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ATSUJI SPACES : EQUIVALENT CONDITIONS

S. KUNDU AND TANVI JAIN

Dedicated to Professor S. A. Naimpally

Abstract. A metric space (X, d) is called an Atsuji space if
every real-valued continuous function on (X, d) is uniformly
continuous. In this paper, we study twenty-five equivalent
conditions for a metric space to be an Atsuji space. These
conditions have been collected from the works of several math-
ematicians spanning nearly four decades.

1. Introduction

The concept of continuity is an old one, but this concept is cen-
tral to the study of analysis. On the other hand, the concept of
uniform continuity was first introduced for real-valued functions on
Euclidean spaces by Eduard Heine in 1870. The elementary courses
in analysis and topology normally include a proof of the result that
every continuous function from a compact metric space to an arbi-
trary metric space is uniformly continuous. But the compactness
is clearly not a necessary condition since any continuous function
from a discrete metric space (X, d) to an arbitrary metric space is
uniformly continuous where d is the discrete metric : d(x, y) = 1
for x 6= y and d(x, x) = 0, x, y ∈ X. The goal of this paper is to
present, in a systematic and comprehensive way, conditions, lying

2000 Mathematics Subject Classification. 5402, 54C05, 54E35, 54E40,
54E45, 54E99.

Key words and phrases. accumulation point, asymptotic sequence, Atsuji
space, compact, pseudo-Cauchy, uniform continuity.

The second author is supported by the SPM fellowship awarded by the Coun-
cil of Scientific and Industrial Research (CSIR), India.

301



302 S. KUNDU AND T. JAIN

scattered across the literature, which are necessary as well as suffi-
cient for a metric space (X, d) so that every real-valued continuous
function on (X, d) becomes uniformly continuous. Probably Jun-
iti Nagata was the first one to study such metric spaces in 1950
in [19]; while in 1951 in [18], A. A. Monteiro and M. M. Peixoto
studied four equivalent characterizations of such metric spaces. In
particular, they proved that every real-valued continuous function
on a metric space (X, d) is uniformly continuous if and only if every
open cover of X has a Lebesgue number. Because of this charac-
terization, such metric spaces have been called Lebesgue spaces in
[21] and [23]. In 1958, several new equivalent characterizations of
such metric spaces were studied by Masahiko Atsuji in [1]. Gerald
Beer, in [3], may have been the first to call such metric spaces At-
suji spaces. He continued with this term in [4] also. But in [5] and
[6], he called these metric spaces UC spaces as several mathemati-
cians did so while studying such metric spaces; (see, for example,
[25]). In [17], S. G. Mrówka has shown that every real-valued con-
tinuous function on a metric space (X, d) is uniformly continuous
if and only if for any pair of disjoint nonempty closed sets A and
B in X, d(A,B) > 0. He has called such a metric normal. In this
paper, we will call a metric space, equipped with a normal metric,
an Atsuji space; that is, a metric space on which every real-valued
continuous function is uniformly continuous will be called by us an
Atsuji space. So the purpose of this paper is to present complete
characterizations of Atsuji spaces, more precisely, to present equiv-
alent conditions for a metric space to be an Atsuji space. From the
works of several mathematicians spanning nearly four decades, we
have collected twenty-five such equivalent conditions.

In order to prove such a large number of equivalent conditions
for a metric space to be an Atsuji space, we need to use many
results, though most of them are well-known. So first we would like
to state these results without proof, except one, the proof of which
is essentially due to V. A. Efremovič. The second section, under
the heading Basic Tools, includes these results together with some
relevant definitions.

In the last section of this paper, we give the complete proofs of
twenty-five equivalent conditions for Atsuji spaces. But in order to
have easier cycles of the proofs, we split these equivalent conditions
into four theorems. This split has been decided as much as possible
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according to the nature of these conditions. For example, Theorem
3.16 mainly emphasizes the sequential characterizations of an Atsuji
space. Since the split has been decided by us, quite often our proofs
have been different from the ones available in the literature.

The symbols R and N denote the sets of real numbers and of
natural numbers, respectively. Unless mentioned otherwise, R and
its subsets carry the usual distance metric. If (X, d) is a metric
space, x ∈ X and δ > 0, then B(x, δ) denotes the open ball in
(X, d), centered at x with radius δ. Also X ′ denotes the set of all
accumulation points in (X, d).

2. Basic tools

A map f : (X, d) → (Y, ρ) between two metric spaces X and Y
is continuous if and only if f sends convergent sequences in X to
convergent sequences in Y . As this characterization is very useful
in dealing with continuity, a sequential characterization of uniform
continuity in terms of asymptotic sequences is also very useful while
dealing with uniform continuity. In the first result of this paper,
we give this characterization. But in order to give it, we first need
the definition of asymptotic sequences and the Efremovič Lemma.

Definition 2.1. Two sequences (xn) and (yn) in a metric space
(X, d) are said to be asymptotic, written (xn) ³ (yn), if they satisfy
the following condition: for all ε > 0, there exists Nε ∈ N such that
n > Nε ⇒ d(xn, yn) < ε.

Lemma 2.2 (Efremovic). Let (X, d) be a metric space and ε > 0.
Suppose that ((xn, yn)) is a sequence in X×X satisfying d(xn, yn) ≥
ε for all n ∈ N. Then there exists a subsequence ((xnk

, ynk
)) such

that d(xnk
, ynl

) ≥ ε
4 for all k, l ∈ N.

Proof: See [6, Lemma 3.3.1, p. 92]. ¤
Remark 2.3. The origin of Lemma 2.2 lies in the study of proxim-
ity spaces, done by Efremovic in [8]; see [9, 8.5.19(a), pp. 467-468].
But the Efremovic Lemma holds more generally for uniform spaces.
For that general result as well as its proof, one can see [20, Lemma
12.17, p. 77].

Theorem 2.4. Let f : (X, d) −→ (Y, ρ) be a function between two
metric spaces X and Y. Then the following statements are equiva-
lent:
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(i) f is uniformly continuous.
(ii) f preserves asymptotic sequences; that is, if (xn) and (zn)

are asymptotic sequences in X, then (f(xn)) and (f(zn))
are asymptotic sequences in Y .

(iii) For every pair of nonempty subsets A and B of X, d(A,B) =
0 =⇒ ρ(f(A), f(B)) = 0.

Proof: (i) =⇒ (ii): Assume (i) and let (xn) and (zn) be asymp-
totic sequences in X.

Let ε > 0. Let δ be a positive number such that ρ(f(x), f(y)) < ε
whenever d(x, y) < δ. Since (xn) ³ (zn), there exists nδ ∈ N such
that d(xn, zn) < δ for all n > nδ. Hence, (f(xn)) and (f(zn)) are
asymptotic sequences in Y .

