toward the under-
crossing label, and noting the sign for each such arrow.

A Gauss code or diagram determines a knot diagram in a neigh-
borhood of each crossing and specifies which strands are to be con-
nected; thus, a knot diagram can be reconstructed from its Gauss
code. We can then consider doing knot theory combinatorially by
defining a knot to be an equivalence class of Gauss codes under the
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equivalence relation determined by the Reidemeister moves. How-
ever, there is no guarantee that a given Gauss code determines
a planar knot diagram; we may be forced to introduce additional
crossings not mentioned in the code in order to draw the diagram
in the plane. These virtual crossings are drawn as circled self-
intersections, and since they’re not really there, we’re permitted to
arbitrarily redraw any section of an arc with only virtual crossings
on its interior provided we put only virtual crossings in the interior.

Definition 2. A virtual knot is an equivalence class of Gauss
codes under the equivalence relation generated by the Reidemeister
moves.

Example 1. The Gauss code

UA + OB − UC + OD + OA + UB − UD + OC+

corresponds to the pictured virtual knot diagram and Gauss dia-
gram.

Virtual crossings may be avoided by drawing our non-planar knot
diagrams on a surface with genus; we may then regard the Gauss
code as describing a knot in a thickened surface Σ × [0, 1]. The
equivalence relation defining virtual knots then translates into iso-
topy of the knot in Σ×[0, 1] modulo stabilization and destabilization
moves [2], [14].

Classical knot theory forms a subset of virtual knot theory, since
every classical knot may be considered a virtual knot without vir-
tual crossings, and, crucially, virtually isotopic classical knots are
classically isotopic [8], [14], [17]. Many invariants of classical knots
extend to virtual knots by simply ignoring virtual crossings; these
include the knot group, the knot quandle and biquandle, the various
skein polynomials, and finite type invariants.

Given a Gauss code, one asks whether the Gauss code corre-
sponds to a classical knot. If reconstruction yields a planar knot
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diagram, then the answer is clearly yes; however, every classical
knot has representative Gauss codes which determine non-planar,
i.e., virtual, diagrams [17]. Thus, if a Gauss code is not obviously
classical, the code may well represent either a classical or a non-
classical virtual knot.

3. Quandle difference invariants

In this section, we discuss a method for detecting non-classicality
of virtual knots using quandle difference invariants.

Definition 3. A quandle is a set Q with an operation . : Q×Q →
Q satisfying

(i) for all a ∈ Q, a . a = a,
(ii) for every a, b ∈ Q there is a unique c ∈ Q such that a = c.b,

and
(iii) for all a, b, c ∈ Q, (a . b) . c = (a . c) . (b . c).

The term quandle is due to David Joyce; in [11], a quandle is
associated to each knot diagram by a Wirtinger-type presentation.
By construction, this knot quandle is an invariant of Reidemeister
moves and hence virtual isotopy. While it is difficult to directly
compare quandles given by presentations, we can exploit the fact
that knot quandles are finitely presented to obtain a computable
invariant of quandle isomorphism type by counting homomorphisms
onto a finite quandle. This quandle counting invariant is studied
in various papers and has been jazzed up with quandle 2-cocycles
from various quandle homology theories [1], [6], [4].

In [8], it is observed that virtual knots have two knot groups,
the upper group obtained by the usual Wirtinger presentation and
the lower group obtained by first flipping the virtual knot over,
i.e., looking at the knot diagram from the other side of its sup-
porting surface and then using the usual Wirtinger presentation.
For classical knots, flipping over is an ambient isotopy, so for clas-
sical knots, the upper and lower groups are isomorphic. However,
flipping over virtual knots involves doing forbidden moves which
potentially change the virtual knot type (see [16]), so in general
a virtual knot can have non-isomorphic upper and lower groups.
Exactly the same observation applies to quandles [12].
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Theorem 1. Let K be a virtual knot diagram and let Flip(K) be
the virtual knot diagram obtained from K by viewing K from a base
point on the other side of the supporting surface. Then Flip(K) is
an invariant of virtual isotopy.

Proof: Reidemeister and virtual Reidemeister moves on the
flipped knot are simply Reidemeister and virtual Reidemeister
moves on the original knot. ¤

Corollary 2. Let Φ be any virtual knot invariant. Then

Φ2(K) = (Φ(K), Φ(Flip(K)))

is an invariant of virtual isotopy.

The two-component version of a virtual knot invariant does not
reveal any additional information about K when K is classical,
but it can be very helpful in distinguishing non-classical virtual
knots. Obvious examples of 2-component invariants include the 2-
component counting invariants from the knot group, quandle and
biquandle; 2-component 2-cocycle invariants [1]; the 2-component
Jones polynomial, etc.

Corollary 2 suggests the following.

