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Abstract. This paper studies the pseudocompact-open topol-
ogy on the set of all real-valued continuous functions on a Ty-
chonoff space and compares this topology with the compact-
open topology and the topology of uniform convergence. In
the second half, the induced map, as well as the metrizability
of this topology, is studied.

1. Introduction

The set C(X) of all continuous real-valued functions on a Ty-
chonoff space X has a number of natural topologies. The idea
of topologizing C(X) arose from the notion of convergence of se-
quences of functions. Also, continuous functions and Baire mea-
sures on Tychonoff spaces are linked by the process of integration.
A number of locally convex topologies on spaces of continuous func-
tions have been studied in order to clarify this relationship. They
enable the powerful duality theory of locally convex spaces to be
profitably applied to topological measure theory.

Two commonly used topologies on C(X) are the compact-open
topology and the topology of uniform convergence. The latter
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topology has been used for more than a century as the proper set-
ting to study uniform convergence of sequences of functions. The
compact-open topology made its appearance in 1945 in a paper by
Ralph H. Fox, [19], and soon after was developed by Richard F.
Arens in [1] and by Arens and James Dugundji in [2]. This topol-
ogy was shown in [25] to be the proper setting to study sequences
of functions which converge uniformly on compact subsets.

The compact-open topology k and the topology of uniform con-
vergence u on C(X) are equal if and only if X is compact. Because
compactness is such a strong condition, there is a considerable gap
between these two topologies. This gap has been especially felt in
measure theory; consequently, in the last five decades, there have
been quite a few topologies introduced that lie between k and u,
such as the strict topology, the σ-compact-open topology, the topol-
ogy of uniform convergence on σ-compact subsets, and the topology
of uniform convergence on bounded subsets. See, for example, [4],
[12], [20], [23], [26], [27], [28], [29], [34], [36].

The primary concern of this work is to study another natural
topology, the pseudocompact-open topology on C(X), in detail
from the topological point of view. We denote this topology by
ps and the corresponding space by Cps(X). Though this natural
topology has occasionally been mentioned in the literature, it de-
serves much more attention from the researchers. In section 2, we
define the pseudocompact-open topology and show that this topol-
ogy can be viewed in three different ways. In section 3, we compare
this topology with two well-known topologies k and u on C(X) in
order to have a better understanding of the pseudocompact-open
topology. In section 4, we study the induced map on Cps(X) and
in the last section, we study the submetrizability, metrizabilty, and
separability of Cps(X).

Throughout the rest of the paper, we use the following conven-
tions. All spaces are completely regular Hausdorff, that is, Ty-
chonoff. If X and Y are two spaces with the same underlying set,
then we use X = Y , X ≤ Y , and X < Y to indicate, respectively,
that X and Y have the same topology, that the topology on Y is
finer than or equal to the topology on X, and that the topology
on Y is strictly finer than the topology on X. The symbols R and
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N denote the space of real numbers and natural numbers, respec-
tively. Finally, the constant zero-function in C(X) is denoted by 0,
more specifically by 0X .

2. The pseudocompact-open topology on C(X):
different views

We recall that a space X is said to be pseudocompact if f(X) is
a bounded subset of R for each f ∈ C(X). For any pseudocompact
subset A of X and any open subset V of R, define

[A, V ] = {f ∈ C(X) : f(A) ⊆ V }.
This agrees with the usual “set-open” terminology for the compact-
open topology. Now let PS(X) be the set of all pseudocompact
subsets of X. For the pseudocompact-open topology on C(X), we
take as subbase, the family

{[A, V ] : A ∈ PS(X), V is open in R};
and we denote the corresponding space by Cps(X). Since the clo-
sure of a pseudocompact subset is again pseudocompact and since
f(A) = f(A) for f ∈ C(X), we can always take closed pseudocom-
pact subsets of X in [A, V ].

Now we define the topology of uniform convergence on pseudo-
compact sets. For each A ∈ PS(X) and ε > 0, let

Aε = {(f, g) ∈ C(X)× C(X) : |f(x)− g(x)| < ε for all x ∈ A}.
It can be easily verified that the collection {Aε : A ∈ PS(X), ε > 0}
is a base for some uniformity on C(X). We denote the space C(X)
with the topology induced by this uniformity by Cps,u(X). This
topology is called the topology of uniform convergence on PS(X).
For each f ∈ C(X), A ∈ PS(X), and ε > 0, let

< f, A, ε >= {g ∈ C(X) : |f(x)− g(x)| < ε for all x ∈ A}.
If f ∈ C(X), the collection {< f, A, ε > : A ∈ PS(X), ε > 0}
forms a neighborhood base at f in Cps,u(X). Actually, the collec-
tion {< f, A, ε > : f ∈ C(X), A ∈ PS(X), ε > 0} forms a base
for the topology of uniform convergence on PS(X). In particular,
each such set < f,A, ε > is open in Cps,u(X).
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Now for each A ∈ PS(X), define the seminorm pA on C(X) by

pA(f) = sup{|f(x)| : x ∈ A}.
Also for each A ∈ PS(X) and ε > 0, let

VA,ε = {f ∈ C(X) : pA(f) < ε}.
Let V = {VA,ε : A ∈ PS(X), ε > 0}. It can be easily shown that for
each f ∈ C(X), f+V = {f+V : V ∈ V} forms a neighborhood base
at f . Since this topology is generated by a collection of seminorms,
it is locally convex.