(ii) =⇒ (iii): Since d(A,B) = 0, for all n ∈ N there exists xn ∈
A and zn ∈ B such that d(xn, zn) < 1

n . But this means (xn) ³ (zn).
Hence by (ii), (f(xn)) ³ (f(zn)) and consequently, ρ(f(A), f(B)) =
0.

(iii) =⇒ (i): If possible, suppose that f is not uniformly contin-
uous. So there exists ε > 0 such that for all δ > 0, there exists xδ

and zδ ∈ X such that d(xδ, zδ) < δ, and ρ(f(xδ), f(zδ)) ≥ ε.
Take δ = 1

n for each n ∈ N. Then we get two sequences, (xn)
and (zn), which are asymptotic because d(xn, zn) < 1

n for all n ∈ N.
But ρ(f(xn), f(zn)) ≥ ε for all n ∈ N. By Lemma 2.2, there exists
a subsequence ((f(xnk

), f(znk
))) of the sequence ((f(xn), f(zn)))

in Y × Y such that ρ(f(xnk
), f(znl

)) ≥ ε
4 for all k, l ∈ N. Let

A = {xnk
: k ∈ N} and B = {znk

: k ∈ N}. Then d(A,B) = 0, but
ρ(f(A), f(B)) ≥ ε/4 > 0. We arrive at a contradiction. Hence, f
must be uniformly continuous. ¤

Next we state some results related to compact subsets of a metric
space.

Theorem 2.5. For a subset A of the metric space (X, d), the fol-
lowing statements are equivalent.

(i) A is a compact set.
(ii) Every infinite subset of A has an accumulation point in A.

(iii) Every sequence in A has a subsequence which converges to
a point of A.

For the next result we need the following definition.
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Definition 2.6. Let (X, d) be a metric space, A be a subset of X,
and δ be a positive number. Further, let U be an open cover of
A. Suppose that for each x ∈ A, we have B(x, δ) ⊆ U for some
U ∈ U ; that is, the cover {B(x, δ)}x∈A is a refinement of U . Then
the number δ is called a Lebesgue number of A for the open cover
U .

If A is nonempty, then the δ-ball B(A, δ) about A is defined as
B(A, δ) = {x ∈ X : d(x,A) < δ} =

⋃
x∈A

B(x, δ). If A is empty, we

define B(A, δ) to be empty as well.

Theorem 2.7. Let (X, d) be a metric space and A and B be two
nonempty closed subsets of X such that A is compact in X. Then
the following assertions hold.

(a) Every open cover of A has a Lebesgue number.
(b) If A ∩B = ∅, then d(A, B) > 0.
(c) For any open set U containing A, there exists a δ > 0 such

that B(A, δ) ⊆ U .

Next we state some results related to uniform continuity and
uniform spaces.

Theorem 2.8. Let f : (X, d) −→ (Y, ρ) be a continuous function.
If (X, d) is compact, then f is uniformly continuous.

For the relevant definitions and results related to topological and
uniform spaces, which are needed in this paper, one may see [26]
or [9].

If X is a uniformizable topological space, there is a finest unifor-
mity on X compatible with the topology on X; (see [26, Theorem
36.12, p. 248]). This uniformity is called the fine uniformity on
X, and when X is provided with this uniformity, it is called a fine
space.

Recall that a map from a uniform space X to a uniform space
Y is said to be uniformly continuous if, for each entourage V of
Y , there is an entourage U of X such that the relation (x, x′) ∈ U
implies (f(x), f(x′)) ∈ V .

It can be easily verified that a map f : (X, d) −→ (Y, ρ) be-
tween two metric spaces is uniformly continuous if and only if the
map f : (X,Ud) −→ (Y,Uρ) is uniformly continuous where Ud and
Uρ are uniformities generated by d and ρ, respectively. Also it is
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easy to verify that if f : X −→ Y is a uniformly continuous map
between two uniform spaces X and Y , then f , as a map between
the corresponding topological spaces X and Y , is continuous. The
converse need not be true; that is, a continuous map between two
uniformizable topological spaces need not be uniformly continuous.
But if the domain is a fine space, the converse is also true. The
precise statement follows.

Theorem 2.9. Every continuous function on a fine space to some
uniform space is uniformly continuous.

Proof: See [26, Theorem 36.18, p. 249]. ¤

3. Equivalent conditions for Atsuji spaces

Finally, we deal with the goal of this paper. The goal is to
present complete characterizations of Atsuji spaces, more precisely
to present equivalent conditions for a metric space to be an Atsuji
space.

Definition 3.1. A metric space (X, d) is called an Atsuji space
or a UC space if every real-valued continuous function on (X, d) is
uniformly continuous.

Before proceeding to the equivalent conditions for an Atsuji space,
we look at a couple of necessary conditions for a metric space to be
an Atsuji space.

Theorem 3.2. Let a metric space (X, d) be an Atsuji space. Then
(X, d) is complete and X ′, the set of all accumulation points in X,
is compact in (X, d).

Proof: If (X, d) is not complete, then there exists a Cauchy se-
quence (xn) of distinct points in X such that it does not converge
in X. Consider the set A = {xn : n ∈ N}. Then A is closed and
discrete in X.

Now define f : A −→ R as follows: f(xn) = n for all n ∈ N.
Since A is discrete, f is continuous. By Tietze’s extension theo-

rem, f can be extended to a continuous function on X. We denote
this extension also by f . But f is not uniformly continuous, since
(xn) is Cauchy in (X, d), but (f(xn)) = (n) is not Cauchy in R.

To prove that X ′ is compact in (X, d), we show that every se-
quence in X ′ has a convergent subsequence. Note that the limit
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of such a convergent subsequence must belong to X ′, since X ′ is
closed in X. If possible, suppose that there exists a sequence (xn)
in X ′ which has no convergent subsequence. Of course, we can as-
sume that xn 6= xm for n 6= m. Let Zn = {xm : m 6= n}. Then
cn = d(xn, Zn) > 0 for every n since Zn is closed in X. Again since
each xn is an accumulation point of X, for each n we can find yn

in X such that 0 < d(xn, yn) < min{ 1
n , cn}.

Note that if m 6= n, then d(xm, yn) ≥ d(xm, xn) − d(xn, yn) ≥
d(xn, Zn) − d(xn, yn) = cn − d(xn, yn) > 0. Hence, xm 6= yn for
m 6= n and consequently, {xn : n ∈ N} ∩ {yn : n ∈ N} = ∅.

By the normality of X, there exists a continuous function f :
X −→ [0, 1] such that f(xn) = 0 for all n and f(yn) = 1 for all n.
Clearly, f is not uniformly continuous since lim

n→∞ d(xn, yn) = 0, but

|f(xn) − f(yn)| = 1 for all n. Hence, every sequence in X ′ must
have a convergent subsequence and consequently X ′ is compact in
(X, d). ¤

Now we give a counter example to show that even the com-
pleteness of X and the compactness of X ′, taken together, are not
sufficient to ensure that (X, d) is an Atsuji space.

