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THETA-COVERS OF HAUSDORFF SPACES

VRUNDA PRABHU

ABSTRACT. In this article, we partially order 0COV (X) and
obtain the following results.
(1) If (Y, f) is a O-cover of X, then so is (Y (s),f) and
(V. ) > (V(s), ).
(2) Every semiregular f-cover of X is a subspace of pX.
(3) Every semiregular Hausdorff extension of a #-cover of X
is contained in pX.
(4) Every minimal Hausdorff extension of a 6-cover of X is
contained in pX.

1. INTRODUCTION

All spaces are assumed to be Hausdorff unless explicitly stated
otherwise. The necessary background for the material in this paper
appears in [6], [7], and [8]. In particular, [6] provides the structural
basis for extensions and absolutes of Hausdorff spaces. A bare
minimum of notation is included here. An extension of a space X is
a space Y which contains X as a dense subspace. A cover of a space
X is a space Y with a perfect, irreducible continuous surjection from
Y onto X. Extensions considered are either strict or simple, and the
named extensions of interest are kX, 0 X, and uX. The emphasis
of this paper is on #-covers. A 6f-cover of a space X is a space Y
with a perfect, irreducible #-continuous surjection from Y onto X,
and the associated map is called a 6-covering. Let X be a space
and let
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0X = {U : U is an ultrafilter on X}.
For U € 7(X), let OU = {U € X : U € U}. Note that
(a) OO =0
(b) OX =0X
(c) U, Ver(X),oUunV)=0UnOV.
60X with the topology generated by {OU : U € 7(X)} is called the
hyperabsolute of X.

A X is homeomorphic to the Stone space of the complete Boolean
algebra RO(X) of regular open sets of X; hence, 6X is an ex-
tremally disconnected, compact Hausdorff space.

Let EX = {U € 60X : adxU # O}. EX is called the Iliadis
absolute of X. The subspace FX is dense in X (in particular,
BEX = 6X). For any open ultrafilter U on X, adxU is either
empty or a singleton; hence, the function kx : EX — X defined by
kx(U) = adxU is well-defined.

The following properties of the Iliadis absolute (E X, kx) are used
later.

Proposition 1.1 ([6]). Let X be a space.

(a) The absolute EX is extremally disconnected and Tychonoff
and the surjection kx : EX — X is a 0-covering map.

(b) If Y is a Hausdorff space and f : Y — X is a 0-covering
map, there is a 0-covering surjection g : EX — Y such that
fog=kx; in particular, the following diagram commutes.

EX

Y—F X

f

(¢) Under the hypothesis of (b), if Y is also extremally discon-
nected and Tychonoff, there is a homeomorphism g : EX —
Y such that fog=kx.
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(d) There is a homeomorphism h : X — E(ocX) such that
(kox oh)|[(0X \ EX):0X \ EX — 0cX \ X is also a home-
omorphism.

(e) The surjection kx : EX — X is continuous iff X is regular.

The Banaschewski absolute, PX, has F X as the underlying set and
the topology generated by the base {OU Nk [V]: U,V € 7(X)}.
Clearly, 7(PX) J 7(EX), and the function 7x : PX — X defined
by nx(U) = kx(U) is continuous. The space PX is extremally
disconnected and Hausdorff but not necessarily Tychonoff. Also,
the surjection wx : PX — X is perfect, irreducible, and continuous,
and (PX)(s) = EX.

Proposition 1.2 ([9]). Let X be a space.

(a) Lett: X — X be continuous but not the identity function.
There is a closed set S C X such that X = S UtT[S].

(b) LetY be a space, f: X — Y be an irreducible function such
that fot= f. Thent=1idx.

Proposition 1.3 ([6]). Let Y and Z be spaces, f :' Y — Z and
g:Z — W be functions.

(a) If f and g are closed irreducible surjections, so is go f.
(b) If f and g are perfect functions, so is go f.
(¢) If f and g are 6-continuous, so is go f.

Proposition 1.4. Let (Y, f) and (Z, g) be 0-covers of X. Suppose
h:Y — Z is a continuous function such that goh = f, and suppose
k:Z —Y is a continuous function such that fok =g.