In the next result, we show that the three topologies on C(X), de-
fined above, are the same. But before proving this result we would
like to make an observation. A closed subset of a pseudocompact
set may not be pseudocompact. But a closed subdomain of a pseu-
docompact set is again pseudocompact. A subset A of a space X
satisfying the condition A = intA is called a closed domain.

Theorem 2.1. For any space X, the pseudocompact-open topology
on C(X) is same as the topology of uniform convergence on the
pseudocompact subsets of X, that is, Cps(X) = Cps,u(X). More-
over, Cps(X) is a Hausdorff locally convex space.

Proof: Let [A, V ] be a subbasic open set in Cps(X) and let
f ∈ [A, V ]. Since f(A) is compact, there exist z1, z2, . . . , zn ∈ f(A)
such that f(A) ⊆ ∪n

i=1(zi− εi, zi + εi) ⊆ ∪n
i=1(zi−2εi, zi +2εi) ⊆ V .

Choose ε = min1≤i≤n εi. Now if g ∈ < f, A, ε > and x ∈ A, then
|g(x) − f(x)| < ε and there exists an i such that |f(x) − zi| < εi.
Hence, |g(x) − zi| < 2εi and thus, g(x) ∈ V . So g(A) ⊆ V ,
that is, g ∈ [A, V ]. But this means < f, A, ε > ⊆ [A, V ]. Now
let W = ∩k

i=1[Ai, Vi] be a basic neighborhood of f in Cps(X).
Then there exist positive real numbers ε1, ε2, . . . , εk such that f ∈
< f, Ai, εi > ⊆ [Ai, Vi] for each i = 1, 2, . . . , k. If A = ∪k

i=1Ai

and ε = min1≤i≤k εi, then f ∈ < f,A, ε > ⊆ W . This shows
Cps(X) ≤ Cps,u(X).

Now let < f,A, ε > be a basic neighborhood of f in Cps,u(X).
Since f(A) is compact, there exist z1, z2, . . . , zn in f(A) such that
f(A) ⊆ ∪n

i=1(zi − ε

4
, zi +

ε

4
). Define Wi = (zi − ε

2 , zi + ε
2) and Ai =

clA(A ∩ f−1(zi − ε
4 , zi + ε

4)). By the observation made above, each
Ai is pseudocompact. Note that A = ∪n

i=1Ai. Now we show that
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f ∈ ∩n
i=1[Ai,Wi] ⊆ < f, A, ε > . It is clear that f ∈ ∩n

i=1[Ai,Wi].
Let g ∈ ∩n

i=1[Ai,Wi] and x ∈ A. Then there exists an i such that
x ∈ Ai and consequently, f(x) ∈ [zi − ε

4 , zi + ε
4 ]. Since g(x) ∈ (zi −

ε
2 , zi + ε

2), |f(x) − g(x)| < ε. So g ∈ < f, A, ε > and consequently,
Cps,u(X) ≤ Cps(X).

Note that for each f ∈ C(X), we have f + VA,ε ⊆ < f, A, ε >
and < f, A, ε

2 > ⊆ f + VA,ε for all A ∈ PS(X). This shows that
the topology of uniform convergence on the pseudocompact sets is
the same as the topology generated by the collection of seminorms
{pA : A ∈ PS(X)}. Hence, Cps(X) = Cps,u(X) is a locally convex
space. Now if f and g are two distinct functions in C(X), then
there exists x ∈ X such that f(x) 6= g(x). Let 2ε = |f(x) − g(x)|.
Now [{x}, (f(x)− ε, f(x) + ε)] ∩ [{x}, (g(x)− ε, g(x) + ε)] = ∅ and
consequently, Cps(X) is Hausdorff. ¤

Corollary 2.2. For any space X, Cps(X) is a Tychonoff space.

Proof: Any uniformizable topology is completely regular. Also
we could have noted that a locally convex topology is always com-
pletely regular. ¤

In the collection of subbasic open sets {[A, V ] : A ∈ PS(X), V
is open in R} in Cps(X), the open set V can always be taken as a
bounded open interval. The precise statement follows.

Theorem 2.3. For any space X, the collection {[A, V ] : A ∈
PS(X), V is a bounded open interval in R} forms a subbase for
Cps(X).