Example 3.3 (due to A. B. Raha). Let X = [0, 1
2 ]∪N∪ {n + 1

2n :
n ∈ N} and consider the usual distance metric on X. Clearly, X is
complete and X ′ = [0, 1

2 ] is compact in X. Define f : X −→ R as
follows:

f(x) = 0 for all x ∈ [0, 1
2 ], f(n) = 1 for all n ∈ N, and f(n +

1
2n) = 2 for all n ∈ N. Clearly, f is continuous. Since f(n) = 1
for all n ∈ N and f(n + 1

2n) = 2 for all n ∈ N, it is easy to see that
f is not uniformly continuous.

Remark 3.4. There are several proofs in the literature for Theo-
rem 3.2. The proof for the compactness of X ′ given here has been
taken from [17].

In the next result, we give ten equivalent conditions for an Atsuji
space. But in order to do this, we need the following definition.

Definition 3.5. Let (X, d) be a metric space and x ∈ X. We define
I(x) as follows: I(x) = d(x, X \ {x}); that is, I(x) = inf{d(x, y) :
y ∈ X \ {x}}.
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Remark 3.6. Note that I(x) denotes the degree of isolation of the
point x in X and I(x) = 0 if and only if x is a non-isolated point;
that is, x is an accumulation point. Also note that for an isolated
point x in X, I(x) = sup{r > 0 : B(x, r) = {x}}.

Theorem 3.7. For a metric space (X, d), the following conditions
are equivalent.

(a) Let (xn) be a sequence in X without a cluster point and
B = {n ∈ N : xn is not an isolated point in X}. Then B is
finite and inf{I(xn) : n /∈ B} > 0.

(b) Given any uniform space S, any continuous function f :
X −→ S is uniformly continuous. (Here obviously on X,
we consider the uniformity generated by d).

(c) Given any metric space (M,ρ), any continuous function f :
(X, d) −→ (M, ρ) is uniformly continuous.

(d) (X, d) is an Atsuji space.
(e) Let f : X −→ R be any real valued continuous function.

Then there exists a positive integer n such that every point
of the set A = {x : |f(x)| ≥ n} is isolated in X and
inf{I(x) : x ∈ A} > 0.

(f) Let (An) be a sequence of subsets of X such that
∞⋂

n=1
An = ∅.

Then there exists r > 0 such that
∞⋂

n=1
B(An, r) = ∅.

(g) Let A1 and A2 be two subsets of X such that A1 ∩ A2 = ∅.
Then there exists r > 0 such that B(A1, r) ∩B(A2, r) = ∅.

(h) For every closed nonempty subset A of X and any open
subset G of X containing A, there exists r > 0 such that
A ⊆ B(A, r) ⊆ G.

(i) If A1 and A2 are two disjoint nonempty closed sets in X,
then d(A1, A2) > 0.

(j) Let A be a subset of X without an accumulation point in
X. Then A ∩X ′ is finite and inf{I(x) : x ∈ A \X ′} > 0.

(k) The metric d generates the fine uniformity on X.

Proof: (a) =⇒ (b): Let S be a uniform space. If possible, suppose
that there exists some continuous function from X to S which is
not uniformly continuous. Hence, there is an entourage V of S such
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that

(3.1) for all n ∈ N, there exists xn, yn ∈ X with d(xn, yn) < 1/n,

but (f(xn), f(yn)) /∈ V.

Now if the sequence (xn) has a cluster point, then there exists a
strictly increasing sequence (nk) in N such that the subsequences
(xnk

) and (ynk
) of (xn) and (yn), respectively, converge to some x in

X. Then by continuity of f , for an entourage W of S satisfying W =
W−1 and W◦W ⊆ V , there exists n0 ∈ N such that (f(xnk

), f(x)) ∈
W and (f(ynk

), f(x)) ∈ W for all k ≥ n0. So (f(xnk
), f(ynk

)) ∈
V for all k ≥ n0, which is a contradiction to (3.1). Thus, (xn) has
no cluster point. By (a), there exists some m ∈ N such that for
every n ≥ m, xn is isolated in X, and inf{I(xn) : n ≥ m} = r > 0.
But this contradicts the inequality in (3.1): d(xn, yn) < 1

n for all
n > 1/r. Hence, (b) holds.

(b) =⇒ (c): This holds because a metric space (M, ρ) can be con-
sidered as a uniform space with respect to the uniformity generated
by ρ.

(c) =⇒ (d): This is obvious.

(d) =⇒ (e): Suppose that (X, d) is an Atsuji space and there is
a real valued continuous function f on X such that for every n in
N, there exists an accumulation point xn in X with |f(xn)| ≥ n.

Since (X, d) is an Atsuji space, by Theorem 3.2, the set X ′ of all
accumulation points in X is compact and so by Theorem 2.5, the
sequence (xn) has a convergent subsequence (xnk

). But (f(xnk
))

is not bounded and hence not convergent, which is contrary to the
continuity of f .

Hence, there exists n0 ∈ N such that every point of the set A =
{x ∈ X : |f(x)| ≥ n0} is isolated.

Now we just need to show that inf{I(x) : x ∈ A} > 0. Note
that I(x) > 0 for allx ∈ A and we can assume that A is infinite.
If possible, suppose that inf{I(x) : x ∈ A} = 0. So there exists a
sequence (xn) in A with lim

n→∞ In = 0, where In = I(xn). Note that

I(xn) > 0 for alln ∈ N. If needed, by passing to a subsequence we
may assume that (xn) has distinct terms and for each n, In < 1

2n .
If (xn) has a convergent subsequence (xnk

) converging to some x,
then since (xn) has distinct terms, x ∈ X ′ and by continuity of
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f , |f(x)| = | lim
k→∞

f(xnk
)| = lim

k→∞
|f(xnk

)| ≥ n0. This means x

is an isolated point. But already we have observed that x ∈ X ′.
Hence, (xn) has no convergent subsequence and consequently, the
set B = {xn : n ∈ N} is an infinite closed set in X. By Theorem
3.2, (X, d) is complete and hence B is complete. But B, being an
infinite set of isolated points, is not compact. Hence, B is not totally
bounded and consequently, there exist an ε > 0 and a subsequence
(xnk

) of (xn) of distinct points with d(xnk
, xnl

) ≥ ε ∀k, l ∈ N, k 6= l.
Now since Ink

→ 0, there exists m in N such that 4Ink
< ε for

all k ≥ m.
Also for all k ∈ N, there exists ynk

in X such that ynk
6= xnk

and d(xnk
, ynk

) < 2Ink
< 1/k. Now for k, l ≥ m, k 6= l, we have

d(xnk
, ynl

) ≥ d(xnk
, xnl

)− d(xnl
, ynl

) ≥ ε− 2Inl
> 4Inl

− 2Inl
> 0.

