Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics

Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT o by Topology Proceedings. All rights reserved.

Pages 367-378

THETA-COVERS OF HAUSDORFF SPACES

VRUNDA PRABHU

ABSTRACT. In this article, we partially order $\theta COV(X)$ and obtain the following results.

- (1) If (Y, f) is a θ -cover of X, then so is (Y(s), f) and $(Y, f) \geq (Y(s), f)$.
- (2) Every semiregular θ -cover of X is a subspace of ρX .
- (3) Every semiregular Hausdorff extension of a θ -cover of X is contained in ρX .
- (4) Every minimal Hausdorff extension of a θ -cover of X is contained in ρX .

1. Introduction

All spaces are assumed to be Hausdorff unless explicitly stated otherwise. The necessary background for the material in this paper appears in [6], [7], and [8]. In particular, [6] provides the structural basis for extensions and absolutes of Hausdorff spaces. A bare minimum of notation is included here. An extension of a space X is a space Y which contains X as a dense subspace. A cover of a space X is a space Y with a perfect, irreducible continuous surjection from Y onto X. Extensions considered are either strict or simple, and the named extensions of interest are κX , σX , and μX . The emphasis of this paper is on θ -covers. A θ -cover of a space X is a space Y with a perfect, irreducible θ -continuous surjection from Y onto X, and the associated map is called a θ -covering. Let X be a space and let

 $^{2000\} Mathematics\ Subject\ Classification.$ Primary 54A20, 54A10; Secondary 26A03.

Key words and phrases. covers, extensions, H-closed.

V. PRABHU

368

 $\theta X = \{ \mathcal{U} : \mathcal{U} \text{ is an ultrafilter on } X \}.$

For $U \in \tau(X)$, let $OU = \{ \mathcal{U} \in \theta X : U \in \mathcal{U} \}$. Note that

- (a) $O\emptyset = \emptyset$
- (b) $OX = \theta X$
- (c) $U, V \in \tau(X), O(U \cap V) = OU \cap OV$.

 θX with the topology generated by $\{OU: U \in \tau(X)\}$ is called the *hyperabsolute* of X.

 θX is homeomorphic to the Stone space of the complete Boolean algebra $\mathcal{R}O(X)$ of regular open sets of X; hence, θX is an extremally disconnected, compact Hausdorff space.

Let $EX = \{\mathcal{U} \in \theta X : ad_X \mathcal{U} \neq \emptyset\}$. EX is called the Iliadis absolute of X. The subspace EX is dense in θX (in particular, $\beta EX = \theta X$). For any open ultrafilter \mathcal{U} on X, $ad_X \mathcal{U}$ is either empty or a singleton; hence, the function $k_X : EX \to X$ defined by $k_X(\mathcal{U}) = ad_X \mathcal{U}$ is well-defined.

The following properties of the Iliadis absolute (EX, k_X) are used later.

Proposition 1.1 ([6]). Let X be a space.

- (a) The absolute EX is extremally disconnected and Tychonoff and the surjection $k_X : EX \to X$ is a θ -covering map.
- (b) If Y is a Hausdorff space and $f: Y \to X$ is a θ -covering map, there is a θ -covering surjection $g: EX \to Y$ such that $f \circ g = k_X$; in particular, the following diagram commutes.

(c) Under the hypothesis of (b), if Y is also extremally disconnected and Tychonoff, there is a homeomorphism $g: EX \to Y$ such that $f \circ g = k_X$.

- (d) There is a homeomorphism $h: \theta X \to E(\sigma X)$ such that $(k_{\sigma X} \circ h)|(\theta X \setminus EX): \theta X \setminus EX \to \sigma X \setminus X$ is also a homeomorphism.
- (e) The surjection $k_X : EX \to X$ is continuous iff X is regular.