Proof: The proof is quite similar to that of Cps,u(X) ≤ Cps(X).
Let [A, V ] be a subbasic open set in Cps(X). Here A is a pseudo-
compact subset of X and V is open in R. Let f ∈ [A, V ]. Since
f(A) is compact, there exist z1, z2, . . . , zn in f(A) and positive
real numbers ε1, ε2, . . . , εn such that f(A) ⊆ ∪n

i=1(zi− εi, zi + εi) ⊆
∪n

i=1(zi − 2εi, zi + 2εi) ⊆ V . Let Wi = (zi − 2εi, zi + 2εi) and
Ai = clA(A ∩ f−1((zi − εi, zi + εi))) for each i = 1, 2, . . . , n. Note
that A = ∪n

i=1Ai and f ∈ ∩n
i=1[Ai, Wi]. It can be easily verified

that ∩n
i=1[Ai,Wi] ⊆ [A, V ]. ¤

We end this section with the result that C∗(X) is dense in
Cps(X). Here, C∗(X) = {f ∈ C(X) : f is bounded}; that is,
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C∗(X) is the collection of all bounded real-valued continuous func-
tions on X. But in order to prove this result, we need to make the
following observation. If A is a pseudocompact subset of X, then
clβXA ⊆ υX, where υX is the Hewitt realcompactification of X

and clβXA is the closure of A in βX, the Stone-Čech compactifica-
tion of X.

Theorem 2.4. For any space X, C∗(X) is dense in Cps(X).

Proof: Let < f, A, ε > be a basic neighborhood of f in Cps(X).
Take a continuous extension fυ of f from υX to R. Since A is
pseudocompact, clβXA ⊆ υX. Let f1 be the restriction of fυ on
clβXA. Since clβXA is compact, f1(clβXA) ⊆ [a, b] for some a, b ∈
R. Now take a continuous extension f2 of f1 from βX to [a, b]. Now
if g is the restriction of f2 to X, then g ∈ < f, A, ε > ∩ C∗(X).
Thus, C∗(X) is dense in Cps(X). ¤

3. Comparison of topologies

In this section, we compare the pseudocompact-open topology
with the compact-open topology and the topology of uniform con-
vergence. Let us recall the definitions of these latter two topologies.

Given a subset A of a space X, f ∈ C(X) and ε > 0, define,
as before, < f,A, ε >= {g ∈ C(X) : |f(x) − g(x)| < ε, ∀ x ∈ A}.
If K(X) is the collection of all compact subsets of X, then for
each f ∈ C(X), the collection {< f, K, ε > : K ∈ K(X), ε > 0}
forms a neighborhood base at f in the compact-open topology k on
C(X). When C(X) is equipped with the compact-open topology
k, we denote the corresponding space by Ck(X). Also it can be
shown that each < f, K, ε >, where K is compact in X, is actu-
ally open in Ck(X). For u, the topology of uniform convergence on
C(X), the collection {< f, X, ε > : ε > 0} forms a neighborhood
base at each f ∈ C(X). When C(X) is equipped with the topol-
ogy u, the corresponding space is denoted by Cu(X). But the set
< f, X, ε > need not be open in Cu(X). From the definitions of
these topologies, the following result follows immediately.

Theorem 3.1. For any space X, Ck(X) ≤ Cps(X) ≤ Cu(X).

Now we determine when these inequalities are equalities and give
examples to illustrate the differences.
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Theorem 3.2. For every space X,
(i) Ck(X) = Cps(X) if and only if every closed pseudocompact

subset of X is compact.
(ii) Cps(X) = Cu(X) if and only if X is pseudocompact.

Proof: (i) Note that for a subset A of X, < f,A, ε > ⊆
< f, A, ε >. So if every closed pseudocompact subset of X is com-
pact, then Cps(X) ≤ Ck(X). Consequently, in this case, Cps(X) =
Ck(X).

Conversely, suppose that Ck(X) = Cps(X) and let A be any
closed pseudocompact subset of X. So < 0, A, 1 > is open in Ck(X)
and consequently, there exist a compact subset K of X and ε > 0
such that < 0,K, ε > ⊆ < 0, A, 1 > . If possible, let x ∈ A \ K.
Then there exists a continuous function g : X −→ [0, 1] such that
g(x) = 1 and g(y) = 0 ∀ y ∈ K. Note that g ∈ < 0,K, ε > \
< 0, A, 1 > and we arrive at a contradiction. Hence, A ⊆ K and
consequently, A is compact.

(ii) First, suppose that X is pseudocompact. So for each f ∈
C(X) and each ε > 0, < f,X, ε > is a basic open set in Cps(X) and
consequently, Cu(X) = Cps(X).

Now let Cps(X) = Cu(X). Since < 0, X, 1 > is a basic neigh-
borhood of the constant zero-function 0 in Cu(X), there exist a
pseudocompact subset A of X and ε > 0 such that < 0, A, ε >
⊆ < 0, X, 1 >. As before, by using the complete regularity of X,
it can be shown that we must have X = A. But the closure of
a pseudocompact set is also pseudocompact. Hence, X is pseudo-
compact. ¤

Corollary 3.3. For any normal Hausdorff space X, Ck(X) =
Cps(X) if and only if every closed countably compact subset of X
is compact.

Now we would like to investigate the spaces for which every closed
pseudocompact subset is compact. But before further discussion
on this topic, for convenience, we would like to give the following
definitions.

Definition 3.4. A space X is called isocompact if every closed
countably compact subset of X is compact. Similarly, X is called
p-isocompact if every closed pseudocompact subset of X is compact.
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Using these definitions, from the last two results we have that
for every space X,

(i) Ck(X) = Cps(X) if and only if X is p-isocompact;
(ii) if in addition X is normal, then Ck(X) = Cps(X) if and

only if X is isocompact.