This implies xnk
6= ynl

for all k, l ≥ m. The sets {xnk
: k ≥ m} and

{ynk
: k ≥ m} are disjoint and closed. So by normality of X, there

exists a continuous function g : X −→ R such that g(xnk
) = 0 and

g(ynk
) = 1 for every k ≥ m. By Theorem 2.4, g is not uniformly

continuous since lim
k→∞

d(xnk
, ynk

) = 0, but |g(xnk
)− g(ynk

)| = 1 for

all k ≥ m. So inf{I(x) : x ∈ A} must be positive.

(e) =⇒ (f): Let, if possible, there exist a family of subsets {An :

n ∈ N} of X with
∞⋂

n=1
An = ∅ but

∞⋂
n=1

B(An, 1/m) 6= ∅ for every m

in N. Then for each m, let xm ∈
∞⋂

n=1
B(An, 1/m). So d(xm, An) <

1
m for alln ∈ N and hence for each n ∈ N, there exists zn ∈ An such

that d(xm, zn) < 1
m . If zn = xm for all n ∈ N, then xm ∈

∞⋂
n=1

An ⊆
∞⋂

n=1
An. But we have assumed

∞⋂
n=1

An = ∅. Hence, there exists zn

such that zn 6= xm. We call this zn by ym. So there exists ym ∈ X
such that 0 < d(xm, ym) < 1

m .
Now we claim that the sequence (xn) has no cluster point in

X. If possible, suppose that (xn) has a cluster point x in X. Let
ε > 0 be arbitrarily chosen. Since x is a cluster point of (xn),
there exists k ∈ N such that k > 2

ε and d(x, xk) < ε
2 . Then for

each n ∈ N, d(x,An) ≤ d(x, xk) + d(xk, An) ≤ d(x, xk) + 1
k < ε.

Hence, d(x,An) = 0 and consequently, x ∈ An for alln ∈ N; that is,
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x ∈
∞⋂

n=1
An. But this contradicts our assumption that

∞⋂
n=1

An = ∅.
Hence, the sequence (xn) has no cluster point in X. Now we can
also assume that (xn) consists of distinct points.

The set D = {xn : n ∈ N} is closed and discrete in X. Now as in
the proof of Theorem 3.2, we can construct a continuous function
f : X −→ R such that f(xn) = n, for all n ∈ N. Let n0 be
the positive integer given by the hypothesis in (e) so that every
point of the set A = {x ∈ X : |f(x)| ≥ n0} is isolated. Note that
xn ∈ A for all n ≥ n0 and consequently, inf{I(x) : x ∈ A} ≤
inf{I(xn) : n ≥ n0} = 0. But by (e), inf{I(x) : x ∈ A} > 0. We
arrive at a contradiction. Hence, there exists m ∈ N such that
∞⋂

n=1
B(An, 1

m) = ∅.

(f) =⇒ (g): This is immediate.
(g) =⇒ (h): Let A be a nonempty closed subset of X and G

be an open subset of X containing A. Take A1 = X \ G. Clearly,
A ∩ A1 = ∅. By (g), there exists r > 0 such that B(A, r) ∩ A1 ⊆
B(A, r) ∩B(A1, r) = ∅; that is, B(A, r) ⊆ G.

(h) =⇒ (i): Suppose that A1, A2 are two disjoint nonempty
closed sets in X. We shall show that d(A1, A2) > 0.

Clearly A1 ⊆ X \ A2. By (h), there exists some r > 0 such that
B(A1, r) ∩A2 = ∅. So for all x ∈ A1, y ∈ A2, d(x, y) ≥ r.

Hence, d(A1, A2) = inf{d(x, y) : x ∈ A1, y ∈ A2} ≥ r > 0.
(i) =⇒ (j): Let A be a subset of X without an accumulation

point in X. Suppose, if possible, that A ∩X ′ is infinite. So there
exists a sequence (xn) of distinct points in A∩X ′. Since each xn ∈
X ′, there exists yn in X such that yn 6= xn and d(xn, yn) < 1/n.
Since A does not have an accumulation point in X, the sequence
(xn) has no cluster point. Consequently, the sequence (yn) also has
no cluster point.

We can also assume that the points of the sequence (yn) are all
distinct. Now we will construct two sequences, (x′nk

) and (y′nk
),

such that x′nk
6= y′nl

for all k, l ∈ N and d(x′nk
, y′nk

) < 1/k.
We proceed by induction. For n = 1, let x′n1

= x1 and y′n1
= y1.

Let S1 = {x′n1
} and T1 = {y′n1

}. Then, S1 ∩ T1 = ∅. Sup-
pose that we have chosen x′n1

, . . . , x′nk
and y′n1

, . . . , y′nk
and Sk =
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{x′n1
, . . . , x′nk

}, Tk = {y′n1
, . . . , y′nk

} are such that Sk∩Tk = ∅. Then
choose nk+1 = min{m > nk : xm /∈ Sk ∪ Tk or ym /∈ Sk ∪ Tk}.

Suppose that nk+1 does not exist; that is, for all n > nk, xn, yn ∈
Sk ∪ Tk. This implies that {d(xn, yn) : n > nk} is finite and hence,
lim d(xn, yn) > 0, which contradicts our choice of (xn) and (yn).

Now let x′nk+1
= ynk+1

and y′nk+1
= xnk+1

, if xnk+1
∈ Tk or

ynk+1
∈ Sk; otherwise, let x′nk+1

= xnk+1
and y′nk+1

= ynk+1
.

Define the sets B = {xn′k
: k ∈ N} and C = {yn′k

: k ∈ N}. Since
the set {xn : n ∈ N} ∪ {yn : n ∈ N} has no accumulation point in
X, neither B nor C has any accumulation point in X. Therefore,
B and C are closed in X. Also by construction of (xn′k

) and (yn′k
),

B ∩ C = ∅. So by (i), d(B, C) > 0. But since d(xn′k
, yn′k

) =
d(xnk

, ynk
) < 1

k , d(B, C) = 0. We arrive at a contradiction. Hence,
A ∩X ′ must be finite.

If A \ X ′ is finite, then inf{I(x) : x ∈ A \ X ′} = min{I(x) :
x ∈ A \ X ′} > 0. So we can assume that A \ X ′ is infinite. Now
if inf{I(x) : x ∈ A \ X ′} = 0, then there exists a sequence (xn)
of distinct terms in A and a sequence (yn) in X, yn 6= xn with
d(xn, yn) < 1/n. Again as argued earlier, neither of the sequences
(xn) and (yn) has any cluster point. But then, as seen above, we
can have two disjoint closed sets with distance zero between them,
contradicting (i). Hence, inf{I(x) : x ∈ A \X ′} > 0.

(j) =⇒ (a): This is immediate.
(b) =⇒ (k): Taking S to be the space X with its finest uniformity

and considering the identity map from X to X, we can conclude
that the uniformity on X induced by the metric d is finest.