The Banaschewski absolute, PX, has EX as the underlying set and the topology generated by the base $\{OU \cap k_X^{\leftarrow}[V] : U, V \in \tau(X)\}$. Clearly, $\tau(PX) \supseteq \tau(EX)$, and the function $\pi_X : PX \to X$ defined by $\pi_X(\mathcal{U}) = k_X(\mathcal{U})$ is continuous. The space PX is extremally disconnected and Hausdorff but not necessarily Tychonoff. Also, the surjection $\pi_X : PX \to X$ is perfect, irreducible, and continuous, and (PX)(s) = EX.

Proposition 1.2 ([9]). Let X be a space.

- (a) Let $t: X \to X$ be continuous but not the identity function. There is a closed set $S \subset X$ such that $X = S \cup t^{\leftarrow}[S]$.
- (b) Let Y be a space, $f: X \to Y$ be an irreducible function such that $f \circ t = f$. Then $t = id_X$.

Proposition 1.3 ([6]). Let Y and Z be spaces, $f: Y \to Z$ and $g: Z \to W$ be functions.

- (a) If f and g are closed irreducible surjections, so is $g \circ f$.
- (b) If f and g are perfect functions, so is $g \circ f$.
- (c) If f and g are θ -continuous, so is $g \circ f$.

Proposition 1.4. Let (Y, f) and (Z, g) be θ -covers of X. Suppose $h: Y \to Z$ is a continuous function such that $g \circ h = f$, and suppose $k: Z \to Y$ is a continuous function such that $f \circ k = g$.

Then h is a homeomorphism.

Proof: Now, $g = f \circ k = g \circ (h \circ k)$. By Proposition 1.2, $h \circ k = id_Z$. Similarly, $k \circ h = id_Y$. Thus, $h^{\leftarrow} = k$, $h = k^{\leftarrow}$, and h and k are homeomorphisms.

Define two θ -covers (Y, f) and (Z, g) of X to be *equivalent* if there is a homeomorphism $h: Y \to Z$ such that the following diagram commutes.

Let $\theta COV(X)$ denote one representative from each equivalence class. Define \leq on $\theta COV(X)$ as follows: $(Z,g) \leq (Y,f)$ iff there is a continuous function $h:Y\to Z$ such that $g\circ h=f$. Clearly, \leq is reflexive and transitive. By Proposition 1.4, f is antisymmetric.

Proposition 1.5. $(\theta COV(X), \leq)$ is a partially ordered set.

Example 1.6. (a) Any cover (Y, f) of X is also a θ -cover of X. In particular, the Banaschewski absolute (PX, π_X) is a θ -cover of X. In general, the θ -covers (PX, π_X) and (EX, k_X) are not equivalent, e.g., whenever X is Hausdorff but not regular. Now, the identity function $id: PX \to EX$ is continuous; so, $(PX, \pi_X) \ge (EX, k_X)$. (b) (X, id_X) is a cover and, hence, is a θ -cover of X. Let X(s) denote the semiregularization of X, i.e., X with the topology generated by the regular open sets: X(s) is still a Hausdorff space [6].

denote the semiregularization of X, i.e., X with the topology generated by the regular open sets; X(s) is still a Hausdorff space [6]. Also, $(X(s), id_X)$ is a θ -cover of X. Note that if $(Y, c_Y) \in \theta COV$, then $(Y, c_Y) \geq (X(s), id_X)$; that is, $(X(s), id_X)$ is the smallest element of θCOV .

(c) Let \mathcal{S} be a finite family of pairwise disjoint, nonempty open sets of X such that if $X = \bigcup \{clU : U \in \mathcal{S}\}$. Let $\overline{\mathcal{S}} = \{\overline{U} : U \in \mathcal{S}\}$ and $\oplus \overline{\mathcal{S}}$ denote the topological sum of the subspaces of $\overline{\mathcal{S}}$. The underlying set of $\oplus \overline{\mathcal{S}}$ is $\bigcup \{\overline{U} \times \{\overline{U}\} : U \in \mathcal{S}\}$. Define $f : \oplus \overline{\mathcal{S}} \to X$ by f(x,U) = x where $x \in \overline{U}$ and $U \in \mathcal{S}$. The function f is a

perfect, irreducible, continuous surjection, i.e., a covering map. So, $(\oplus \overline{S}, f)$ is a θ -cover of X.

