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MONOTONICALLY D-SPACES

STRASHIMIR G. POPVASSILEV AND JOHN E. PORTER

Abstract. Call X monotonically D if we can assign a closed
discrete D(U) to every open neighborhood assignment U =
{U(x) : x ∈ X} in such a way that X =

⋃{U(x) : x ∈ D(U)}
and D(U) ⊆ D(V) if V (x) ⊆ U(x) for all x. The Michael
line and countable first-countable spaces are monotonically
D. The Sorgenfrey line, the unit interval, and ω1 + 1 are not.

Introduction

Monotone versions of topological properties are often interesting
and useful. The most well-known such property is monotone nor-
mality; see e.g., [1], [3], [6]. Monotone paracompactness is studied
in [5]. In the spring of 2004, David Lutzer visited Auburn Uni-
versity and presented the monotone Lindelöf property [2], which
prompted the definition of monotonically D-spaces.

Recall that a family U = {U(x) : x ∈ X} is an open neighborhood
assignment (ONA for short) for a topological space X if x ∈ U(x)
and U(x) is open for each x. X is called a D-space (see [4]) if for
every ONA U = {U(x) : x ∈ X} there is a closed discrete subset
D(U) of X such that {U(x) : x ∈ D(U)} covers X. We call X
monotonically D if, for each ONA U , we can pick a closed discrete
subset D(U) with X =

⋃{U(x) : x ∈ D(U)} such that larger closed
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discrete sets correspond to finer ONA’s; i.e., if V = {V (x) : x ∈ X}
is an ONA with V (x) ⊆ U(x) for all x, then D(V) ⊇ D(U).

In section 1, we describe a class of monotonically D-spaces that
includes all countable first-countable T1-spaces and the Michael
line, and we prove some preservation properties. In section 2, we
give examples of spaces that are not monotonically D, including
a countable example, ω1 + 1, the unit interval, and uncountable
subsets of the Sorgenfrey line. In section 3, we define cofinally
monotonically D-spaces and show that these are the same as D-
spaces.

1. Some classes of monotonically D-spaces

Theorem 1.1. If X = {xn : n ∈ ω} is a compact, countable T1-
space, then X is monotonically D.

Proof: For any ONA U = {U(xn) : n ∈ ω}, let kU = min{k :
X =

⋃
n≤k U(xn)}, and let D(U) = {xn : n ≤ kU}. ¤

A topological space X is generalized left separated (GLS for short)
[4] if there is a reflexive (not necessarily transitive) binary relation
¹ on X, called a GLS relation, such that (a) every non-empty closed
subset F has a ¹-minimal element (where an x ∈ F is ¹-minimal
for F if the conditions y ∈ F and y ¹ x imply that y = x), and (b)
the set {y ∈ X : x ¹ y} is open for each x ∈ X.

It was shown in [4] that all finite powers of the Sorgenfrey line
are GLS and that every GLS-space is a D-space. It was observed
that both compact Hausdorff spaces without isolated points and
uncountable separable metrizable spaces are not GLS. (A countable
space with the co-finite topology is a compact, first-countable, T1,
GLS-space with no isolated points.) If ¹ is a GLS relation on a
T1-space X, then ¹ is antisymmetric; i.e., if x ¹ y and y ¹ x, then
x = y (for otherwise, the closed set {x, y} would have no ¹-minimal
element).

Theorem 1.2. Suppose that (X,¹) is a GLS T1-space and, for
each x ∈ X, Bx is a local base at x such that

1. Bx is well-ordered under reverse inclusion;
2. if B ∈ Bx, then B ⊆ {y ∈ X : x ¹ y};



MONOTONICALLY D-SPACES 357

3. if x ¹ y with x 6= y, B ∈ Bx, B′ ∈ By, and y ∈ B, then
B′ ⊆ B.

Then X is monotonically D.