(k) =⇒ (b): This follows from Theorem 2.9. ¤

Remark 3.8. With the exception of conditions (c), (h), (i), and
(k), Theorem 3.7 is due to Atsuji [1, Theorem 1]. According to
Atsuji, condition (g) appeared as Lemma 1 in [19]. Conditions
(c), (i), and (k) have been taken from [25], and condition (h) has
been taken from [27].

In the next result, we give seven more equivalent conditions for
an Atsuji space. This result, in particular, emphasizes the role of X ′
in determining when a metric space (X, d) becomes an Atsuji space.
But before stating the result, we need the following definition.
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Definition 3.9. A subset A of a metric space (X,d) is called dis-
crete if for all x ∈ A there exists δ > 0 such that d(x, y) ≥ δ for
all y ∈ A − {x}; that is, A ∩ B(x, δ) = {x}. It is called uniformly
discrete if δ does not depend on x; that is, there exists δ > 0 such
that d(x, y) ≥ δ for all x, y ∈ A, x 6= y. If X is itself uniformly
discrete, then (X, d) is called a uniformly discrete space.

Theorem 3.10. For a metric space (X, d), the following state-
ments are equivalent.

(a) (X, d) is an Atsuji space.
(b) Every bounded real-valued continuous function on X is uni-

formly continuous.
(c) Every closed discrete subset of X is uniformly discrete in

X.
(d) The set X ′ of all accumulation points in X is compact and

for each ε > 0, the set X \B(X ′, ε) is uniformly discrete.
(e) The set X ′ of all accumulation points in X is compact and

for any sequence (xn) in X \ X ′ without a cluster point,
inf
n

I(xn) > 0.

(f) The set X ′ of all accumulation points in X is compact and
for all δ1 > 0, there exists δ2 > 0 such that for all x ∈ X
with d(x,X ′) ≥ δ1 we have I(x) > δ2.

(g) Every open cover of X has a Lebesgue number.
(h) Every open cover of X by two sets has a Lebesgue number.

Proof: (a) =⇒ (b): This is immediate.
(b) =⇒ (c): Suppose on the contrary that there exists a closed

discrete subset T of X which is not uniformly discrete. Obviously,
T is infinite. For each n, we can find xn and yn in T , xn 6= yn,
such that d(xn, yn) < 1

n . Moreover, we can assume that xn and yn

are distinct from 2n−2 preceding points x1, . . . , xn−1, y1, . . . , yn−1.
Suppose this is not possible. Then for all m ≥ n and for all x, y ∈ T
satisfying 0 < d(x, y) < 1

m , we have either x ∈ {x1, . . . , xn−1, y1,
. . . , yn−1} or y ∈ {x1, . . . , xn−1, y1, . . . , yn−1}. Since {x1, . . . , xn−1,
y1, . . . , yn−1} is a finite set, we can find some z ∈ {x1, . . . , xn−1, y1,
. . . , yn−1} and a strictly increasing sequence (nk) in N such that for
all k ∈ N, there exists some zk ∈ T such that 0 < d(zk, z) < 1

nk
.

This implies that z is an accumulation point of T . But since T is
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discrete and z ∈ T , z cannot be an accumulation point of T . We
arrive at a contradiction. Hence, T must be uniformly discrete.

The sets A = {xn : n ∈ N} and B = {yn : n ∈ N} are disjoint.
Also, A and B are closed in X as they are subsets of a closed and
discrete set T . Then by the normality of X, there exists a bounded
continuous function f : X −→ [0, 1] with f(x) = 0 for all x ∈ A and
f(x) = 1 for allx ∈ B. Since d(xn, yn) → 0 and |f(xn)−f(yn)| = 1,
by Theorem 2.4, f is not uniformly continuous. But this contradicts
(b).

(c) =⇒ (d): Assume that (c) holds.
Let, if possible, X ′ be not compact. Then by Theorem 2.5, there

exists a sequence (xn) in X ′ having no cluster point. Since each
xn is an accumulation point in X, there exists yn in X, yn 6= xn

with d(xn, yn) < 1/n. Since (xn) has no cluster point in X and
(xn) ³ (yn), (yn) has no cluster point in X. Hence, the set {xn :
n ∈ N} ∪ {yn : n ∈ N} has no accumulation point in X and thus is
a closed and discrete subset of X which is not uniformly discrete.
This is a contradiction to (c). Hence, X ′ is compact.

Now for every ε > 0, the set X \ B(X ′, ε) is clearly closed and
discrete. Therefore by (c), X \B(X ′, ε) is uniformly discrete.

(d) =⇒ (e): We just need to show that if (xn) is a sequence in
X \X ′ without a cluster point, then inf

n∈N
I(xn) is positive.

Let, if possible, inf
n∈N

I(xn) = 0. The set A = {xn : n ∈ N} has no

accumulation point and hence is closed. Also, A ∩X ′ = ∅ and X ′
is compact. By Proposition 2.7, we have d(A,X ′) = δ > 0. Now,
since inf

n∈N
I(xn) = 0, we can get a subsequence (xnk

) of (xn) and a

sequence (yk) in X such that 0 < d(xnk
, yk) < min{1/k, δ/2}. Now

for every k in N and x in X ′, d(yk, x) ≥ d(xnk
, x) − d(xnk

, yk) >
δ − δ/2 = δ/2.

Consider the set C = {xnk
: k ∈ N} ∪ {yk : k ∈ N}. Then C ⊆

X \ B(X ′, δ/2) and consequently, it is uniformly discrete, contra-
dicting the choice of (xnk

) and (yk). Hence, inf
n∈N

I(xn) > 0.

(e) =⇒ (f): Suppose on the contrary that there exists δ1 > 0 for
which no δ2 > 0 exists. That is, for all n ∈ N, we can get xn ∈ X
such that d(xn, X ′) ≥ δ1 but I(xn) < 1/n.
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We can assume that the sequence (xn) consists of distinct points.
Since (xn) is a sequence in the closed set X \ B(X ′, δ1) which is
disjoint from X ′, it has no cluster point. By (e), we get inf

n∈N
I(xn) >

0 contrary to the inequality I(xn) < 1/n. Hence, (f) holds.
(f) =⇒ (g): Let {Oλ : λ ∈ Λ} be an open cover of X. Since X ′

is a compact subset of X, by Theorem 2.7, there exists δ > 0 such
that for all x ∈ X ′, there is some λx ∈ Λ such that B(x, δ) ⊆ Oλx .

Consider the set B(X ′, δ/2). Now for all x ∈ B(X ′, δ/2), there
exists x′ ∈ X ′ such that d(x, x′) < δ/2. It can be easily seen that
B(x, δ/2) ⊆ B(x′, δ) ⊆ Oλx′ . Now by (f), for δ/2 there exists η > 0
such that for all x ∈ X \B(X ′, δ/2), B(x, η) = {x} ⊆ Oλ for some
λ.

