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THETA-COVERS OF HAUSDORFF SPACES

VRUNDA PRABHU

Abstract. In this article, we partially order θCOV(X) and
obtain the following results.
(1) If (Y, f) is a θ-cover of X, then so is (Y (s), f) and

(Y, f) ≥ (Y (s), f).
(2) Every semiregular θ-cover of X is a subspace of ρX.
(3) Every semiregular Hausdorff extension of a θ-cover of X

is contained in ρX.
(4) Every minimal Hausdorff extension of a θ-cover of X is

contained in ρX.

1. Introduction

All spaces are assumed to be Hausdorff unless explicitly stated
otherwise. The necessary background for the material in this paper
appears in [6], [7], and [8]. In particular, [6] provides the structural
basis for extensions and absolutes of Hausdorff spaces. A bare
minimum of notation is included here. An extension of a space X is
a space Y which contains X as a dense subspace. A cover of a space
X is a space Y with a perfect, irreducible continuous surjection from
Y onto X. Extensions considered are either strict or simple, and the
named extensions of interest are κX, σX, and µX. The emphasis
of this paper is on θ-covers. A θ-cover of a space X is a space Y
with a perfect, irreducible θ-continuous surjection from Y onto X,
and the associated map is called a θ-covering. Let X be a space
and let
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368 V. PRABHU

θX = {U : U is an ultrafilter on X}.
For U ∈ τ(X), let OU = {U ∈ θX : U ∈ U}. Note that
(a) OØ = Ø
(b) OX = θX
(c) U , V ∈ τ(X), O(U ∩ V ) = OU ∩OV .

θX with the topology generated by {OU : U ∈ τ(X)} is called the
hyperabsolute of X.

θX is homeomorphic to the Stone space of the complete Boolean
algebra RO(X) of regular open sets of X; hence, θX is an ex-
tremally disconnected, compact Hausdorff space.

Let EX = {U ∈ θX : adXU 6= Ø}. EX is called the Iliadis
absolute of X. The subspace EX is dense in θX (in particular,
βEX = θX). For any open ultrafilter U on X, adXU is either
empty or a singleton; hence, the function kX : EX → X defined by
kX(U) = adXU is well-defined.

The following properties of the Iliadis absolute (EX, kX) are used
later.

Proposition 1.1 ([6]). Let X be a space.
(a) The absolute EX is extremally disconnected and Tychonoff

and the surjection kX : EX → X is a θ-covering map.
(b) If Y is a Hausdorff space and f : Y → X is a θ-covering

map, there is a θ-covering surjection g : EX → Y such that
f ◦ g = kX ; in particular, the following diagram commutes.

Y - X

EX

?

kX

f

¡
¡

¡
¡

¡
¡

¡ª

g ◦

(c) Under the hypothesis of (b), if Y is also extremally discon-
nected and Tychonoff, there is a homeomorphism g : EX →
Y such that f ◦ g = kX .
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(d) There is a homeomorphism h : θX → E(σX) such that
(kσX ◦ h)|(θX \EX) : θX \EX → σX \X is also a home-
omorphism.

(e) The surjection kX : EX → X is continuous iff X is regular.

The Banaschewski absolute, PX, has EX as the underlying set and
the topology generated by the base {OU ∩ k←X [V ] : U, V ∈ τ(X)}.
Clearly, τ(PX) w τ(EX), and the function πX : PX → X defined
by πX(U) = kX(U) is continuous. The space PX is extremally
disconnected and Hausdorff but not necessarily Tychonoff. Also,
the surjection πX : PX → X is perfect, irreducible, and continuous,
and (PX)(s) = EX.

Proposition 1.2 ([9]). Let X be a space.

(a) Let t : X → X be continuous but not the identity function.
There is a closed set S ⊂ X such that X = S ∪ t←[S].

(b) Let Y be a space, f : X → Y be an irreducible function such
that f ◦ t = f . Then t = idX .

Proposition 1.3 ([6]). Let Y and Z be spaces, f : Y → Z and
g : Z → W be functions.

(a) If f and g are closed irreducible surjections, so is g ◦ f .
(b) If f and g are perfect functions, so is g ◦ f .
(c) If f and g are θ-continuous, so is g ◦ f .

Proposition 1.4. Let (Y, f) and (Z, g) be θ-covers of X. Suppose
h : Y → Z is a continuous function such that g◦h = f , and suppose
k : Z → Y is a continuous function such that f ◦ k = g.

X

Y
Z

Z
Z

Z
Z

Z
Z

ZZ~

f

◦

h - Z

?

- Y
½

½
½

½
½

½
½

½=

k

f

◦g

Then h is a homeomorphism.
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Proof: Now, g = f◦k = g◦(h◦k). By Proposition 1.2, h◦k = idZ .
Similarly, k ◦ h = idY . Thus, h← = k, h = k←, and h and k are
homeomorphisms. ¤

Define two θ-covers (Y, f) and (Z, g) of X to be equivalent if there
is a homeomorphism h : Y → Z such that the following diagram
commutes.