7 k
g o
f
X

¥ > ¥

>

>
>

h
f

Then h is a homeomorphism.
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Proof: Now, g = fok = go(hok). By Proposition 1.2, hok = idy.
Similarly, kK o h = idy. Thus, h~ =k, h = k~, and h and k are
homeomorphisms. ]

Define two #-covers (Y, f) and (Z, g) of X to be equivalent if there
is a homeomorphism A : Y — Z such that the following diagram
commutes.

X

Let 6 COV(X) denote one representative from each equivalence class.
Define < on 0COV (X)) as follows: (Z,g) < (Y, f) iff there is a con-
tinuous function h : Y — Z such that go h = f. Clearly, < is
reflexive and transitive. By Proposition 1.4, f is antisymmetric.

Proposition 1.5. (ICOV(X), <) is a partially ordered set.

Example 1.6. (a) Any cover (Y, f) of X is also a f-cover of X. In
particular, the Banaschewski absolute (PX,7x) is a 6-cover of X.
In general, the f-covers (PX,7x) and (EX, kx) are not equivalent,

e.g., whenever X is Hausdorff but not regular. Now, the identity
function id : PX — EX is continuous; so, (PX,7x) > (EX, kx).
(b) (X,idx) is a cover and, hence, is a f-cover of X. Let X(s)
denote the semiregularization of X, i.e., X with the topology gen-
erated by the regular open sets; X (s) is still a Hausdorff space [6].
Also, (X(s),idx) is a #-cover of X. Note that if (Y,cy) € 0COV,
then (Y, cy) > (X(s),idx); that is, (X(s),idx) is the smallest ele-
ment of §COV.

(c) Let S be a finite family of pairwise disjoint, nonempty open sets
of X such that if X = (J{clU : U € §}. Let S ={U : U € S}
and @S denote the topological sum of the subspaces of S. The
underlying set of @S is (J{U x {U} : U € S}. Define f : &S — X
by f(x,U) = z where x € U and U € S. The function f is a
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perfect, irreducible, continuous surjection, i.e., a covering map. So,
(@S, f) is a f-cover of X.

2. PROPERTIES OF COV (X)

Notation 2.1. Let Y and Z be spaces. For a function f:Y — Z
and A C Y, the small image of Ais f#(A) ={yec Z: f~(y) C A}.
When f is onto, it is easy to verify that f#(A) = Z\ f[YV \ A] and
F7(A) € f(A).

Proposition 2.2 ([1], [6], [5], [10]). Let Y be a space and f:Y —
X be a closed, irreducible 0-continuous surjection.

(a) If O£ U € 7(Y), then @ # f#[U] € 7(X).

(b) IfU € 7(Y), then flclyU] = clx f[U] = clx f*[U].

(¢) If U € 7(X), then inty f~[clxU] = intycly f[U].

(d) IfU € 7(Y), then inty f [clx f[U]] = intyclyU.

(e) Let U € RO(Y) , then f#[U] € RO(X) .
(f) f#* : RO(Y) — RO(X) is an order-preserving isomor-

phism.
Let (Y,cy),(Z,cz) € 0COV (X) such that (Y,cy) > (Z,cz). Let

f Y — Z be continuous such that ¢z o f = ¢y. By Proposition
1.2, there are #-covering functions dy : EX — Y anddz : EX — Z
such that cy ody = kx and cz odz = ky. That is, in the following
diagram the lower diagram commutes.

EX
dy X
Y f > 7
/

@)

X
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We would like to show that the upper diagram commutes, i.e.,
dz = f ody, but first we need a result that extends 8.4(i) in [6].