On isocompact spaces, there has already been substantial and
significant research. On this topic, one can see [11], [10], [15], [39],
and [42].

Now we would like to investigate which spaces are p-isocompact.
Note that a pseudocompact space is compact if it is either realcom-
pact or paracompact. In fact, there is a link between realcompact
and paracompact spaces. Both are nearly realcompact. A space X
is called nearly realcompact if βX \ υX is dense in βX \ X. But
a nearly realcompact, pseudocompact space is compact. We would
like to put a note of caution here that nearly realcompactness is
not hereditary with respect to closed subsets. See Remark 1.17 in
[10].

Since realcompactness and paracompactness are hereditary with
respect to closed subsets, the realcompact and paracompact spaces
are p-isocompact. In fact, the paracompactness can be replaced by
weaker conditions, such as metacompactness and para-Lindelöfness.

A space X is called metacompact if every open cover of X has an
open point-finite refinement. A metacompact space is also called
weakly paracompact or pointwise paracompact. Brian M. Scott (in
1979) [35] and W. Stephen Watson (in 1981) [43] proved indepen-
dently that every pseudocompact metacompact space is compact.
Scott also noted that this result was proved independently by O.
Förster also.

A space X is called para-Lindelöf if every open cover of X has
a locally countable open refinement. Dennis K. Burke and S. W.
Davis (in 1982) [14] proved that a pseudocompact para-Lindelöf
space is compact.

Both metacompactness and para-Lindelöfness are hereditary with
respect to closed subspaces. More precisely, if a space X is meta-
compact (respectively, para-Lindelöf), then every closed subset of
X is also metacompact (respectively, para-Lindelöf). Hence, we
obtain the following result.
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Theorem 3.5. If a space X is either metacompact or para-Lindelöf,
then X is p-isocompact.

For metacompact and para-Lindelöf spaces, one should read
Burke’s excellent survey paper [13].

Now we would like to talk about another kind of p-isocompact
space. A subset A of a space X is called relatively pseudocompact or
bounded in X if every function in C(X) is bounded on A. A space X
is called hyperisocompact if every closed relatively pseudocompact
subset of X is compact. Obviously, a hyperisocompact space is p-
isocompact. In the literature, a hyperisocompact space is also called
a µ-space or a Nachbin-Shirota space (NS-space for brevity). It is
easy to show that a subset A of X is relatively pseudocompact if and
only if clβXA ⊆ υX. For equivalent characterizations of relatively
pseudocompact subsets, see Proposition 2.6 in [11]. Clearly, the
realcompact spaces are hyperisocompact. Also the P -spaces are
hyperisocompact. A space X is called a P -space if every Gδ-set in
X is open in X. For equivalent characterizations of a P -space, see
4J in [21]. In fact, in a P -space every relatively pseudocompact
set is finite; see 4K in [21]. The following example gives a P -space
which is not realcompact.

Example 3.6. Let W (ω2) be the set of all ordinals < ω2 equipped
with the order topology where ω2 is the smallest ordinal of cardinal
ℵ2 and let X be the subspace of W (ω2) obtained by deleting all limit
ordinals having a countable local base. (This space appears in 9L of
[21].) Also, this space is a P -space, which is not realcompact. Here
we have

Ck(X) = Cps(X) < Cu(X).

We continue with a few more examples which illustrate all pos-
sible inequalities between these function spaces.

Example 3.7. For a p-isocompact space X, we have

Ck(X) = Cps(X) ≤ Cu(X).

We have already seen that the family of p-isocompact spaces
includes metric spaces, paracompact spaces, realcompact spaces,
P -spaces, metacompact spaces, and para-Lindelöf spaces.

For a p-isocompact space X, which is not pseudocompact, we
have

Ck(X) = Cps(X) < Cu(X).
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Example 3.8. The space X = [0, ω1) of countable ordinals [38,
Example 43] is countably compact and collectionwise normal, but
not isocompact. For this space X, we have

Ck(X) < Cps(X) = Cu(X).

Example 3.9. The Dieudonné plank D [38, Example 89] is meta-
compact, but not countably paracompact, normal, or hyperisocom-
pact. For the space D, we have

Ck(D) = Cps(D) < Cu(D).

Example 3.10. The Bing-Michael space Y [38, Example 143] is
metacompact and normal, but not paracompact. For this space Y ,
we have

Ck(Y ) = Cps(Y ) < Cu(Y ).

Example 3.11. Let X = [0, ω1) ⊕ R where [0, ω1) is the space
mentioned in Example 3.8. For this space X, we have

Ck(X) < Cps(X) < Cu(X).

We end this section with the diagram of following implications:

realcompact ⇒ hyperisocompact ⇒ p-isocompact ⇒ isocompact.

We note that none of the implications above can be reversed.
The space W (ω2) is hyperisocompact, but not realcompact. The
Dieudonné plank D of Example 3.9 is p-isocompact, but not hyper-
isocompact. Finally, consider the space Ψ described in 5I of [21].
The space Ψ is pseudocompact, but not countably compact. Also,
every countably compact subset of Ψ is compact (see [41]). Hence,
Ψ is isocompact but not p-isocompact.