X

Y
Z

Z
Z

Z
Z

Z
Z

Z~

f ◦

-h Z
½

½
½

½
½

½
½

½=

g

Let θCOV(X) denote one representative from each equivalence class.
Define ≤ on θCOV (X) as follows: (Z, g) ≤ (Y, f) iff there is a con-
tinuous function h : Y → Z such that g ◦ h = f . Clearly, ≤ is
reflexive and transitive. By Proposition 1.4, f is antisymmetric.

Proposition 1.5. (θCOV (X),≤) is a partially ordered set.

Example 1.6. (a) Any cover (Y, f) of X is also a θ-cover of X. In
particular, the Banaschewski absolute (PX, πX) is a θ-cover of X.
In general, the θ-covers (PX, πX) and (EX, kX) are not equivalent,
e.g., whenever X is Hausdorff but not regular. Now, the identity
function id : PX → EX is continuous; so, (PX, πX) ≥ (EX, kX).
(b) (X, idX) is a cover and, hence, is a θ-cover of X. Let X(s)
denote the semiregularization of X, i.e., X with the topology gen-
erated by the regular open sets; X(s) is still a Hausdorff space [6].
Also, (X(s), idX) is a θ-cover of X. Note that if (Y, cY ) ∈ θCOV,
then (Y, cY ) ≥ (X(s), idX); that is, (X(s), idX) is the smallest ele-
ment of θCOV.
(c) Let S be a finite family of pairwise disjoint, nonempty open sets
of X such that if X =

⋃{clU : U ∈ S}. Let S = {U : U ∈ S}
and ⊕S denote the topological sum of the subspaces of S. The
underlying set of ⊕S is

⋃{U × {U} : U ∈ S}. Define f : ⊕S → X
by f(x,U) = x where x ∈ U and U ∈ S. The function f is a
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perfect, irreducible, continuous surjection, i.e., a covering map. So,
(⊕S, f) is a θ-cover of X.

2. Properties of θCOV (X)

Notation 2.1. Let Y and Z be spaces. For a function f : Y → Z
and A ⊆ Y , the small image of A is f#(A) = {y ∈ Z : f←(y) ⊆ A}.
When f is onto, it is easy to verify that f#(A) = Z \ f [Y \A] and
f#(A) ⊆ f(A).

Proposition 2.2 ([1], [6], [5], [10]). Let Y be a space and f : Y →
X be a closed, irreducible θ-continuous surjection.

(a) If Ø 6= U ∈ τ(Y ), then Ø 6= f#[U ] ∈ τ(X).
(b) If U ∈ τ(Y ), then f [clY U ] = clXf [U ] = clXf#[U ].
(c) If U ∈ τ(X), then intY f←[clXU ] = intY clY f←[U ].
(d) If U ∈ τ(Y ), then intY f←[clXf [U ]] = intY clY U .
(e) Let U ∈ RO(Y ) , then f#[U ] ∈ RO(X) .
(f) f# : RO(Y ) → RO(X) is an order-preserving isomor-

phism.

Let (Y, cY ), (Z, cZ) ∈ θCOV (X) such that (Y, cY ) ≥ (Z, cZ). Let
f : Y → Z be continuous such that cZ ◦ f = cY . By Proposition
1.2, there are θ-covering functions dY : EX → Y and dZ : EX → Z
such that cY ◦ dY = kX and cZ ◦ dZ = kY . That is, in the following
diagram the lower diagram commutes.

X

Y
Z

Z
Z

Z
Z

Z
ZZ~

cY
◦

-f Z
½

½
½

½
½

½
½½=

cZ

EX
½

½
½

½
½

½
½½=

Z
Z

Z
Z

Z
Z

ZZ~

dY dZ
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We would like to show that the upper diagram commutes, i.e.,
dZ = f ◦ dY , but first we need a result that extends 8.4(i) in [6].

Proposition 2.3. Let Y , Z, W be Hausdorff spaces; f : Y → Z
be a θ-continuous function; g : Y → Z and h : Z → W be perfect,
irreducible, θ-continuous surjections; and h ◦ f = h ◦ g, i.e., this
diagram commutes. Then f = g.