Proposition 2.3. Let Y, Z, W be Hausdorff spaces; f :Y — Z
be a O-continuous function; g: Y — Z and h : Z — W be perfect,
irreducible, 0-continuous surjections; and h o f = ho g, i.e., this
diagram commutes. Then f = g.

o

Proof: Assume there is a point y € Y such that f(y) # g(y).
There are open sets U, V in Z such that f(y) € U, g(y) € V
and UNV = @. There is an open set W in Y such that y € W,
flelW] C ¢lU, and g[clW] C ¢lV. By Proposition 2.2(b), ¢V 3
gledW] = clg# [W] 2 g#[W]. Hence, intzclzV 2 g#[W] by Propo-
sition 2.2(a). As g#[W] = Z\ glY \ W], Z \intzclzV C g[Y \ W].
Now, clU D flcyW] 2 f[W] 2 f#[W] = Z\ f[Y \ W]; hence,
A \ czU C f[Y \ W] AsUNV =0, intzclzU NintzelzV = Q.
In particular, clzU NintzclyV = @. So, Z = (Z \ intzclzV) U
(Z\ czU) and W = h[Z] = h|Z \ intzclzV] U h[Z \ clzU] C
hoglY\W]Uho f[Y\W] = hog[Y'\W]. Since h and g are f-covering
functions, it follows by Proposition 1.5 that h o g is a 6-covering
function. As Y\ W is a proper closed subset, hog[Y \ W] # W by
the irreducibility property of h o g. This is a contradiction. So, we
have that f = g. O
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Corollary 2.4. Let (Y,cy), (Z,¢cz) € 0COV(X) and f:Y — Z
be a continuous function such that cz o f =cy. Letdy : EX —Y
and dz : EX — Z be 0-covering functions such that cy o dy =
Cyz © dZ = kx. Then f Ody = dz.

Proof: This follows by observing that cz ody = kx =cy ody =
czo fody and applying Proposition 2.3 to czodyz = czo(fody). O

Proposition 2.5. If (Y, f) is a O-cover of X then so is (Y(s), f)
and (Y, f) = (Y(s), f)-

Proof: Since f : Y — X is a #-continuous, perfect, irreducible
surjection and 7(Y(s)) C 7(Y), it follows that f: Y(s) —» X is a
perfect, irreducible surjection. Since idy : Y — Y (s) is continuous
and a f-homeomorphism, it is immediate that f : Y(s) — X is a
f-continuous and (Y, f) > (Y(s), f). O

3. 6-COVERS AND pX

In [8], for a Ty space X, a T extension pX of X is constructed
such that X C pX C g7(X), where 31(X) is the upper Stone-
Cech compactification Ty extension of the embedding of X. (This
is an embedding in the product space [[o+(x) I T, where I'" has
the topology generated by {[0,a) : 0 < a < 1}, and CT(X) =
C(X,I").) BH(X) is defined in [3]. In [8], pX is characterized
as the space OF(X), the set of all open filters on X, with the
topology generated by the base {OU : U € 7(X)} where OU =
{G € OF(X) : U € G}. In this paper, we will view p(X) in
terms of this open filter characterization. By Theorem 6.4 in [6],
p(X) contains all of the strict Ty extensions of X and no other
extensions. Furthermore, p(X) contains only one copy of each strict
Ty extension of X.

Notation 3.1. Let (Y, f) be a 6-cover of X. By Proposition 2.2,
f#:RO(Y) — RO(X) is a Boolean algebra isomorphism. For
peY,letV, ={U € ROY) :pcU},and G, = f#(V,) C
RO(X). Let G, = N{U : U € X and G, C U} and Z = {G, :
peEY}COF(X) . Define ¢:Y — Z by ¢(p) =G, .

We need the following fact from [6].
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Proposition 3.2. [6, 2.3(k)] Let F be an open filter on a space X .
If G =n{U : U is an open ultrafilter and U O F}, then G = {T C
X : T is open and intxclxT € F}.

If U is an open ultrafilter on X and U € 7(X), then by Propo-
sition 3.2, U € U iff intxclxU € U. Let (Y, f) € 0COV(X),
p €Y,and U € 7(X). Also, by Proposition 3.2, G, € OU iff
Qp S O(intXchU).

Proposition 3.3. Let (Y, f) € 0COV(X), V € RO(Y) , and p €
Y. Then V€V, iff ff(V)€G, .

Proof: Suppose V' € V, . By definition, f#(V) € G, C G, .
Conversely, suppose f7 (V) € ,C?p . Then intxclx f#* (V) = f#(V) €
G, = f#(V,). So, there is a W € V), such that f#(W) = f#(V).
But, f# is one-one; hence, V =W € Vp . O

Theorem 3.4. Let (Y, f) € 0COV(X), Z be defined as in 3.1 with
the subspace topology of p(X). Then Y (s) and Z are homeomor-
phic.