4. Induced maps

One of the most useful tools in function spaces is the following
concept of induced map. If f : X −→ Y is a continuous map, then
the induced map of f , denoted by f∗ : C(Y ) −→ C(X) is defined
by f∗(g) = g ◦ f for all g ∈ C(Y ). In this work, we will study this
induced map f∗ when both C(Y ) and C(X) are equipped with the
pseudocompact-open topology. In order to have the first result of
this section, we need the definition of an almost onto map. A map
f : X −→ Y , where X is any nonempty set and Y is a topological
space, is called almost onto if f(X) is dense in Y .
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Theorem 4.1. Let f : X −→ Y be a continuous map between two
spaces X and Y . Then

(i) f∗ : Cps(Y ) −→ Cps(X) is continuous;
(ii) f∗ : C(Y ) −→ C(X) is one-to-one if and only if f is almost

onto;
(iii) if f∗ : C(Y ) −→ Cps(X) is almost onto, then f is one-to-

one.

Proof: (i) Suppose g ∈ Cps(Y ). Let < f∗(g), A, ε > be a ba-
sic neighborhood of f∗(g) in Cps(X). Then f∗(< g, f(A), ε >) ⊆
< f∗(g), A, ε > and consequently, f∗ is continuous.

(ii) and (iii) See Theorem 2.2.6 in [31]. ¤
Now we would like to give the converse of Theorem 4.1(iii) with

some restrictions on X and Y . To clarify these restrictions, we need
the following definitions.

Definition 4.2. A space X is called an S4-space if every countably
compact subset of X is closed in X. Equivalently, X is an S4-space
if every non-closed subset A of X contains a sequence (xn) which
has no cluster point in A.

An S4-space is also called C-closed. The class of S4-spaces in-
cludes the sequential spaces. In particular, first countable and
Fréchet spaces are S4-space. For more details see [5] and [24].

Definition 4.3. A space X is called weak p-isocompact if every
closed pseudocompact subset of X is countably compact.

Note that the space Ψ, though pseudocompact itself, is not weak
p-isocompact. The space [0, ω1) of countable ordinals given in Ex-
ample 3.8 is not isocompact and hence, it is not p-isocompact.
But since [0, ω1) is countably compact, obviously it is weak p-
isocompact. Actually, the countably compact spaces, as well as
normal spaces, are weak p-isocompact spaces.

Definition 4.4. A space X is called functionally normal if, given
any two pairs of disjoint closed sets A and B in X, there exists a
continuous function f : X −→ R such that f(A) ∩ f(B) = ∅.

Obviously, a normal space is functionally normal. But the con-
verse need not be true. The Tychonoff plank is functionally normal,
but not normal; (see [21, 8.20 ] and [9]). Also, a countably compact
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functionally normal space is normal, and every closed pseudocom-
pact subset in a functionally normal space is C-embedded; see [6],
[8], and [9]. Of course, we are assuming here spaces to be Ty-
chonoff. Functionally normal spaces were introduced in 1951 by
W. T. van Est and Hans Freudenthal in [18] and were later studied
significantly by C. E. Aull.

Now we are ready to state and prove our next result.

Theorem 4.5. Let X be a weak p-isocompact space and Y be a
functionally normal S4-space. If f : X −→ Y is a one-to-one
continuous map, then f∗ : C(Y ) −→ Cps(X) is almost onto.

Proof: We need to show that f∗(C(Y )) is dense in Cps(X). Let
g ∈ C(X) and < g, A, ε > be a basic neighborhood of g in Cps(X)
where A is a closed pseudocompact subset of X and ε > 0. Since X
is weak p-isocompact, A is countably compact in X. Now since
f is one-to-one and Y is an S4-space, f |A : A −→ f(A) is a
homeomorphism. Consequently, g ◦ (f |A)−1 : f(A) −→ R is con-
tinuous. Note that f(A) is a closed countably compact set in Y
which is functionally normal. So f(A) is C-embedded in Y and
hence, there exists h ∈ C(Y ) such that h|f(A) = g ◦ (f |A)−1. Let
φ = h ◦ f . So φ = f∗(h) ∈ f∗(C(Y )) and φ = g on A. Therefore,
φ ∈ < g, A, ε > ∩f∗(C(Y )) and consequently, f∗ is almost onto. ¤

Our next goal is to find out when f∗ is an embedding. We
need the following definition of a p-covering map. A continuous
map f : X −→ Y is called p-covering if, given any pseudocompact
subset A in Y , there exists a pseudocompact subset C in X such
that A ⊆ f(C).

Theorem 4.6. Let f : X −→ Y be a continuous map between two
spaces X and Y . If f∗ : Cps(Y ) −→ Cps(X) is an embedding, then
f is a p-covering map.