Thus, ε = min(δ/2, η) is a Lebesgue number for the open cover.
(g) =⇒ (h): This is immediate.
(h) =⇒ (a): Let A be a nonempty closed subset of X and G be

an open subset of X containing A. Then X = G ∪ (X \ A). By
(h), there exists δ > 0 such that for every x ∈ X, B(x, δ) ⊆ G or
B(x, δ) ⊆ X \ A. If x ∈ A, then clearly B(x, δ) ⊆ G and hence,
B(A, δ) ⊆ G. So by Theorem 3.7, (X, d) is an Atsuji space. ¤
Remark 3.11. Conditions (b), (g), and (h) have been taken from
[18]. Condition (b) has also been given in [22], while condition (g)
has been studied in [7] and [27], as well. Conditions (c), (d), and (f)
have been taken from [22], [3], and [11], respectively. Condition (e)
is the third condition of Theorem 1 in [1]. This condition, according
to Atsuji, appeared as Theorem 2 in [13].

Remark 3.12. Condition (c) in Theorem 3.10 is alternatively stated
in [7] as follows:

If A is an infinite subset of X without any accumu-
lation point in X, then A is uniformly discrete in
X.

The next theorem gives mainly the sequential characterizations
of an Atsuji space. In order to state this result, we need the follow-
ing definitions.

Definition 3.13. A sequence (xn) of distinct isolated points in a
metric space (X, d) is called a sequence of paired isolated points if
lim

n→∞ d(x2n−1, x2n) = 0.
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Definition 3.14. A sequence (xn) in a metric space (X, d) is called
pseudo-Cauchy if it satisfies the following condition: for all ε > 0
and for all n ∈ N, there exist j, k ∈ N such that j 6= k, j, k > n,
and d(xj , xk) < ε.

Intuitively, a pseudo-Cauchy sequence is one in which pairs of
points are arbitrarily close frequently rather than eventually as in
a Cauchy sequence.

Definition 3.15. Let (X, d) be a metric space. A continuous func-
tion f : [0, 1] −→ X such that f(0) 6= f(1) is called a path in X. In
this case, we say that the metric space (X, d) contains a path.

Theorem 3.16. For a metric space (X, d), the following state-
ments are equivalent.

(a) There exists a metric space (M,ρ) containing a path such
that any continuous function f : (X, d) −→ (M,ρ) is uni-
formly continuous.

(b) If (xn) and (yn) are two asymptotic sequences in X such
that xn 6= yn for each n, then the sequence (xn) (equivalently
(yn)) has a cluster point in X.

(c) Every sequence of paired isolated points in X has a cluster
point and every sequence in X ′ has a cluster point.

(d) Every pseudo-Cauchy sequence with distinct terms in X has
a cluster point.

(e) (X, d) is an Atsuji space.

Proof: (a) =⇒ (b): Suppose on the contrary that (b) does not
hold; that is, there exist two asymptotic sequences (xn) and (yn)
in X, xn 6= yn for each n such that (xn) (equivalently (yn) ) has
no cluster point. By the method used in the proof of Theorem 3.7
(i) =⇒ (j), we can get two disjoint closed sets B and C from se-
quences (xn) and (yn) such that d(B, C) = 0, and by the normality
of X, we have a real valued continuous function, f : X −→ [0, 1]
such that f(B) = {0} and f(C) = {1}.

Now since the metric (M, ρ) contains a path, there exists a con-
tinuous function φ : [0, 1] −→ M such that a = φ(0) 6= φ(1) = b,
where a, b ∈ M .

Consider the mapping g : X −→ M as g(x) = φ(f(x)).
Being a composition of two continuous functions, g is contin-

uous. But g is not uniformly continuous as d(B,C) = 0 and
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ρ(g(B), g(C)) = ρ(a, b) > 0. Therefore, we get a contradiction
to (a) and hence, (b) holds.

(b) =⇒ (c): Let (xn) be a sequence of paired isolated points in X.
Then the sequence (zn) = (x2n−1) and (yn) = (x2n) are asymptotic
and thus (zn) and (yn) have a common cluster point. Hence, (xn)
also has a cluster point.

Now if (xn) is a sequence in X ′, then there exists a sequence (yn)
in X such that 0 < d(xn, yn) < 1

n for alln. Then (xn) and (yn) are
asymptotic sequences and hence, (xn) has a cluster point.

(c) =⇒ (d): Suppose that (xn) is a pseudo-Cauchy sequence with
distinct terms. Now, if for infinitely many n, xn ∈ X ′, then (xn)
has a subsequence (xnk

) in X ′. Hence by (c), (xnk
) has a cluster

point and consequently, (xn) also has a cluster point.
Now suppose that xn ∈ X ′ for only finitely many n. Then there

exists n0 ∈ N such that for each n ≥ n0, xn is isolated in X. Again
since (xn) is pseudo-Cauchy and has distinct terms, there exists a
subsequence (xnk

) of (xn) such that for each k, xnk
is isolated and

d(xn2k−1
, xn2k

) < 1
k ; that is, (xnk

) is a sequence of paired isolated
points in X. Again by (c), as argued earlier, (xn) has a cluster
point.

(d) =⇒ (e): If possible, suppose that there exists an open cover
{Oλ : λ ∈ Λ} of X having no Lebesgue number. Then for each
n ∈ N, 1/n is not a Lebesgue number for the covering. Hence for
each n ∈ N, there exists x2n−1 ∈ X such that B(x2n−1, 1/n) 6⊆ Oλ

for all λ ∈ Λ. Since {Oλ : λ ∈ Λ} is an open cover of X, there exists
λn ∈ Λ such that x2n−1 ∈ Oλn . But since B(x2n−1, 1/n) 6⊆ Oλn ,
there exists x2n ∈ B(x2n−1, 1/n)\Oλn ; that is, d(x2n−1, x2n) < 1/n
and x2n /∈ Oλn .

Now we have a sequence (xn) in X which is clearly pseudo-
Cauchy. Also since x2n−1 6= x2n for alln ∈ N, we can find a pseudo-
Cauchy subsequence (xnk

) of (xn) with distinct terms. Hence by
(d), (xnk

), and consequently (xn), has a cluster point, say a. Let
a ∈ Oα for some α ∈ Λ and δ > 0 be such that B(a, δ) ⊆ Oα.
Since a is a cluster point of the sequence (xn), there exists m ∈ N
such that m > 2/δ and x2m−1 ∈ B(a, δ/2). Then B(x2m−1, 1/m) ⊆
B(a, δ) ⊆ Oα. But this contradicts the fact that for each n ∈ N,
B(x2n−1,

1
n) 6⊆ Oλ for all λ ∈ Λ. Consequently, every open cover
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of X must have a Lebesgue number. Hence by Theorem 3.10, (e)
holds.