2. Properties of $\theta COV(X)$

Notation 2.1. Let Y and Z be spaces. For a function $f: Y \to Z$ and $A \subseteq Y$, the *small image* of A is $f^{\#}(A) = \{y \in Z : f^{\leftarrow}(y) \subseteq A\}$. When f is onto, it is easy to verify that $f^{\#}(A) = Z \setminus f[Y \setminus A]$ and $f^{\#}(A) \subseteq f(A)$.

Proposition 2.2 ([1], [6], [5], [10]). Let Y be a space and $f: Y \to X$ be a closed, irreducible θ -continuous surjection.

- (a) If $\emptyset \neq U \in \tau(Y)$, then $\emptyset \neq f^{\#}[U] \in \tau(X)$.
- (b) If $U \in \tau(Y)$, then $f[cl_Y U] = cl_X f[U] = cl_X f^{\#}[U]$.
- (c) If $U \in \tau(X)$, then $int_Y f^{\leftarrow}[cl_X U] = int_Y cl_Y f^{\leftarrow}[U]$.
- (d) If $U \in \tau(Y)$, then $int_Y f^{\leftarrow}[cl_X f[U]] = int_Y cl_Y U$.
- (e) Let $U \in \mathcal{R}O(Y)$, then $f^{\#}[U] \in \mathcal{R}O(X)$.
- (f) $f^{\#}: \mathcal{R}O(Y) \to \mathcal{R}O(X)$ is an order-preserving isomorphism.

Let $(Y, c_Y), (Z, c_Z) \in \theta COV(X)$ such that $(Y, c_Y) \geq (Z, c_Z)$. Let $f: Y \to Z$ be continuous such that $c_Z \circ f = c_Y$. By Proposition 1.2, there are θ -covering functions $d_Y: EX \to Y$ and $d_Z: EX \to Z$ such that $c_Y \circ d_Y = k_X$ and $c_Z \circ d_Z = k_Y$. That is, in the following diagram the lower diagram commutes.

We would like to show that the upper diagram commutes, i.e., $d_Z = f \circ d_Y$, but first we need a result that extends 8.4(i) in [6].

Proposition 2.3. Let Y, Z, W be Hausdorff spaces; $f: Y \to Z$ be a θ -continuous function; $g: Y \to Z$ and $h: Z \to W$ be perfect, irreducible, θ -continuous surjections; and $h \circ f = h \circ g$, i.e., this diagram commutes. Then f = g.

Proof: Assume there is a point $y \in Y$ such that $f(y) \neq g(y)$. There are open sets U, V in Z such that $f(y) \in U, g(y) \in V$ and $U \cap V = \emptyset$. There is an open set W in Y such that $y \in W$, $f[clW] \subseteq clU$, and $g[clW] \subseteq clV$. By Proposition 2.2(b), $clV \supseteq g[clW] = clg^{\#}[W] \supseteq g^{\#}[W]$. Hence, $int_Z cl_Z V \supseteq g^{\#}[W]$ by Proposition 2.2(a). As $g^{\#}[W] = Z \setminus g[Y \setminus W], Z \setminus int_Z cl_Z V \subseteq g[Y \setminus W]$. Now, $clU \supseteq f[cl_Y W] \supseteq f[W] \supseteq f^{\#}[W] = Z \setminus f[Y \setminus W]$; hence, $Z \setminus cl_Z U \subseteq f[Y \setminus W]$. As $U \cap V = \emptyset$, $int_Z cl_Z U \cap int_Z cl_Z V = \emptyset$. In particular, $cl_Z U \cap int_Z cl_Z V = \emptyset$. So, $Z = (Z \setminus int_Z cl_Z V) \cup (Z \setminus cl_Z U)$ and $W = h[Z] = h[Z \setminus int_Z cl_Z V] \cup h[Z \setminus cl_Z U] \subseteq h \circ g[Y \setminus W] \cup h \circ f[Y \setminus W] = h \circ g[Y \setminus W]$. Since h and g are θ -covering functions, it follows by Proposition 1.5 that $h \circ g$ is a θ -covering function. As $Y \setminus W$ is a proper closed subset, $h \circ g[Y \setminus W] \neq W$ by the irreducibility property of $h \circ g$. This is a contradiction. So, we have that f = g.