Proof: Given any ONA U = {U(x) : x ∈ X}, let U ′(x) be
the maximal (with respect to inclusion) element of Bx such that
x ∈ U ′(x) ⊆ U(x). Let D(U) = {z ∈ X : z 6∈ U ′(y) if y ∈ X \ {z}}.
We claim that X =

⋃{U ′(z) : z ∈ D(U)}. Fix any x and let
F (x) = {y ∈ X : x ∈ U ′(y)}. Then F (x) is closed, for if w ∈ F (x),
then pick y ∈ F (x) with y ∈ U ′(w). Then w ¹ y. If w 6= y,
then U ′(y) ⊆ U ′(w). Hence, x ∈ U ′(w) and w ∈ F (x) (use that
x ∈ U ′(y) since y ∈ F (x)), which completes the proof that F (x) is
closed. Let z be a ¹-minimal element of F (x). Then z ∈ D(U) for
if z ∈ U ′(y) for some y 6= z, then y ¹ z and U ′(z) ⊆ U ′(y); hence,
y ∈ F (x), contradicting ¹-minimality of z in F (x). Thus, every x
is contained in U ′(z) for some z ∈ D(U). The set D(U) is closed
and discrete for if x ∈ U ′(z) for some z ∈ D(U), then U ′(z) is a
neighborhood of x such that U ′(z) ∩D(U) = {z} (use also that X
is T1).

Now assume that V = {V (x) : x ∈ X} is an ONA for X, finer
than U (and that V ′(x), for each x, and D(V) are defined, following
the above procedure). The inclusion D(U) ⊆ D(V) is clear from
the definition of these sets, since V ′(y) ⊆ U ′(y) for all y. ¤

Corollary 1.3. (a) Every countable, first-countable T1-space X is
monotonically D.

(b) Non-stationary subsets of ω1 are monotonically D.

Proof: (a) List X as {xn : n ∈ ω} and let xn ¹ xk ⇐⇒ n ≤ k.
Clearly, ¹ is a GLS relation on X. For each n choose a local base
Bn = {Bi(xn) : i ∈ ω} at xn such that Bi+1(xn) ⊆ Bi(xn) ⊆
{xk : n ≤ k} for every i ∈ ω. Fix n. There are only finitely many
m < n, and for each such m there are only finitely many j such
that xn ∈ Bj(xm). Since the intersection of these Bj(xm) is open,
we may remove (by induction on n = 1, 2, ...) the elements of Bn

that are not contained in this intersection to ensure that if m < n
and xn ∈ Bj(xm) for some j, then Bi(xn) ⊆ Bj(xm) for all i.

(b) Each non-stationary subset of ω1 is the topological sum of
countable, first-countable spaces. ¤
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Recall that a space X is non-Archimedean ([7], [8]; see also [9])
if it has a base B of rank 1; i.e., if B, B′ ∈ B and B ∩B′ 6= ∅, then
B ⊆ B′ or B′ ⊆ B. Equivalently, X is non-Archimedean if it has
a tree-base, i.e., a base which is a tree under reverse inclusion (and
hence has rank 1) [10].

Corollary 1.4. Every non-Archimedean, GLS T1-space X (hence,
every non-Archimedean, countable T1-space) is monotonically D.

Proof: Let ¹ be a GLS relation on X and let B be a tree-base
for X. Let Bx = {B ∈ B : x ∈ B ⊆ {y ∈ X : x ¹ y}}. Then
conditions 1 and 2 of Theorem 1.2 are satisfied. We verify that 3 is
also satisfied. If B ∈ Bx, B′ ∈ By, and y ∈ B, then either B ⊆ B′
or B′ ⊆ B. If x ¹ y and x 6= y, then y 6¹ x; hence, x 6∈ B′ and
B′ ⊆ B. ¤

Corollary 1.5. (a) Suppose X is a T1-space and A is a closed GLS
subspace which is non-Archimedean in X; i.e., there is a family B
of open subsets of X which is a tree under reverse inclusion and
contains a local base at x (in X) for every x ∈ A. Suppose also
that X \A is discrete. Then X is monotonically D.

(b) The Michael line M is monotonically D.

Proof: (a) If B′ = B ∪ {{y} : y ∈ X \ A}, then B′ is a tree-
base for X. The GLS relation ¹ on A can be extended to a GLS
relation ¹ on X as follows: Let x ¹ y if x ∈ A and y ∈ X \ A,
and let x ¹ x if x ∈ X \ A. If x ∈ A, then {y ∈ X : x ¹ y} =
{y ∈ A : x ¹ y} ∪ (X \ A), which is open. If x ∈ X \ A, then
{y ∈ X : x ¹ y} = {x}, which is open. If F ⊆ X \ A, then every
element of F is ¹-minimal. If F is closed and F ∩A 6= ∅, then the
¹-minimal elements for F ∩A are also ¹-minimal for F . Thus, the
preceding corollary applies.