(e) =⇒ (a): This is immediate. ¤
Remark 3.17. Conditions (b) and (d) have been taken from [25]
and [24], respectively. Condition (d) has also been mentioned in
[3] and [4]. Condition (c) has been taken from [3], and a condition
similar to (a) has been given in [25].

Remark 3.18. Condition (b) in Theorem 3.16 is alternatively stated
in [7] as follows:

For every sequence (xn) in X which has no con-
vergent subsequence, the only sequences (x′n) in X
such that lim d(xn, x′n) = 0 are those which are al-
most equal to (xn), in the sense that xn = x′n for all
but a finite set of indices.

We have already seen that a compact metric space is an Atsuji
space while an Atsuji space is complete. So for a metric space
(X, d), the property of being an Atsuji space lies in between the
completeness and compactness. Since a metric space is compact if
and only if it is countably compact, for a metric space (X, d), the
following conditions are equivalent: (a) (X, d) is compact; (b) every
family of closed subsets of X with the finite intersection property
has a nonempty intersection; and (c) every decreasing sequence of
nonempty closed subsets of X has a nonempty intersection. Note
that a family F of sets is said to have the finite intersection prop-
erty if every finite intersection of sets in F is nonempty. On the
other hand, Cantor’s theorem says that a metric space (X, d) is
complete if and only if for every decreasing sequence F1 ⊇ F2 ⊇ . . .
of nonempty closed subsets of X, such that lim

n→∞ δ(Fn) = 0, the

intersection
∞⋂

n=1
Fn is nonempty. Here δ(Fn) = the diameter of

Fn = sup{d(x, y) : x, y ∈ Fn}. In 1930, Casimir Kuratowski in
[14] gave an analog, actually a generalization, of Cantor’s theorem
in terms of a notion of measure of noncompactness. In order to
state Kuratowski’s result, first we need to explain this notion in
the following definition.

Definition 3.19. Let (X, d) be a metric space and A be a nonempty
subset of X. Then we define α(A) and χ(A) as follows:
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(a) α(A) = inf{ε > 0 : A can be covered with a finite number
of sets of diameter less than ε};

(b) χ(A) = inf{ε > 0 : A ⊆ B(F, ε) for some finite subset
F of X}.

We also set α(∅) = χ(∅) = 0. The first one α is known as the
Kuratowski measure of noncompactness, while the second one χ is
known as the Hausdorff or ball measure of noncompactness.

Note that a subset A of X is totally bounded if and only if α(A) =
0 = χ(A). Actually, both α and χ measure nontotal boundedness.
Also α and χ are in some sense equivalent, since χ(A) ≤ α(A) ≤
2χ(A) for allA ⊆ X. For more details on α and χ, one can see
[2], [12], and [6, Exercise 1.1.4, p. 7]. Now we are ready to state
Kuratowski’s theorem:

Let (X, d) be a metric space. Then the following
statements are equivalent.
(a) (X, d) is complete.
(b) For every decreasing sequence F1 ⊇ F2 ⊇ . . .

of nonempty closed subsets of X such that

lim
n→∞ α(Fn) = 0, the intersection

∞⋂
n=1

Fn is

nonempty and compact.
(c) For every decreasing sequence F1 ⊇ F2 ⊇ . . .

of nonempty closed subsets of X such that

lim
n→∞ χ(Fn) = 0, the intersection

∞⋂
n=1

Fn is

nonempty and compact.

In view of the discussion and observation made above, in the next
result, we present analogous characterizations for a metric space
to be an Atsuji space in terms of a variant of finite intersection
property and Cantor-like conditions. But in order to state this
result, first we need the following definition and lemma.

Definition 3.20. Let (X, d) be a metric space and A be a
nonempty subset of X. We define d(A) and d(A) as follows:

(a) d(A) = sup{d(a,X \ {a}) : a ∈ A} and
(b) d(A) = inf{d(a,X \ {a}) : a ∈ A}.
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Note that d(A) ≤ d(A) and d(A) ≤ d(B) if ∅ 6= A ⊆ B ⊆ X. It
can be easily shown that d(A) = d(A). If A = {x}, then d(A) =
d(A) and in this case, the common value is simply I(x).

Lemma 3.21. Let (X, d) be a metric space and let (xn) be a se-
quence in X with lim

n→∞ I(xn) = 0. If (xn) has a cluster point x in
X, then x is an accumulation point of X.

Theorem 3.22. For a metric space (X, d), the following state-
ments are equivalent.

(a) (X, d) is an Atsuji space.
(b) Let (xn) be a sequence in X such that the sequence (I(xn))

converges to 0. Then (xn) has a cluster point.
(c) Let F be a family of closed subsets of X with the finite

intersection property. If there exists a sequence (An) in F
such that lim

n→∞ d(An) = 0, then ∩{F : F ∈ F} 6= ∅.
(d) For every decreasing sequence F1 ⊇ F2 ⊇ . . . of nonempty

closed subsets of X, such that lim
n→∞ d(Fn) = 0, the intersec-

tion
∞⋂

n=1
Fn is nonempty.

(e) For every decreasing sequence F1 ⊇ F2 ⊇ . . . of nonempty
closed subsets of X, such that lim

n→∞ d(Fn) = 0, the intersec-

tion
∞⋂

n=1
Fn is nonempty.

Proof: (a) =⇒ (b): Let (X, d) be an Atsuji space and (xn) be a
sequence in X such that lim

n→∞ I(xn) = 0. If possible, assume that

(xn) does not have a cluster point. Then by Theorem 3.7, the set
B = X ′ ∩ {xn : n ∈ N} is finite and inf{I(xn) : xn /∈ B} > 0.
Obviously then, lim

n→∞ I(xn) > 0 and we arrive at a contradiction.

Hence, the sequence (xn) must have a cluster point.
(b) =⇒ (c): Let F be a family of closed subsets of X with the

finite intersection property. Suppose that there exists a sequence
(An) in F such that lim

n→∞ d(An) = 0. We need to show that ∩{F :

F ∈ F} is nonempty.
Note that if (b) holds, then X ′ is compact, because x ∈ X ′ if

and only if I(x) = 0. So if (xn) is a sequence in X ′, then (xn)
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has a convergent subsequence. But the limit of this convergent
subsequence must belong to X ′ since X ′ is closed.