Corollary 2.4. Let (Y, c_Y) , $(Z, c_Z) \in \theta COV(X)$ and $f: Y \to Z$ be a continuous function such that $c_Z \circ f = c_Y$. Let $d_Y: EX \to Y$ and $d_Z: EX \to Z$ be θ -covering functions such that $c_Y \circ d_Y = c_Z \circ d_Z = k_X$. Then $f \circ d_Y = d_Z$.

Proof: This follows by observing that $c_Z \circ d_Z = k_X = c_Y \circ d_Y = c_Z \circ f \circ d_Y$ and applying Proposition 2.3 to $c_Z \circ d_Z = c_Z \circ (f \circ d_Y)$. \square

Proposition 2.5. If (Y, f) is a θ -cover of X then so is (Y(s), f) and $(Y, f) \ge (Y(s), f)$.

Proof: Since $f: Y \to X$ is a θ -continuous, perfect, irreducible surjection and $\tau(Y(s)) \subseteq \tau(Y)$, it follows that $f: Y(s) \to X$ is a perfect, irreducible surjection. Since $id_Y: Y \to Y(s)$ is continuous and a θ -homeomorphism, it is immediate that $f: Y(s) \to X$ is a θ -continuous and $(Y, f) \geq (Y(s), f)$.

3. θ -covers and ρX

In [8], for a T_0 space X, a T_0 extension ρX of X is constructed such that $X \subseteq \rho X \subseteq \beta^+(X)$, where $\beta^+(X)$ is the upper Stone-Cech compactification T_0 extension of the embedding of X. (This is an embedding in the product space $\prod_{C^+(X)} I^+$, where I^+ has the topology generated by $\{[0,a): 0 < a < 1\}$, and $C^+(X) = C(X,I^+)$.) $\beta^+(X)$ is defined in [3]. In [8], ρX is characterized as the space $\mathcal{OF}(X)$, the set of all open filters on X, with the topology generated by the base $\{OU: U \in \tau(X)\}$ where $OU = \{\mathcal{G} \in \mathcal{OF}(X): U \in \mathcal{G}\}$. In this paper, we will view $\rho(X)$ in terms of this open filter characterization. By Theorem 6.4 in [6], $\rho(X)$ contains all of the strict T_0 extensions of X and no other extensions. Furthermore, $\rho(X)$ contains only one copy of each strict T_0 extension of X.

Notation 3.1. Let (Y, f) be a θ -cover of X. By Proposition 2.2, $f^{\#}: \mathcal{R}O(Y) \to \mathcal{R}O(X)$ is a Boolean algebra isomorphism. For $p \in Y$, let $\mathcal{V}_p = \{U \in \mathcal{R}O(Y) : p \in U\}$, and $\mathcal{G}_p = f^{\#}(\mathcal{V}_p) \subseteq \mathcal{R}O(X)$. Let $\widehat{\mathcal{G}}_p = \cap \{\mathcal{U} : \mathcal{U} \in \theta X \text{ and } \mathcal{G}_p \subseteq \mathcal{U}\}$ and $Z = \{\widehat{\mathcal{G}}_p : p \in Y\} \subseteq \mathcal{OF}(X)$. Define $\phi: Y \to Z$ by $\phi(p) = \widehat{\mathcal{G}}_p$.

We need the following fact from [6].

Proposition 3.2. [6, 2.3(k)] Let \mathcal{F} be an open filter on a space X. If $\mathcal{G} = \cap \{\mathcal{U} : \mathcal{U} \text{ is an open ultrafilter and } \mathcal{U} \supseteq \mathcal{F}\}$, then $\mathcal{G} = \{T \subseteq X : T \text{ is open and } int_X cl_X T \in \mathcal{F}\}$.