(b) The rationals are non-Archimedean in M (take B to be a
suitable family of open intervals with irrational endpoints). ¤

Remark 1.6. The subspace A of all non-isolated points of the
space X from Example 2.2 is a converging sequence; hence, it is
non-Archimedean, but it is not non-Archimedean in X.

Theorem 1.7. (a) If X is monotonically D and F is a closed subset
of X, then F is monotonically D.
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(b) If the subspace Z of all non-isolated points of a space X is
discrete (in particular, is a singleton), then X is monotonically D.

(c) If X is monotonically D and f : X → Y is a continuous
closed surjection, then Y is monotonically D.

(d) Suppose Y =
⋃

i∈ω Fi =
⋃

i∈ω int(Fi) where each Fi is a
closed monotonically D-subspace of Y , and Fi ⊆ Fi+1. Then Y is
monotonically D. Thus, if X is a normal monotonically D-space
and Y is an open Fσ subspace, then Y is monotonically D.

Proof: (a) Let W = X \ F . For every relatively open U ⊆ F ,
let U ′ = U ∪ W . Then U ′ is open in X and U = U ′ ∩ F (where
U ′ is maximal with this property). If U = {Ux : x ∈ F} is a
relatively ONA for F , let U ′ = {U ′

x : x ∈ F}∪{Wx : x ∈ W} where
Wx = W for each x ∈ W . Let DU ′ be the closed discrete subset of
X corresponding to U ′, and let DU = F ∩DU ′ . Since Wx ∩ F = ∅
for each x ∈ W ,

⋃{Ux : x ∈ DU} = F . If V = {Vx : x ∈ F} is
another relatively ONA for F such that Vx ⊆ Ux for all x ∈ F , then
V ′

x ⊆ U ′
x, too; hence, DU ′ ⊆ DV ′ and DU ⊆ DV .

(b) For every ONA U = {U(x) : x ∈ X}, the set DU = Z ∪ (X \⋃{U(x) : x ∈ Z}) works (use also that Z must be closed).
(c) Suppose that V = {Vy : y ∈ Y } is an ONA for Y . For each

y ∈ Y and x ∈ f−1(y), let Ux = f−1(Vy). Then U = {Ux : x ∈ X}
is an ONA for X, and if DU is the corresponding closed discrete
subset of X, then DV = f(DU ) works.

(d) Let H0 = F0 and, for each i ≥ 1, let Hi = Fi \ intY (Fi−1).
Each Hi is closed in Fi, hence monotonically D, and Y =

⋃
i∈ω Hi.

If Di is closed discrete in Hi, then
⋃

i∈ω Di is closed discrete in Y ,
since the family {Hi : i ∈ ω} is locally finite in Y . Given an ONA
U = {Uy : y ∈ Y } for Y , let Di be the closed discrete subspace of
Hi corresponding to {Uy∩Hi : y ∈ Hi}, and let DU =

⋃
i∈ω Di. ¤

Remark 1.8. In relation to part (b), if the subspace Z of all non-
isolated points of a space X is a D-space, then X is a D-space.
Here we cannot replace D by monotonically D, for if X is the space
from Example 2.2, then the subspace of all non-isolated points is
monotonically D, but X is not. Although discrete spaces are GLS,
part (b) cannot be deduced from Corollary 1.5(a), since even if Z
is a singleton, it need not be non-Archimedean in X.

Fσ-subspaces of monotonically D T1-spaces need not be mono-
tonically D. Let X be countable but not monotonically D (see
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Example 2.2), and take X ∪ {p} where p is a new point whose
neighborhoods are co-finite. Clearly, X is Fσ in X ∪ {p}, which is
monotonically D by Theorem 1.1. We do not know if monotonically
D is hereditary, or Fσ-hereditary, in the class of Hausdorff spaces.

2. Spaces that are not monotonically D

Example 2.1. ω1 + 1 is not monotonically D (although it is D).

Proof: For each α < ω1, let Uα = {Uα(δ) : δ ≤ ω1} where
Uα(δ) = [0, δ] if δ < ω1, and Uα(ω1) = (α, ω1]. Then Uα(δ) is a
neighborhood of δ for all δ ≤ ω1, and hence each Uα, α < ω1, is an
ONA. Assume ω1+1 were monotonically D, and let Dα be the closed
discrete set corresponding to Uα. Since α 6∈ (α, ω1] = Uα(ω1), it
follows that α ∈ Uα(δ(α)) = [0, δ(α)] for some δ(α) ∈ Dα with
α ≤ δ(α) < ω1. Define α0 = 0 and αn+1 = δ(αn) + 1, and let
β = supn<ω αn. Since Uβ is a finer ONA than each of the Uαn , Dβ

must contain all Dαn ; hence, all δ(αn), n < ω, a contradiction. ¤

Example 2.2. There is a countable space X that is not monoton-
ically D (although it is D, since every σ-compact T1-space is D).