Now let Σ be a finite subfamily of F . For each n ∈ N, let

En = (
n⋂

i=1
Ai)∩ (∩{F : F ∈ Σ}). Since F has the finite intersection

property, each En is nonempty. For each n, pick an element xn

from En. Since d is monotone, I(xn) = d({xn}) ≤ d(En) ≤ d(An).
But lim

n→∞ d(An) = 0. Hence, lim
n→∞ I(xn) = 0 and consequently by

(b), the sequence (xn) has a cluster point x in X.
Since lim

n→∞ I(xn) = 0, by Lemma 3.21, x ∈ X ′. Now

x is a cluster point of (xn); therefore, there exists a subse-
quence (xnk

) of (xn) such that xnk
→ x. Note that for any

m ∈ N, xnk
∈ Em for all k ≥ m. But each Em is closed. Hence,

x ∈ Em for all m ∈ N; that is, x ∈
∞⋂

n=1
En and consequently, x ∈

(
∞⋂

n=1
En) ∩ X ′. But (

∞⋂
n=1

En) ∩ X ′ ⊆ (∩{F : F ∈ Σ}) ∩ X ′ =

∩{F ∩ X ′ : F ∈ Σ}. Hence, the family of closed sets {F ∩ X ′ :
F ∈ F} has the finite intersection property. But X ′ is com-
pact. Hence, ∩{F ∩ X ′ : F ∈ F} is nonempty and consequently,
∩{F : F ∈ F} 6= ∅.

(c) =⇒ (d): This is trivial.
(d) =⇒ (a): Let (xn) be a pseudo-Cauchy sequence in X with

distinct terms. If needed, by passing to a subsequence we may
assume that for each n, d(x2n−1, x2n) < 1

n . For each n, let Bn =
{xk : k ≥ n} and An = Bn. Since the terms of (xn) are distinct,
d(An) = d(Bn) = d(Bn) ≤ 2

n and consequently, lim
n→∞ d(An) = 0.

Obviously (An) is a decreasing sequence. Hence by (d),
∞⋂

n=1
An 6=

∅. Let x ∈
∞⋂

n=1
An. Choose any ε > 0 and any n ∈ N. Since

x ∈ An, there exists k ≥ n such that d(xk, x) < ε. Hence, x is a
cluster point of the sequence (xn) and consequently by Theorem
3.16, (a) holds.

(b) =⇒ (e): Let (Fn) be a decreasing sequence of nonempty
closed sets in X such that lim

n→∞ d(Fn) = 0. For each n ∈ N,
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choose xn ∈ Fn such that I(xn) ≤ d(Fn) + 1
n . Since lim

n→∞ d(Fn) =

0, lim
n→∞ I(xn) = 0 and consequently by (b), the sequence (xn) has

a cluster point x. Since (Fn) is decreasing, for each k ∈ N, {xn :
n ≥ k} ⊆ Fk. Hence, x ∈ Fk = Fk for all k ∈ N and consequently,

x ∈
∞⋂

n=1
Fn.

(e) =⇒ (d): It immediately follows from the observation that for
any nonempty subset A of X, d(A) ≤ d(A). ¤

Remark 3.23. The condition (b) of the last theorem appears in
[11], while the rest of the result appears in [4].

Corollary 3.24. Every closed subset of an Atsuji space is an Atsuji
space.

Proof: Let A be a closed subset of X and (xn) be a pseudo-
Cauchy sequence in A. Since (X, d) is an Atsuji space, (xn) has a
cluster point in X. But since A is closed in X, this cluster point
must belong to A. Hence, (A, d) is an Atsuji space. ¤

Now we answer an interesting question. We have already seen
that the compactness of X ′ is a necessary condition for a metric
space to be an Atsuji space. Now we would like to query if the con-
verse is also true. More precisely, if X ′ is compact in a metrizable
space X, then does X admit a compatible metric ρ so that (X, ρ)
becomes an Atsuji space? The answer is affirmative. In fact, there
are several equivalent conditions on a metrizable space X, each of
which ensures that there exists a compatible metric ρ on X such
that (X, ρ) becomes an Atsuji space.

In Theorem 2 of [22], John Rainwater has given eight such equiv-
alent conditions and one more in the proof of this result. Here we
list four of them. For a metrizable space X, the following conditions
are equivalent: (a) the set X ′ of all accumulation points in X is
compact; (b) the diagonal in X ×X has a countable basis of neigh-
borhoods; (c) every subset of X has a compact boundary; and (d)
every closed set in X has a countable basis of neighborhoods. Due
to Theorem 1 of [22], it means that if X is a metrizable space and
X ′ is compact, then there exists a compatible metric ρ on X such
that (X, ρ) becomes an Atsuji space. But two constructive proofs
of this result are also available in the literature. Out of these two
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proofs, one was given by Mrówka in [17] and the other one has been
given by Beer in [5]. We would also like to mention that the prob-
lem of describing those metrizable topological spaces which admit
an Atsuji metric has also been considered by Nagata and Levšenko
in [19] and [15], respectively. Here we reproduce Beer’s proof in a
slightly different form, but in detail.

Theorem 3.25. Let X be a metrizable space and X ′ be compact.
Then there exists a compatible metric ρ on X such that (X, ρ) be-
comes an Atsuji space.

Proof (due to Beer): If X ′ = ∅, then consider the uniformly
discrete metric ρ on X defined as follows: ρ(x, y) = 1 if x 6= y and
ρ(x, x) = 0, x, y ∈ X. The metric ρ is compatible with the discrete
topology on X and (X, ρ) is clearly an Atsuji space.

Now suppose that X ′ 6= ∅. Let d be a compatible metric for X.
Define ρ : X ×X −→ R as:

ρ(x, y) =
{

0 if x = y
d(x, y) + max{d(x,X ′), d(y, X ′)} if x 6= y.

Using the inequality,
max{α, γ} ≤ α + γ ≤ max{α, β}+ max{β, γ} ∀ α, β, γ ≥ 0,

it can be easily verified that ρ is a metric on X.
Clearly, every convergent sequence in (X, ρ) is convergent in

(X, d). Now let (xn) be a sequence of distinct points converging
to x in (X, d). Then, x ∈ X ′ and d(x, X ′) = 0. Now,

ρ(xn, x) ≤ d(xn, x) + d(xn, X ′)
≤ 2d(xn, x).

So (xn) is convergent to x in (X, ρ). Therefore, ρ and d are equiv-
alent metrics on X.

Let (xn) and (yn) be two asymptotic sequences in (X, ρ). Then
0 ≤ d(xn, X ′) ≤ ρ(xn, yn) → 0 as n → ∞. So there exists a se-
quence (pn) in X ′ asymptotic to (xn) in (X, d). Since X ′ is compact,
by Theorem 2.5, (pn) has a cluster point in (X, d). Consequently,
(xn) (equivalently (yn)) has a cluster point in (X, d) and since d
and ρ are equivalent, (xn) (equivalently (yn)) has a cluster point in
(X, ρ). By Theorem 3.16, (X, ρ) is an Atsuji space. ¤

We end this paper with the following remark.
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Remark 3.26. In [3, Theorem 1] and in [6, Theorem 2.3.4,
p. 57], Beer has given four equivalent external characterizations
for a metric space (X, d) to be an Atsuji space in terms of rela-
tionships between the topology of uniform convergence and two
hyperspace topologies on the space of continuous functions from
(X, d) to a metric space (Y, ρ). These characterizations have not
been included in this paper.
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