If \mathcal{U} is an open ultrafilter on X and $U \in \tau(X)$, then by Proposition 3.2, $U \in \mathcal{U}$ iff $int_X cl_X U \in \mathcal{U}$. Let $(Y, f) \in \theta COV(X)$, $p \in Y$, and $U \in \tau(X)$. Also, by Proposition 3.2, $\widehat{\mathcal{G}}_p \in OU$ iff $\widehat{\mathcal{G}}_p \in O(int_X cl_X U)$.

Proposition 3.3. Let $(Y, f) \in \theta COV(X)$, $V \in \mathcal{R}O(Y)$, and $p \in Y$. Then $V \in \mathcal{V}_p$ iff $f^{\#}(V) \in \widehat{\mathcal{G}}_p$.

Proof: Suppose $V \in \mathcal{V}_p$. By definition, $f^\#(V) \in \mathcal{G}_p \subseteq \widehat{\mathcal{G}}_p$. Conversely, suppose $f^\#(V) \in \widehat{\mathcal{G}}_p$. Then $int_X cl_X f^\#(V) = f^\#(V) \in \mathcal{G}_p = f^\#(\mathcal{V}_p)$. So, there is a $W \in \mathcal{V}_p$ such that $f^\#(W) = f^\#(V)$. But, $f^\#$ is one-one; hence, $V = W \in \mathcal{V}_p$.

Theorem 3.4. Let $(Y, f) \in \theta COV(X)$, Z be defined as in 3.1 with the subspace topology of $\rho(X)$. Then Y(s) and Z are homeomorphic.

Proof: The function ϕ as defined in 3.1 is one-one and onto. Let W be open in X. Then in Z, OW = O(intclW). Thus, there is a regular open set T in Y such that $f^{\#}(T) = intclW$ and $\phi^{\leftarrow}[OW] = \phi^{\leftarrow}[O(intclW)] = \phi^{\leftarrow}[O(f^{\#}(T))] = \phi^{\leftarrow}[\{\widehat{\mathcal{G}}_p : f^{\#}(T) \in \widehat{\mathcal{G}}_p \}] = \{p \in Y : T \in \mathcal{V}_p \} = T$. Also, $\phi[T] = O(f^{\#}(T)) \cap Z$. Thus, $\phi: Y(s) \to Z$ is a homeomorphism.

Corollary 3.5. Every semiregular, θ -cover of X is a subspace of ρX .

Now, we consider the special cases of the θ -covers (X, id_X) and $(X(s), id_X)$ of X. For $p \in X$, let $\mathcal{W}_p = \{U \in \tau(X) : p \in U\}$, $\mathcal{V}_p = \{U \in \mathcal{R}O(X) : p \in U\}$, and $\widehat{\mathcal{V}}_p = \bigcap \{\mathcal{U} : \mathcal{U} \text{ is an open ultrafilter and } \mathcal{V}_p \subseteq \mathcal{U}\}$. Then $T = \{\mathcal{W}_p : p \in X\}$ and $R = \{\widehat{\mathcal{V}}_p : p \in X\}$ are subspaces of $\mathcal{OF}(X)$.

Proposition 3.6. The space T is homeomorphic to X and R is homeomorphic to X(s).

Proof: Let $\phi: X \to T: p \longmapsto \mathcal{W}_p$ and $\psi: X(s) \to R: p \longmapsto \widehat{\mathcal{V}}_p$. Clearly, ϕ and ψ are bijections. If $U \in \tau(X)$, $\phi^{\leftarrow}[OU] =$

 $\{p \in X : U \in \mathcal{W}_p\} = U$. Also, $\phi[U] = OU \cap T$. So, ϕ is a homeomorphism. For $p \in X$ and $U \in \tau(X)$, by Proposition 3.2, $\widehat{\mathcal{V}}_p \in OU$ iff $\widehat{\mathcal{V}}_p \in O(int_X cl_X)$. Let $V \in \tau(X)$. $\psi^{\leftarrow}[OV \cap R] = \psi^{\leftarrow}[O(int_X cl_X V) \cap R] = \{p \in X : int_X cl_X V \in \mathcal{W}_p\} = int_X cl_X V$. Also, $\psi[int_X cl_X V] = OV \cap R$. Thus, ϕ is a homeomorphism. \square

Next, we wish to link H-closed extensions of θ -covers of X and ρX .