Proof: With A a pseudocompact subset of Y , f∗(< 0Y , A, 1 >)
is an open neighborhood of the zero function 0X in f∗(Cps(Y )).
Choose a pseudocompact subset C of X and an ε > 0 such that
0X ∈ < 0X , C, ε > ∩f∗(Cps(Y )) ⊆ f∗(< 0Y , A, 1 >). We claim that
A ⊆ f(C). If possible, let y ∈ A\f(C). So there exists a continuous
function g : Y −→ [0, 1] such that g(y) = 1 and g(f(C)) = 0. Since
g(f(C)) = 0, f∗(g) ∈ < 0X , C, ε > ∩f∗(Cps(Y )) ⊆ f∗(< 0Y , A, 1 >
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). Since f∗ is injective, g ∈ < 0Y , A, 1 >. But y ∈ A implies
|g(y)| < 1. We arrive at a contradiction and hence, A ⊆ f(C).
Consequently, f is a p-covering map. ¤

For the converse, we have the following result.

Theorem 4.7. Suppose that every pseudocompact subset of Y is
closed. If a continuous map f : X −→ Y is p-covering, then f∗ :
Cps(Y ) −→ Cps(X) is an embedding.

Proof: Since for each a ∈ X, there exists a pseudocompact subset
C of X such that {a} ⊆ f(C), f is onto. Hence, by Theorem 4.1(ii),
f∗ is one-to-one. We need to show that f∗ : Cps(Y ) −→ f∗(Cps(X))
is an open map. Let < g,A, ε > be a basic open set in Cps(Y ) where
A is pseudocompact in Y and ε > 0. Let h ∈ f∗(< g,A, ε >). So
there exists h1 ∈ < g,A, ε > such that f∗(h1) = h. Since < g,A, ε >
is open in Cps(Y ), there exists a pseudocompact set B in Y and
δ > 0 such that < h1, B, δ > ⊆ < g, A, ε >. Since f is p-covering,
there exists a pseudocompact set C in X such that B ⊆ f(C).

Now we claim that < h, C, δ > ∩f∗(Cps(Y )) ⊆ f∗(< h1, B, δ >).
Choose l ∈ C(Y ) such that f∗(l) ∈ < h,C, δ > ∩f∗(Cps(Y )).
Since B ⊆ f(C), for each b ∈ B, there exists c ∈ C such that
b = f(c). Since f∗(l) ∈ < h,C, δ >, |l(b) − h1(b)| = |l(f(c)) −
h1(f(c))| = |f∗(l)(c) − f∗(h1)(c)| = |f∗(l)(c) − h(c)| < δ. So
l ∈ < h1, B, δ >, that is, f∗(l) ∈ f∗(< h1, B, δ >). Hence,
< h, C, δ > ∩f∗(Cps(Y )) ⊆ f∗(< h1, B, δ >) ⊆ f∗(< g, A, ε >)
and consequently, f∗(< g, A, ε >) is open in f∗(Cps(Y )). ¤

Remark 4.8. For the spaces in which the pseudocompact subsets
are closed, one should read the excellent paper [16].

Another kind of useful map on function spaces is the “sum func-
tion.” Let {Xα : α ∈ Λ} be a family of topological spaces. If ⊕Xα

denotes their topological sum, then the sum function s is defined
by s : C(⊕Xα) −→ Π{C(Xα) : α ∈ Λ} where s(f) =< f |Xα >
for each f ∈ C(⊕Xα). Note for any topological space Y , a map
f : ⊕Xα −→ Y is continuous if and only if f |Xα is continuous for
each α ∈ Λ.

In order to prove the last result of this section, we need the
following lemma.
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Lemma 4.9. Let {Xα : α ∈ Λ} be a family of spaces and let A
be a subset of ⊕α∈ΛXα. Then A is pseudocompact in ⊕α∈ΛXα, if
and only if A ∩Xα = ∅ for all but finitely many α ∈ Λ and every
non-empty intersection A ∩Xα is pseudocompact in Xα.

Theorem 4.10. Let {Xα : α ∈ Λ} be a family of spaces. Then
the sum function s : Cps(⊕Xα) −→ Π{Cps(Xα) : α ∈ Λ} is a
homeomorphism.

Proof: Define t : Π{C(Xα) : α ∈ Λ} −→ C(⊕Xα) by
t(< gα >α∈Λ) = g where g|Xα = gα.

Since s ◦ t and t ◦ s are the identity maps on Π{C(Xα) : α ∈ Λ}
and C(⊕Xα), respectively, s is a bijection and s−1 = t. Now we
claim that both s and s−1 are continuous.

In order to avoid confusion, let [A, V ]⊕ = {f ∈ C(⊕Xα) :
f(A) ⊆ V } where A is a pseudocompact subset of ⊕Xα and V
is open in R, and let [A, V ]α = {f ∈ C(Xα) : f(A) ⊆ V } where
A is a pseudocompact subset of Xα and V is open in R. Let
pα : Π{Cps(Xα) : α ∈ Λ} −→ Cps(Xα) be the α-th projection.
Let p−1

α1
([A1, V1]α1) ∩ · · · ∩ p−1

αn
([An, Vn]αn) be a basic open set in

Π{Cps(Xα) : α ∈ Λ} where Ai is pseudocompact in Xαi and each
Vi is open in R, 1 ≤ i ≤ n. Then s−1(p−1

α1
([A1, V1]α1) ∩ · · · ∩

p−1
αn

([An, Vn]αn)) = s−1p−1
α1

([A1, V1]α1) ∩ · · · ∩ s−1p−1
αn

([An, Vn]αn) =
[A1, V1]⊕ ∩ · · · ∩ [An, Vn]⊕. So s is continuous.