Proof: The function ¢ as defined in 3.1 is one-one and onto. Let
W be open in X. Then in Z, OW = O(intclW). Thus, there is a
regular open set T in Y such that f#(T) = intclW and ¢~ [OW] =
¢~ [O(intcdW)] = ¢~ [O(f#(T))] = ¢~ [{Gp : fH(T) € Gy }] =
{peY T eV,} =T Also, ¢[T] = O(f*(T)) N Z. Thus,
¢ :Y(s) — Z is a homeomorphism. O

Corollary 3.5. Fvery semiregular, 8-cover of X is a subspace of
pX.

Now, we consider the special cases of the f-covers (X, idx) and
(X(s),idx) of X. Forpe X, let W, ={U e7(X):peU},V, =
{UeROX) :pe U}, and V, = ({U : U is an open ultrafilter
and V, CU}. Then T ={W, :p € X} andR:{f}p ipe X}
are subspaces of OF(X) .

Proposition 3.6. The space T is homeomorphic to X and R is
homeomorphic to X (s).

Proof: Let ¢ : X = T :pr— W, and ¢ : X(s) - R:p—
Vp . Clearly, ¢ and 1 are bijections. If U € 7(X), ¢~ [OU] =
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{peX:UeW,} =U. Also, U] = OUNT. So, ¢ is a
homeomorphism. For p € X and U € 7(X), by Proposition 3.2,
V, € OU iff V, € O(intxclx). Let V € 7(X). ¢~ [OV NR] =
Y [O(intxelx V)N Rl ={p € X rintxclxV € W, } = intxclxV.
Also, YlintxclxV] = OV N R. Thus, ¢ is a homeomorphism. [

Next, we wish to link H-closed extensions of #-covers of X and
pX.

Notation 3.7. Let X be a space, (Y, f) a #-cover of X, and Z
an Hausdorff extension of Y. Forp € Z,let V, ={UNY :p €
UeROZ)} and for V € 7(X), oz(V) ={pe Z:V O W
for some W € Vp}. Let G, = f#(Vp) and ép =n{U : U is
an open ultrafilter and U O G, }. Let T = {Q\p :p € Z} and
¢ Z—T:pr— ép . The proof of Proposition 3.3 also shows that
¢ is a bijection. Furthermore, we show that ¢ is always continuous.

Proposition 3.8. Let Z be a Hausdorff extension of a 0-cover
(Y, f) of X. The function ¢ : Z — T defined in 3.7 is a continuous
bijection.

Proof: ¢ is one-one and onto. To show that ¢ is continuous,
let U be open in X. Then OU NT = O(intxclxU) N'T and
¢~ [O(intxcxU)] = {p € Z : G, € OlintxclxU)} = {p €
Z :intxclx(U) € g} }. There is a regular open V' in Y such
that f#(V) = intxclxU. Hence, ¢~ [O(intxclxU)] = {p € Z :
fFV)yeGy=1{pezZ:ff(V)e G }={pecz:[HV)e
W)y ={peZ:VeV,} =o0zV. Additionally, ¢p[ozV] =
O(intzchU) NT=0UNT. O

Proposition 3.9. ([6, 7.5(h)(1)]) If Z is a semiregular extension
of X, then {ozU : U € RO(X) } is a base for Z.

Proposition 3.10. Let Z be an extension of a 0-cover (Y, f) of X
and ¢ : Z — T, as defined in 3.7. Then ¢ is a homeomorphism if
Z s semireqular.

Proof: If Z is a semiregular extension of Y, then {ozU : U €
RO(Y) } is an open base for Z. O

Corollary 3.11. Every semireqular Hausdorff extension of a 0-
cover of X is contained in pX.
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An immediate consequence of Corollary 3.11 is the next result.

Corollary 3.12. Every minimal Hausdorff extension of a 6-cover
of X is contained in pX.

4. EXAMPLES

Example 4.1. The Iliadis absolute (EX, kx) is a semiregular 6-
cover of X. By Corollary 3.11, £ X is contained in pX.