Notation 3.7. Let X be a space, (Y, f) a θ -cover of X, and Z an Hausdorff extension of Y. For $p \in Z$, let $\mathcal{V}_p = \{U \cap Y : p \in U \in \mathcal{R}O(Z)\}$ and for $V \in \tau(X)$, $o_Z(V) = \{p \in Z : V \supseteq W \text{ for some } W \in \mathcal{V}_p\}$. Let $\mathcal{G}_p = f^\#(\mathcal{V}_p)$ and $\widehat{\mathcal{G}}_p = \cap \{\mathcal{U} : \mathcal{U} \text{ is an open ultrafilter and } \mathcal{U} \supseteq \mathcal{G}_p\}$. Let $T = \{\widehat{\mathcal{G}}_p : p \in Z\}$ and $\phi: Z \to T: p \longmapsto \widehat{\mathcal{G}}_p$. The proof of Proposition 3.3 also shows that ϕ is a bijection. Furthermore, we show that ϕ is always continuous.

Proposition 3.8. Let Z be a Hausdorff extension of a θ -cover (Y, f) of X. The function $\phi: Z \to T$ defined in 3.7 is a continuous bijection.

Proof: ϕ is one-one and onto. To show that ϕ is continuous, let U be open in X. Then $OU \cap T = O(int_X cl_X U) \cap T$ and $\phi^{\leftarrow}[O(int_X cl_X U)] = \{p \in Z : \widehat{\mathcal{G}}_p \in O(int_X cl_X U)\} = \{p \in Z : int_X cl_X(U) \in \widehat{\mathcal{G}}_p \}$. There is a regular open V in Y such that $f^{\#}(V) = int_X cl_X U$. Hence, $\phi^{\leftarrow}[O(int_X cl_X U)] = \{p \in Z : f^{\#}(V) \in \widehat{\mathcal{G}}_p \} = \{p \in Z : f^{\#}(V) \in \mathcal{G}_p \} = \{p \in Z : V \in \mathcal{V}_p \} = o_Z V$. Additionally, $\phi[o_Z V] = O(int_Z cl_Z U) \cap T = OU \cap T$.

Proposition 3.9. ([6, 7.5(h)(1)]) If Z is a semiregular extension of X, then $\{o_Z U : U \in \mathcal{R}O(X)\}$ is a base for Z.

Proposition 3.10. Let Z be an extension of a θ -cover (Y, f) of X and $\phi: Z \to T$, as defined in 3.7. Then ϕ is a homeomorphism if Z is semiregular.

Proof: If Z is a semiregular extension of Y, then $\{o_Z U : U \in \mathcal{R}O(Y)\}$ is an open base for Z.

Corollary 3.11. Every semiregular Hausdorff extension of a θ -cover of X is contained in ρX .

An immediate consequence of Corollary 3.11 is the next result.

Corollary 3.12. Every minimal Hausdorff extension of a θ -cover of X is contained in ρX .

4. Examples

Example 4.1. The Iliadis absolute (EX, k_X) is a semiregular θ -cover of X. By Corollary 3.11, EX is contained in ρX .

Definition 4.2. For an open filter \mathcal{F} on X, $\mathcal{F}_s = \langle \mathcal{F} \cap \mathcal{R}O(X) \rangle$.

Construction 4.3. Let H be an H-closed extension of a Hausdorff space X. For $U \in \tau(X)$, define $\lambda(U) = U \cup \{y \in H \setminus X : U \in (O^y)_s\}$. Note that $\lambda(\emptyset) = \emptyset$, $\lambda(X) = H$, and for $U, V \in \tau(X)$, $\lambda(U \cap V) = \lambda(U) \cap \lambda(V)$. So, $\{\lambda(U) : U \in \tau(X)\}$ is a base for a topology on H. H with this topology is denoted as H_0 .