Proof: Let X be a subset (but not a subspace) of the plane
consisting of the origin (0, 0), all points of the sequence T = {( 1

n , 0) :
n ≥ 1}, and, for each n ≥ 1, all points of the sequence S(n) =
{( 1

n , 1
m) : m ≥ 1}. Let T (n) be the tail of T determined by n

(i.e., T (n) = {( 1
n′ , 0) : n′ ≥ n}) and S(n, m) be the tail {( 1

n , 1
m′ ) :

m′ ≥ m} of S(n) determined by m (thus, S(n) = S(n, 1)). By
definition, all points ( 1

n , 1
m) are isolated. The basic neighborhoods

of ( 1
n , 0) are of the form S(n,m) ∪ {( 1

n , 0)} = S(n,m), m ≥ 1.
The basic neighborhoods of (0, 0) are of the form {(0, 0)} ∪ T (n) ∪
(∪n′≥nS(n′,mn′)), where n ≥ 1, and mn′ ≥ 1 for each n′ ≥ n. In
other words, basic neighborhoods of (0, 0) contain a tail T (n) for
some n, together with a tail S(n′,mn′) for each ( 1

n′ , 0) ∈ T (n).
For the remainder of the proof, we will consider only ONA’s that

assign S(n) = S(n) ∪ {( 1
n , 0)} to ( 1

n , 0) for each n ≥ 1 and assign
{( 1

n , 1
m)} to ( 1

n , 1
m). In order to specify such an ONA, we need only

to specify the neighborhood assigned to (0, 0). Assume X were
monotonically D. If U (with subscripts) is a neighborhood assigned
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to (0, 0), then U and D (with subscripts) will denote the resulting
ONA and the corresponding closed discrete set, respectively.

Let U1 = {(0, 0)}∪ (∪n′>1S(n′)) and U1,m = U1∪S(1,m + 1) for
each m. Then U1 ⊆ U1,m; hence, U1 is finer than U1,m and D1 ⊇
D1,m for all m. Since D1 is closed and discrete, there is an m1 such
that S(1, m1)∩D1 = ∅. Then S(1,m1)∩D1,m1 = ∅. Since (1, 1

m1
) 6∈

U1,m1 , there are only two sets in U1,m1 that contain (1, 1
m1

), namely
{(1, 1

m1
)} and S(1) (assigned to (1, 0)). Since (1, 1

m1
) ∈ S(1,m1),

it follows that (1, 1
m1

) 6∈ D1,m1 ; hence, (1, 0) ∈ D1,m1 . By in-
duction, assume that n > 1 and mn′ have been defined for all
n′ < n. Let Un = {(0, 0)} ∪ (∪n′>nS(n′)) ∪ (∪n′<nS(n′,mn′ + 1))
and Un,m = Un ∪ S(n,m + 1) for each m. Then Dn ⊇ Dn,m for
all m, and an argument similar to the above shows there is an mn

such that ( 1
n , 0) ∈ Dn,mn .

Let U = {(0, 0)}∪(∪n≥1S(n,mn + 1). Then U ⊆ Un,mn for all n.
Hence, the corresponding closed discrete D must contain all Dn,mn .
It follows that {( 1

n , 0) : n ≥ 1} ⊆ D, a contradiction. ¤

Part (b) of the following theorem shows that non-Archimedean
spaces need not be monotonically D.

Theorem 2.3. None of the following spaces is monotonically D:
(a) the closed unit interval I = [0, 1],
(b) the Cantor set C,
(c) any uncountable Polish space P ,
(d) any compact Hausdorff space Y with no isolated points.

Proof: Part (b) follows from (a) (and Theorem 1.7(c)) since I is
the closed continuous image of C. Part (c) follows from (b) (and
Theorem 1.7(a)) since every uncountable Polish space P contains a
closed copy of C. For part (d), observe that Y contains a compact
subspace K which can be mapped by a quotient (and closed) map
onto the Cantor set C. We prove (a).