Definition 4.2. For an open filter F on X, Fs = (FNRO (X)).

Construction 4.3. Let H be an H-closed extension of a Hausdorff
space X. For U € 7(X), define A\(U) = UU{y € H\X : U € (0Y);}.
Note that A(@) = O, A\(X) = H, and for U,V € 7(X), \(UNV) =
AU)NAV). So, {A(U) : U € 7(X)} is a base for a topology on H.
H with this topology is denoted as Hj.

Proposition 4.4. Let H be an H-closed extension of X. Then Hy
s a strict H-closed extension of X.

Example 4.5. By Corollary 3.11, any minimal Hausdorff extension
of KX is contained in pX. So, SEX and every Hausdorff compact-
ification of EX is contained in pX. But SEX =px 0X =gx uEX
[6, 6.6(e)(1) and 7B(3)]). By [6, 7.5(h)(4)], pEX \ EX is home-
omorphic to cEX \ EX and by 4.3, cEX \ EX and 0X \ X are
homeomorphic. But by [6, 7.7(e)], there is an order isomorphism
between HY(X) and {P : P is a partition of ¢ X \ X into nonempty
compact sets }. Since cEX \ EX and ¢.X \ X are homeomorphic by
4.3, there is an order isomorphism between H?(EX) and H%(X).
Also, by [6, 7.7(e)], there is an order isomorphism between H%(EX)
and the set M(EX) of minimal Hausdorff extensions of EX. So,
there is a parallel analogue between the result that every minimal
Hausdorff extension of FX is contained in pXand the result that
every H-closed extension Hy of X, where Hy is defined in Proposi-
tion 4.4 for an arbitrary H-closed extension H of X, is contained in
pX. The obvious parallel between M(EX) and M(X) might not
work in this case for if X is not semiregular, M(X) = @.

Example 4.6. Since (X(s),idx) is a 6-cover of X, by Corol-
lary 3.11, every minimal Hausdorff extension of X (s) is contained

in pX. Now, there is an order isomorphism between H?(X) (or
Ho(X) = {Hp : H € H(X)}) and M(X(s)) by 1.15. Combining
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this result with that of (b), there is an order isomorphism between
M(EX) and M(X(s)). This parallel between pX containing ele-
ments of M(EX) and M(X) is obtained without requiring that X
be semiregular.

Example 4.7. Let B be an open base for X. For U € B(X), let
U'=Uand U' = X \clxU. Fort € [[52,let TgX = {U'V) .U ¢
B}. Let cIgX = {t € [[32: TX has the finite intersection prop-
erty} and TgX = {t € cIgX : adxB' # @}. Jack Porter [4] has
shown that ¢T3 X is a zero-dimensional Hausdorff compactification
of TgX. The function Iz : TgX — X defined by Ig(t) = adx B!
is a #-covering map. So, (1pX,lp) is a O-cover of X. As IpX
is a Hausdorff compactification of TpX, cIX is contained in pX.
Porter [4] shows that every zero-dimensional Hausdorff compactifi-
cation of every Hausdorff §-cover of X can be obtained using this
method.

Example 4.8. Recall ([6] and [2]) a relation p C P(X) x P(X) is
a @-proximity if for A, B, C' € P(X),

1 O X;

2 ApB implies BpA;

3 AyB and AyC iff Ay(BUC);

4 Ag B implies there is a U € RO(X) such that By/U and
A X\ cU,

5 {x}pA iff N meets Ny.

An open filter F on X is a O-filter if for each U € F, there is
V € F such that VgX \ clU. Let byXy = {U : U is a maximal
O-filter on X}. For U € 7(X), let OU = {U € byXy : U € U}.
{OU : U € 7(X)} is a base for a compact Hausdorff topology
on byXy. Define mp : X9 — X by mp(U) = ad(Ud); 7y is a 0-
covering map. Thus, (Xy,my) is a f-cover of X. Since byXy is
a Hausdorff compactification of Xy, by Xy is contained in pX. V.
Fedorcuk [2] shows that every Hausdorff compactification of every
Tychonoff cover of X can be generated by a - proximity on X.
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