Proposition 4.4. Let H be an H-closed extension of X. Then H_0 is a strict H-closed extension of X.

Example 4.5. By Corollary 3.11, any minimal Hausdorff extension of EX is contained in ρX . So, βEX and every Hausdorff compactification of EX is contained in ρX . But $\beta EX \equiv_{EX} \theta X \equiv_{EX} \mu EX$ [6, 6.6(e)(1) and 7B(3)]). By [6, 7.5(h)(4)], $\mu EX \setminus EX$ is homeomorphic to $\sigma EX \setminus EX$ and by 4.3, $\sigma EX \setminus EX$ and $\sigma X \setminus X$ are homeomorphic. But by [6, 7.7(e)], there is an order isomorphism between $\mathcal{H}^{\theta}(X)$ and $\{P: P \text{ is a partition of } \sigma X \setminus X \text{ into nonempty } \}$ compact sets $\}$. Since $\sigma EX \setminus EX$ and $\sigma X \setminus X$ are homeomorphic by 4.3, there is an order isomorphism between $\mathcal{H}^{\theta}(EX)$ and $\mathcal{H}^{\theta}(X)$. Also, by [6, 7.7(e)], there is an order isomorphism between $\mathcal{H}^{\theta}(EX)$ and the set $\mathcal{M}(EX)$ of minimal Hausdorff extensions of EX. So, there is a parallel analogue between the result that every minimal Hausdorff extension of EX is contained in ρX and the result that every H-closed extension H_0 of X, where H_0 is defined in Proposition 4.4 for an arbitrary H-closed extension H of X, is contained in ρX . The obvious parallel between $\mathcal{M}(EX)$ and $\mathcal{M}(X)$ might not work in this case for if X is not semiregular, $\mathcal{M}(X) = \emptyset$.

Example 4.6. Since $(X(s), id_X)$ is a θ -cover of X, by Corollary 3.11, every minimal Hausdorff extension of X(s) is contained in ρX . Now, there is an order isomorphism between $\mathcal{H}^{\theta}(X)$ (or $\mathcal{H}_0(X) = \{H_0 : H \in \mathcal{H}(X)\}$) and $\mathcal{M}(X(s))$ by 1.15. Combining

this result with that of (b), there is an order isomorphism between $\mathcal{M}(EX)$ and $\mathcal{M}(X(s))$. This parallel between ρX containing elements of $\mathcal{M}(EX)$ and $\mathcal{M}(X)$ is obtained without requiring that X be semiregular.

Example 4.7. Let \mathcal{B} be an open base for X. For $U \in \mathcal{B}(X)$, let $U^0 = U$ and $U^1 = X \setminus cl_X U$. For $t \in \prod_{\mathcal{B}} \mathbf{2}$, let $T_{\mathcal{B}}X = \{U^{t(U)} : U \in \mathcal{B}\}$. Let $cT_{\mathcal{B}}X = \{t \in \prod_{\mathcal{B}} \mathbf{2} : T_{\mathcal{B}}X \text{ has the finite intersection property}\}$ and $T_{\mathcal{B}}X = \{t \in cT_{\mathcal{B}}X : ad_X\mathcal{B}^t \neq \emptyset\}$. Jack Porter [4] has shown that $cT_{\mathcal{B}}X$ is a zero-dimensional Hausdorff compactification of $T_{\mathcal{B}}X$. The function $l_{\mathcal{B}}: T_{\mathcal{B}}X \to X$ defined by $l_{\mathcal{B}}(t) = ad_X\mathcal{B}^t$ is a θ -covering map. So, $(T_{\mathcal{B}}X, l_{\mathcal{B}})$ is a θ -cover of X. As $cT_{\mathcal{B}}X$ is a Hausdorff compactification of $T_{\mathcal{B}}X$, $cT_{\mathcal{B}}X$ is contained in ρX . Porter [4] shows that every zero-dimensional Hausdorff compactification of every Hausdorff θ -cover of X can be obtained using this method.