Let [A, V ]⊕ be a subbasic open set in Cps(⊕Xα) where A is pseu-
docompact in ⊕Xα and V is open in R. Since A is pseudocompact
in ⊕Xα, by the previous lemma, A ∩ Xα = ∅ for all but finitely
many α. Suppose A∩Xαi 6= ∅, 1 ≤ i ≤ n. Let Ai = A∩Xαi . Each
Ai is pseudocompact in Xαi , 1 ≤ i ≤ n.

Note s([A, V ]⊕) = p−1
α1

([A1, V1]α1)∩ · · · ∩ p−1
αn

([An, Vn]αn). So s is
an open map and consequently, a homeomorphism. ¤

5. Additional properties :
metrizability and separability

Here we study the metrizability and separability of Cps(X). But
in order to study the metrizability of Cps(X) in a broader per-
spective, first we show that a number of properties of Cps(X) are
equivalent to submetrizability. We begin with the definition of sub-
metrizability and some immediate consequences of this property.
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Definition 5.1. A completely regular Hausdorff space (X, τ) is
called submetrizable if X admits a weaker metrizable topology,
equivalently if there exists a continuous injection f : (X, τ) −→
(Y, d) where (Y, d) is a metric space.

Remark 5.2. (i) If a space X has a Gδ-diagonal, that is, if the
set {(x, x) : x ∈ X} is a Gδ-set in the product space X ×X, then
every point in X is a Gδ-set. Note that every metrizable space has
a zero-set diagonal. Consequently, every submetrizable space has
also a zero-set-diagonal.

(ii) Every pseudocompact set in a submetrizable space is a Gδ-
set. In particular, all compact subsets, countably compact subsets,
and the singletons are Gδ-sets in a submetrizable space. A space
X is called an E0-space if every point in the space is a Gδ-set. So
the submetrizable spaces are E0-spaces.

For more information on E0-spaces, see [7], and for submetrizable
spaces, see [22].

For our next result, we need the following definitions.

Definition 5.3. A completely regular Hausdorff space X is called
σ-pseudocompact if there exists a sequence {An} of pseudocompact
sets in X such that X = ∪∞n=1An. A space X is said to be almost
σ-pseudocompact if it has a dense σ-pseudocompact subset.

Theorem 5.4. For any space X, the following are equivalent.
(a) Cps(X) is submetrizable.
(b) Every pseudocompact subset of Cps(X) is a Gδ-set in Cps(X).
(c) Every countably compact subset of Cps(X) is a Gδ-set in

Cps(X).
(d) Every compact subset of Cps(X) is a Gδ-set in Cps(X).
(e) Cps(X) is an E0-space.
(f) X is almost σ-pseudocompact.
(g) Cps(X) has a zero-set-diagonal.
(h) Cps(X) has a Gδ-diagonal.

Proof: (a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) are all immediate.
(e) ⇒ (f). If Cps(X) is an E0-space, then the constant zero-

function 0 defined on X is a Gδ-set. Let {0} = ∩∞n=1 < 0, An, εn >
where each An is pseudocompact in X and εn > 0. We claim that
X = ∪∞n=1An.
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Suppose that x0 ∈ X \ ∪∞n=1An. So there exists a continuous
function f : X −→ [0, 1] such that f(x) = 0 for all x ∈ ∪∞n=1An and
f(x0) = 1. Since f(x) = 0 for all x ∈ An, f ∈ < 0, An, εn > for all
n and hence, f ∈ ∩∞n=1 < 0, An, εn > = {0}. This means f(x) = 0
for all x ∈ X. But f(x0) = 1. Because of this contradiction, we
conclude that X is almost σ-pseudocompact.

(f) ⇒ (a). Let ∪{An : n ∈ N} be a dense subset of X where
each An is pseudocompact. Let S = ⊕{An : n ∈ N} be the
topological sum of the An and let φ : S −→ X be the natural
map. Then the induced map φ∗ : Cps(X) −→ Cps(S) defined by
φ∗(f) = f ◦ φ is continuous. Since φ is almost onto, by Theorem
4.1(ii), φ∗ is one-to-one. By Theorem 4.10, Cps(⊕{An : n ∈ N})
is homeomorphic to Π{Cps(An) : n ∈ N}. But each Cps(An) is
(completely) metrizable, since the supremum metric generates the
pseudocompact-open topology whenever the domain is pseudocom-
pact; see Theorem 3.2(ii). Since Cps(S) is metrizable and φ∗ is a
continuous injection, Cps(X) is submetrizable.

By Remark 5.2(i), (a) ⇒ (g) ⇒ (h) ⇒ (e). ¤

Theorem 5.5. Suppose that X is almost σ-pseudocompact. If K
is a subset of Cps(X), then the following are equivalent.

(a) K is compact.
(b) K is sequentially compact.
(c) K is countably compact.
(d) K is pseudocompact.