Definition 4. Let T be a finite quandle and K a virtual knot.
Let U denote the upper quandle of K and L the lower quandle of
K. The two-component counting invariant is the ordered pair

Q2T (K) = (|Hom(U, T )|, |Hom(L, T )|) .

The quandle difference invariant QDT (K) of K associated to T is
the difference between the number of homomorphisms from U to T
and the number of homomorphisms from L to T . That is,

QDT (K) = |Hom(U, T )| − |Hom(L, T )|.
The fact that classical knots have isomorphic upper and lower

quandles implies the following.

Theorem 3. If a virtual knot K is classical, then QDT (K) = 0
for every finite quandle T .

Corollary 4. If QDT (K) 6= 0 for any finite quandle T , then K is
not classical. In particular, if QDT (K) 6= 0 for any finite quandle
T , then K is not the unknot.
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Moreover, since the individual components of QDT are invari-
ants of virtual isotopy, QDT is itself an invariant of virtual knots;
QDT (K) 6= QDT (K ′) implies K is not virtually isotopic to K ′. In
the present work, however, we focus on using the quandle difference
invariant to detect non-classicality of virtual knots. We know al-
ready that the quandle difference invariant does not always detect
non-classicality.

Example 2. The knot on the left is Kauffman’s virtual trefoil. It
is known to be non-trivial and non-classical [12]. However, its upper
and lower quandles are both isomorphic to the free quandle on one
generator, that is, the knot quandle of the unknot. The knot on the
right is a variant of the Kishino knot; it has rotational symmetry
about the horizontal axis, so its upper and lower quandles have
identical presentations.

Definition 5. We say a virtual knot is pseudoclassical if it is
virtually isotopic to its flip. In particular, a pseudoclassical virtual
knot has isomorphic upper and lower quandles.

Clearly, the quandle difference invariant cannot detect the non-
classicality of pseudoclassical virtual knots for any finite quandle
T . However, the quandle difference invariants are effective at de-
tecting non-classicality in many virtual knots. Using the smallest
connected quandle, for example, we detect the non-classicality (and
hence non-triviality) of the non-alternating Kishino knot in Figure
1. It took only two tries to find a quandle difference invariant which
detects the non-classicality of the virtual knot KD in Figure 1; this
knot is not distinguished from the unknot by either the Jones poly-
nomial or 2-strand bracket polynomial, though the 3-strand bracket
polynomial does the trick [5].
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K = T =




1 3 2
3 2 1
2 1 3




QDT (K) = −6

KD = T2 =




1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4




QDT2(KD) = −12

Figure 1. QDT detects non-classicality of virtual
knots K and KD

To compute the upper and lower quandle presentations from a
Gauss diagram, we divide the outer circle at each arrowhead to

⇒ xi . y = xi+1

⇒ xi+1 . y = xi

Figure 2. Quandle relations from a Gauss diagram
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obtain a list of arcs in the diagram, and the quandle relations at
each crossing are determined according to the crossing sign. As
Figure 2 shows, the rule is that if the arrowhead dividing xi from
xi+1 has its tail on arc y, the relation determined is xi . y = xi+1 if
the crossing sign is + and xi+1 . y = xi if the crossing sign is −.

Dividing the same Gauss diagram at the arrowtails and applying
the same procedure yields a presentation of the lower quandle L.
Alternatively, we can obtain a presentation of the lower quandle
by reversing the direction of the arrows, then getting the upper
quandle presentation of the resulting diagram.

Example 3. Let K be the virtual knot from Example 1. Then K
has upper quandle presentation

U = 〈1, 2, 3, 4 | 1 . 3 = 2, 2 . 1 = 3, 4 . 2 = 3, 4 . 3 = 1〉
and lower quandle presentation

L = 〈1, 2, 3, 4 | 1 . 3 = 2, 2 . 4 = 3, 3 . 1 = 4, 1 . 3 = 4〉.

From these presentations, we can compute the quandle differ-
ence invariant QDT (K) for any choice of finite target quandle T
by systematically considering all assignments of elements of T to
each generator in the quandle presentation and checking whether
the assignment satisfies the required relations in the target quandle.

4. Computational results

Here, we describe our computational procedure for computing
the quandle difference invariant for any choice of Gauss code and
finite target quandle and give some computational results.

Maple code implementing the algorithms below is available in the
file quandledifference.txt at the second listed author’s website
www.esotericka.org/quandles.
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We compute the quandle difference invariant QDT (K) using the
quandle matrix notation from [9]. Specifically, let T = {x1 . . . , xn}
be a finite quandle. Then the matrix of T , MT , is the matrix
abstracted from the operation table of T by dropping the xs, keep-
ing only the subscripts. A list of all finite quandles with up to
five elements appears in [9]; lists of all finite quandles with six,
seven, and eight elements, along with software for computing such
lists, are available at www.esotericka.org/quandles.1 The file
quandles-maple.txt contains Maple code for counting homomor-
phisms from a knot quandle to finite quandle specified by a matrix.