Assume I were monotonically D and define the ONA U1 = {Ix :
x ∈ I} where Ix = I for each x. Let F1 be the corresponding
closed discrete set. Since I is compact, F1 must be finite. For
each x ∈ F1, let Ux be a small neighborhood of x so that the
Lebesgue measure of the union of these Ux is less than 1

2 , i.e.,
m(

⋃{Ux : x ∈ F1}) < 1
2 . Let U2 = {Ix : x ∈ I \F1}∪{Ux : x ∈ F1},
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and let F2 be the corresponding closed and discrete, hence finite,
set. Since U2 is finer than U1, F1 ⊆ F2. The set F2 is strictly
larger than F1 since the neighborhoods assigned to points in F1

only cover a set of measure less than 1
2 . For each x ∈ F2 \ F1, fix a

neighborhood Ux so that m(
⋃{Ux : x ∈ F2\F1}) < 1

4 . If U3 = {Ix :
x ∈ I \ F2} ∪ {Ux : x ∈ F2} and F3 is the corresponding finite set,
then F3 is strictly larger than F2 (since the neighborhoods assigned
to points in F1, together with the neighborhoods assigned to points
in F2 \ F1, can only cover a set of measure less than 1

2 + 1
4 = 3

4).
By induction, if Un and Fn are defined, fix a neighborhood Ux for
each x ∈ Fn \ Fn−1 such that m(

⋃{Ux : x ∈ Fn \ Fn−1}) < 1
2n . If

Un+1 = {Ix : x ∈ I \ Fn} ∪ {Ux : x ∈ Fn}, then the corresponding
closed, discrete (and hence finite) set Fn+1 is strictly larger than
Fn, since the neighborhoods assigned to points in Fn can only cover
a set of measure less than 1 − 1

2n . Let F ′ =
⋃{Fn : n = 1, 2, ...}

and U = {Ix : x ∈ I \ F ′} ∪ {Ux : x ∈ F ′}, and let F be the closed
discrete set that corresponds to U . Since U is finer than Un for all
n, F must contain each Fn. Since the Fn are strictly increasing, F
must be infinite, a contradiction.1 ¤

We do not know if there is an uncountable subset of the real line
(possibly a Lusin set) that is monotonically D.

Theorem 2.4. A subspace X of the Sorgenfrey line is monotoni-
cally D if and only if X is countable.

Proof: If X is countable, then apply Corollary 1.3(a).
If X is uncountable, then we may assume that X has no isolated

points (otherwise, replace X with the closed set of all condensation
points, i.e., points which have only uncountable neighborhoods).
For each y, t ∈ X with y ≤ t, and for each x ∈ X, let Uy,t(x) =
(−∞, t) if x < y, and let Uy,t(x) = [x,∞) if x ≥ y. Then Uy,t =
{Uy,t(x) : x ∈ X} is an ONA for X. If X were monotonically D,
let Dy,t denote the corresponding closed discrete set. Since Uy,y is
finer than Uy,t, Dy,y ⊇ Dy,t for all t ≥ y. There must be ty > y such
that y ∈ Dy,ty ; to see this, assume the contrary and observe that

1Added in proof. Without a reference to measure theory, one can show
that any countably compact, uncountable T1-space in which points are Gδ is
not monotonically D. In part (d), it is enough to assume that the compact
Hausdorff space Y is not scattered.
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Dy,t ∩ [y, t] 6= ∅ (in order for t to be covered). If dt ∈ Dy,t ∩ [y, t],
then (assuming y < dt for all t > y) it follows that y is a limit
point of {dt : t > y} ⊆ Dy,y, a contradiction. For each y, fix
ty > y such that y ∈ Dy,ty . Then there is some n such that the
set Y = {y : ty − y > 1

n} is uncountable. For each x ∈ X, let
V (x) = [x, x + 1

n). If y ∈ Y and x < y, then x + 1
n < ty and

hence, V (x) ⊆ (−∞, ty) = Uy,ty(x). If y ∈ Y and x ≥ y, then
V (x) ⊆ [x,∞) = Uy,ty(x). Thus, the ONA V = {V (x) : x ∈ X}
is finer than Uy,ty for all y ∈ Y , and hence, the closed discrete
set D that corresponds to V must contain Dy,ty for all y ∈ Y ; in
particular, D must contain y for all y ∈ Y , a contradiction. ¤

3. Monotone characterizations of D-spaces

Given a space X, let N = {U : U is an ONA for X}. If U ,V ∈
N , then the notation V ≤ U means that V (x) ⊆ U(x) for every
x ∈ X; we say that V is finer and U is coarser.