Proof: (b) ⇒ (c) ⇒ (d) are all immediate. By Theorem 5.4,
Cps(X) is submetrizable and so also is K. A pseudocompact sub-
metrizable is metrizable and hence compact. But in a metrizable
space, all these kinds of compactness coincide. Hence, (a) ⇒ (b)
and (d) ⇒ (a). ¤

Our next goal is to show that there are several topological prop-
erties which are equivalent to the metrizability of Cps(X). So we
first define these topological properties.

Definition 5.6. A subset S of a space X is said to have countable
character if there is a sequence {Wn : n ∈ N} of open subsets in X
such that S ⊆ Wn for each n, and if W is any open set containing
S, then Wn ⊆ W for some n.
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A space X is said to be of (pointwise) countable type if each
(point) compact set is contained in a compact set having countable
character.

A space X is a q-space if for each point x ∈ X, there exists a
sequence {Un : n ∈ N} of neighborhoods of x such that if xn ∈ Un

for each n, then {xn : n ∈ N} has a cluster point. Another property
stronger than being a q-space is that of being an M -space, which
can be characterized as a space that can be mapped onto a metric
space by a quasi-perfect map (a continuous closed map in which
inverse images of points are countably compact).

Both a space of pointwise countable type and an M -space are
q-spaces. We note that a metrizable space is of countable type.

For more details on the properties discussed above, see [3], [32],
[33], and [37].

Now we are ready to relate the metrizability of Cps(X) with the
several topological properties discussed above.

Theorem 5.7. For any space X, the following are equivalent.
(a) Cps(X) is metrizable.
(b) Cps(X) is of first countable.
(c) Cps(X) is of countable type.
(d) Cps(X) is of pointwise countable type.
(e) Cps(X) has a dense subspace of pointwise countable type.
(f) Cps(X) is an M -space.
(g) Cps(X) is a q-space.
(h) X is hemipseudocompact; that is, there exists a sequence of

pseudocompact sets {An : n ∈ N} in X such that for any
pseudocompact subset A of X, A ⊆ An holds for some n.

Proof: From the earlier discussions, we have (a) ⇒ (c) ⇒ (d) ⇒
(g), (a) ⇒ (f) ⇒ (g), and (a) ⇒ (b) ⇒ (g).

(d) ⇔ (e). It can be easily verified that if D is a dense subset of
a space X and A is a compact subset of D, then A has countable
character in D if and only if A is of countable character in X. Now
since Cps(X) is a locally convex space, it is homogeneous. If we
combine this fact with the previous observation, we have (d) ⇔ (e).

(g) ⇒ (h). Suppose that Cps(X) is a q-space. Hence, there exists
a sequence {Un : n ∈ N} of neighborhoods of the zero-function
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0 in Cps(X) such that if fn ∈ Un for each n, then {fn : n ∈
N} has a cluster point in Cps(X). Now for each n, there exists
a closed pseudocompact subset An of X and εn > 0 such that
0 ∈ < 0, An, εn > ⊆ Un.

Let A be a pseudocompact subset of X. If possible, suppose
that A is not a subset of An for any n ∈ N. Then for each n ∈
N, there exists an ∈ A \ An. So for each n ∈ N, there exists a
continuous function fn : X −→ [0, 1] such that fn(an) = n and
fn(x) = 0 for all x ∈ An. It is clear that fn ∈ < 0, An, εn >. But
the sequence {fn}n∈N does not have a cluster point in Cps(X). If
possible, suppose that this sequence has a cluster point f in Cps(X).
Then for each k ∈ N, there exists a positive integer nk > k such that
fnk

∈< f,A, 1 >. So for all k ∈ N, f(ank
) > fnk

(ank
)−1 = nk−1 ≥

k. But this means that f is unbounded on the pseudocompact set
A. So the sequence {fn}n∈N cannot have a cluster point in Cps(X)
and consequently, Cps(X) fails to be a q-space. Hence, X must be
hemipseudocompact.

(h) ⇒ (a). Here we need the well-known result which says that if
the topology of a locally convex Hausdorff space is generated by a
countable family of seminorms, then it is metrizable; (see page 119
in [40]). Now the locally convex topology on C(X) generated by
the countable family of seminorms {pAn : n ∈ N} is metrizable and
weaker than the pseudocompact-open topology. However, since for
each pseudocompact set A in X, there exists An such that A ⊆ An,
the locally convex topology generated by the family of seminorms
{pA : A ∈ PS(X)}, that is, the pseudocompact-open topology, is
weaker than the topology generated by the family of seminorms
{pAn : n ∈ N}. Hence, Cps(X) is metrizable. ¤

We conclude this paper with the following result on the separa-
bility of Cps(X).

Theorem 5.8. For any space X, the following are equivalent.

(a) Cps(X) is separable.
(b) Cp(X) is separable where p denotes the point-open topology

on C(X).
(c) Ck(X) is separable.
(d) X has a weaker separable metrizable topology.
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Proof: First, note by Corollary 4.2.2 in [31] that (b), (c), and (d)
are equivalent. Also, since Cp(X) ≤ Cps(X), (a) ⇒ (b).

(d) ⇒ (a). If X has a weaker separable metrizable topology,
then X is realcompact; (see page 219 in [17]). Hence, X is p-
isocompact. Consequently, Cps(X) = Ck(X). Since (d) ⇒ (c),
Cps(X) is separable. ¤
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