Example 4.8. Recall ([6] and [2]) a relation $\rho \subseteq \mathcal{P}(X) \times \mathcal{P}(X)$ is a θ -proximity if for $A, B, C \in \mathcal{P}(X)$,

- $1 \varnothing \rho X$;
- 2 $A\rho B$ implies $B\rho A$;
- 3 $A \not p B$ and $A \not p C$ iff $A \not p (B \cup C)$;
- 4 $A \not p B$ implies there is a $U \in \mathcal{R}O(X)$ such that $B \not p U$ and $A \not p X \setminus clU$;
- 5 $\{x\}\rho A$ iff \mathcal{N}_x meets \mathcal{N}_A .

An open filter \mathcal{F} on X is a θ -filter if for each $U \in \mathcal{F}$, there is $V \in \mathcal{F}$ such that $V \rho X \setminus clU$. Let $b_{\theta} X_{\theta} = \{\mathcal{U} : \mathcal{U} \text{ is a maximal } \theta$ -filter on $X\}$. For $U \in \tau(X)$, let $OU = \{\mathcal{U} \in b_{\theta} X_{\theta} : U \in \mathcal{U}\}$. $\{OU : U \in \tau(X)\}$ is a base for a compact Hausdorff topology on $b_{\theta} X_{\theta}$. Define $\pi_{\theta} : X_{\theta} \to X$ by $\pi_{\theta}(\mathcal{U}) = ad(\mathcal{U})$; π_{θ} is a θ -covering map. Thus, $(X_{\theta}, \pi_{\theta})$ is a θ -cover of X. Since $b_{\theta} X_{\theta}$ is a Hausdorff compactification of X_{θ} , $b_{\theta} X_{\theta}$ is contained in ρX . V. Fedorcuk [2] shows that every Hausdorff compactification of every Tychonoff cover of X can be generated by a θ - proximity on X.

References

Susan F. Bragdon, θ-proximities on Hausdorff spaces. Master's Thesis. University of Kansas, 1973.

- [2] V. Fedorčuk, θ-proximities and θ-absolutes (Russian), Dokl. Akad. Nauk SSSR 180 (1968), 546–549. Translation, Soviet Math. Dokl. 9 (1968), 661– 664.
- [3] R. Nielsen and C. Sloyer, On embedding in quasi-cubes, Amer. Math. Monthly 75 1968, 514–515.
- [4] Jack Porter, Hausdorff-closed extensions and Tychonoff, in Recent Developments of General Topology and Its Applications: International Conference in Memory of Felix Hausdorff (1868-1942 Berlin, March 22-28, 1992). Mathematical Research, 67. Berlin: Akademie-Verlag, 1992. 261–267.
- [5] Jack R. Porter and Charles Votaw, H-closed extensions. II, Trans. Amer. Math. Soc. 202 (1975), 193–209.
- [6] Jack R. Porter and R. Grant Woods, Extensions and Absolutes of Hausdorff Spaces. New York: Springer-Verlag, 1988.
- [7] Vrunda Prabhu, Embeddings in the upper Stone-Čech compactification, Topology Appl. **73** (1996), no. 3, 217–226.
- [8] ______, A subspace of the upper Stone-Cech compactification, Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT). Topology Proc. 24 (1999), Spring, 285–305.
- [9] John Rainwater, A note on projective resolutions, Proc. Amer. Math. Soc. 10 (1959), 734–735.
- [10] Mohan L. Tikoo, Remainders of H-closed extensions, Topology Appl. 23 (1986), no. 2, 117–128.
- [11] _____, The Banaschewski-Fomin-Shanin extension X, Proceedings of the 1985 topology conference (Tallahassee, Fla., 1985). Topology Proc. 10 (1985), no. 1, 187–206.

Department of Mathematics and Computer Science; Bronx Community College; City University of New York; Bronx, New York 10453

E-mail address: vrunda.prabhu@bcc.cuny.edu