We represent a finitely presented quandle with a quandle presen-
tation matrix as described in [10]. That is, we put

Mij =
{

k, xi . xj = xk,
0, else.

If a Gauss code has a negative undercrossing label xi such that
the next undercrossing label xi+1 has sign + and both overcrossings
lie on the same arc xj , then the quandle relations determined are
xi.xj = xi−1 and xi.xj = xi+1, which determine conflicting entries
for the i, j position in the presentation matrix. In this situation,
we can do a type I Reidemeister move to obtain a presentation
with no conflicting entries; the program gfix finds and corrects
this problem.

Example 4. The virtual knot diagram in Example 1 has upper
and lower quandle presentation matrices

U =




0 0 2 0
3 0 0 0
0 0 0 0
0 3 1 0


 and L =




0 0 2 0 0
0 0 0 0 3
0 0 0 0 0
0 3 0 5 0
0 1 0 0 0




.

We represent Gauss codes in Maple as vectors with (appropri-
ately?) Gaussian integer entries, using the convention

OX+ ↔ X, UX+ ↔ −X,

OX− ↔ X + I, UX− ↔ −X − I, X ∈ Z.

1An independently derived list of quandles with up to six elements, obtained
by Yamada, is included in [3].
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To allow for multi-component links, each component is ended with
a “0”.

Example 5. The multicomponent Gauss code

U1 + O2−O3− U2−, O1 + U3−
is represented in our Maple notation as the vector

[−1, 2 + I, 3 + I,−2− I, 0, 1,−3− I, 0].

Our quandle-difference computing algorithm then takes a Gauss
code and first runs it through gfix, which detects the situation de-
scribed above and does Reidemeister I moves as necessary until the
code has an upper quandle presentation matrix with no conflicting
entries. The program gauss2pres then reads off the upper quan-
dle presentation matrix from the Gauss code. Our main program,
qdiff, uses homcount from quandles-maple.txt to compute the
number of homomorphisms from the upper quandle of the matrix
returned by gfix into the specified target quandle. Then, the pro-
gram simply multiplies each entry in the code by −1 to switch
the direction of the arrows and cycles through to put the −1 or
−1− i entry in the first position, then repeats the procedure to get
the lower quandle presentation matrix and its counting invariant.
Finally, the program reports the difference between these two num-
bers. We also include q2chom which computes the 2-component
quandle counting invariant.

In order to get some feeling for the effectiveness of quandle dif-
ference invariants at detecting non-classicality of virtual knots, we
generated lists of all non-evenly intersticed single-component Gauss
codes with three and four crossings, removing codes which reduce
by an obvious type I or type II move, using rglist. The non-evenly
intersticed condition guarantees non-planarity of the correspond-
ing virtual knot, which may be classical or non-classical (including
pseudoclassical). There are 172 such 3-crossing Gauss codes; how-
ever, QDT does not detect non-classicality in any of these 3-crossing
codes for the six smallest connected quandles. There are 17040 such
4-crossing codes. We then computed the number of codes in which
non-classicality was detected using some connected quandles of or-
der up to six. The results are collected in Table 1.

It is not clear what percentage of the Gauss codes with QDT = 0
are classical (i.e., diagrams of the unknot, trefoil, or figure eight),
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Target quandle Number detected/ 17040
T (4-crossing codes)




1 3 2
3 2 1
2 1 3


 3060




1 3 4 2
4 2 1 3
2 4 3 1
3 1 2 4


 1350




1 3 4 5 2
3 2 5 1 4
4 5 3 2 1
5 1 2 4 3
2 4 1 3 5




492




1 4 5 3 2
3 2 4 5 1
2 5 3 1 4
5 1 2 4 3
4 3 1 2 5




72




1 4 5 2 3
3 2 1 5 4
4 5 3 1 2
5 3 2 4 1
2 1 4 3 5




426




1 4 5 2 3 1
4 2 6 1 2 3
5 6 3 3 1 2
2 1 4 4 6 5
3 5 1 6 5 4
6 3 2 5 4 6




3060

Table 1. Number of non-evenly intersticed single-
component Gauss codes in which qdiff detects non-
classicality
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what percentage are pseudoclassical, and what percentage may
have non-classicality detected by larger finite quandles, nor is it
clear how many distinct virtual knots are represented. However,
eliminating the codes which have trivial values for the quandle
counting invariants for both upper and lower quandles for all six
listed quandles, a step which eliminates the classical and pseudo-
classical codes from the lists, gives a list of 16 3-crossing codes and
4140 4-crossing codes. Of these 4-crossing codes, 3570, or 86%, have
non-classicality detected by at least one of the six listed quandle
difference invariants.
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