A mapping D with domain N is a D-operator if, for all U ∈ N ,
(1) D(U) is a closed and discrete subset of X, and
(2) X =

⋃{U(x) : x ∈ D(U)}.
D is called monotone if, in addition, V ≤ U implies D(U) ⊆ D(V).

A family K ⊆ N of ONA’s is called cofinal in N if for every ONA
W ∈ N there is a finer ONA U ≤ W with U ∈ K.

Call a space X cofinally monotonically D if there exists a cofinal
K ⊆ N and a partial D-operator – defined on K only, and satisfying
(1) and (2) above for all U ∈ K – that is monotone on K. Every
monotonically D-space is cofinally monotonically D (with K = N ).

Theorem 3.1. X is cofinally monotonically D if and only if it is D.

Proof: If X is cofinally monotonically D, let D be a partial D-
operator with domain K for some cofinal K ⊆ N . (For this part,
we do not need D to be monotone on K). For any W ∈ N \ K,
pick a U ∈ K finer than W and define D(W) = D(U) to get a
D-operator with domain N . (It follows that a space X is cofinally
monotonically D if and only if there exists a D-operator D on N
and a cofinal K such that the restriction D|K is monotone.)

Conversely, if X is a D-space, let K be the class of ONA’s U =
{U(x) : x ∈ X} for which there is a closed discrete D(U) such that

1. X =
⋃{U(x) : x ∈ D(U)},
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2. U(x) ∩D(U) = {x} if x ∈ D(U), and
3. U(y) ∩D(U) = ∅ if y 6∈ D(U).
If U ∈ K, then D(U) is uniquely determined by the above three

conditions. We cannot remove an x from D(U) since x is only
covered by U(x). If y 6∈ D(U), we cannot add y to D(U) since that
would violate condition 2 for some x ∈ D(U) for which y ∈ U(x).

Claim 1. K is cofinal in the class of all ONA’s.
Proof of Claim. If W is any ONA, pick a closed discrete D such

that X =
⋃{W (x) : x ∈ D}. If x ∈ D, let U(x) = W (x)\(D\{x}).

If y 6∈ D, let U(y) = W (y) \D. Then U ≤ W, and U is in K with
D(U) = D.

Claim 2. If U ,V ∈ K, with V ≤ U , then D(V) ⊇ D(U).
Proof of Claim. Suppose x ∈ D(U). Then x 6∈ ⋃{U(t) : t ∈

X \ {x}}; hence, x 6∈ ⋃{V (t) : t ∈ X \ {x}}. It follows that
x ∈ D(V). ¤

Here is another characterization of D-spaces which makes the
D-space property look like a monotone property.

Proposition 3.2. The following are equivalent for a T1-space X.
(a) X is not a D-space;
(b) there is an operator N that assigns an open set N(C) to

every closed discrete subset C of X such that C is contained in
N(C) which is a proper subset of X, and N(C) ⊆ N(D) if C ⊆ D.

Proof: (b) =⇒ (a). Form the ONA defined by U(x) = N({x})
for all x. If C is any closed discrete set, then

⋃{U(x) : x ∈ C} ⊆
N(C), which is a proper subset of X. Thus, {U(x) : x ∈ C} is not
a cover.

(a) =⇒ (b). Fix an ONA {U(x) : x ∈ X} such that there
is no closed discrete C for which

⋃{U(x) : x ∈ C} = X. Define
N(C) =

⋃{U(x) : x ∈ C} for every closed discrete C. ¤
Finally, we define two less restrictive modifications of monotoni-

cally D spaces and give examples, leaving the proofs to the reader.
Call X countably monotonically D if, for every ONA U , one can

fix a countable family C(U) of closed discrete sets such that X =⋃{U(x) : x ∈ D} for all D ∈ C(U), and if V ≤ U , then for each
D ∈ C(U) there is a D′ ∈ C(V) with D ⊆ D′. One can show that
ω1 + 1 and X from Example 2.2 are countably monotonically D.
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Call X monotonically∗ D if there is a D-operator D such that if
V ≤ U , then

⋃{U(x) : x ∈ D(U) ∩D(V)} = X. The unit interval,
ω1 + 1, and X from Example 2.2 are not monotonically∗ D.
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