Z

Y
Z

Z
Z

Z
Z

Z
ZZ~

g

◦ W

½
½

½
½

½
½

½
½>

h

Z

½
½

½
½

½
½

½
½> Z

Z
Z

Z
Z

Z
ZZ~

f h

Proof: Assume there is a point y ∈ Y such that f(y) 6= g(y).
There are open sets U , V in Z such that f(y) ∈ U , g(y) ∈ V
and U ∩ V = Ø. There is an open set W in Y such that y ∈ W ,
f [clW ] ⊆ clU , and g[clW ] ⊆ clV . By Proposition 2.2(b), clV w
g[clW ] = clg#[W ] ⊇ g#[W ]. Hence, intZclZV ⊇ g#[W ] by Propo-
sition 2.2(a). As g#[W ] = Z \ g[Y \W ], Z \ intZclZV ⊆ g[Y \W ].
Now, clU ⊇ f [clY W ] ⊇ f [W ] ⊇ f#[W ] = Z \ f [Y \ W ]; hence,
Z \ clZU ⊆ f [Y \W ]. As U ∩ V = Ø, intZclZU ∩ intZclZV = Ø.
In particular, clZU ∩ intZclZV = Ø. So, Z = (Z \ intZclZV ) ∪
(Z \ clZU) and W = h[Z] = h[Z \ intZclZV ] ∪ h[Z \ clZU ] ⊆
h◦g[Y \W ]∪h◦f [Y \W ] = h◦g[Y \W ]. Since h and g are θ-covering
functions, it follows by Proposition 1.5 that h ◦ g is a θ-covering
function. As Y \W is a proper closed subset, h ◦ g[Y \W ] 6= W by
the irreducibility property of h ◦ g. This is a contradiction. So, we
have that f = g. ¤
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Corollary 2.4. Let (Y, cY ), (Z, cZ) ∈ θCOV (X) and f : Y → Z
be a continuous function such that cZ ◦ f = cY . Let dY : EX → Y
and dZ : EX → Z be θ-covering functions such that cY ◦ dY =
cZ ◦ dZ = kX . Then f ◦ dY = dZ .

Proof: This follows by observing that cZ ◦ dZ = kX = cY ◦ dY =
cZ◦f ◦dY and applying Proposition 2.3 to cZ◦dZ = cZ◦(f ◦dY ). ¤

Proposition 2.5. If (Y, f) is a θ-cover of X then so is (Y (s), f)
and (Y, f) ≥ (Y (s), f).

Proof: Since f : Y → X is a θ-continuous, perfect, irreducible
surjection and τ(Y (s)) ⊆ τ(Y ), it follows that f : Y (s) → X is a
perfect, irreducible surjection. Since idY : Y → Y (s) is continuous
and a θ-homeomorphism, it is immediate that f : Y (s) → X is a
θ-continuous and (Y, f) ≥ (Y (s), f). ¤

3. θ-covers and ρX

In [8], for a T0 space X, a T0 extension ρX of X is constructed
such that X ⊆ ρX ⊆ β+(X), where β+(X) is the upper Stone-
Cech compactification T0 extension of the embedding of X. (This
is an embedding in the product space

∏
C+(X) I+, where I+ has

the topology generated by {[0, a) : 0 < a < 1}, and C+(X) =
C(X, I+).) β+(X) is defined in [3]. In [8], ρX is characterized
as the space OF(X), the set of all open filters on X, with the
topology generated by the base {OU : U ∈ τ(X)} where OU =
{G ∈ OF(X) : U ∈ G}. In this paper, we will view ρ(X) in
terms of this open filter characterization. By Theorem 6.4 in [6],
ρ(X) contains all of the strict T0 extensions of X and no other
extensions. Furthermore, ρ(X) contains only one copy of each strict
T0 extension of X.

Notation 3.1. Let (Y, f) be a θ-cover of X. By Proposition 2.2,
f# : RO(Y ) → RO(X) is a Boolean algebra isomorphism. For
p ∈ Y , let Vp = {U ∈ RO(Y ) : p ∈ U}, and Gp = f#(Vp ) ⊆
RO(X) . Let Ĝp = ∩{U : U ∈ θX and Gp ⊆ U} and Z = {Ĝp :
p ∈ Y } ⊆ OF(X) . Define φ : Y → Z by φ(p) = Ĝp .

We need the following fact from [6].



374 V. PRABHU

Proposition 3.2. [6, 2.3(k)] Let F be an open filter on a space X.
If G = ∩{U : U is an open ultrafilter and U ⊇ F}, then G = {T ⊆
X : T is open and intXclXT ∈ F}.

If U is an open ultrafilter on X and U ∈ τ(X), then by Propo-
sition 3.2, U ∈ U iff intXclXU ∈ U . Let (Y, f) ∈ θCOV (X),
p ∈ Y , and U ∈ τ(X). Also, by Proposition 3.2, Ĝp ∈ OU iff
Ĝp ∈ O(intXclXU).

Proposition 3.3. Let (Y, f) ∈ θCOV (X), V ∈ RO(Y ) , and p ∈
Y . Then V ∈ Vp iff f#(V ) ∈ Ĝp .

Proof: Suppose V ∈ Vp . By definition, f#(V ) ∈ Gp ⊆ Ĝp .
Conversely, suppose f#(V ) ∈ Ĝp . Then intXclXf#(V ) = f#(V ) ∈
Gp = f#(Vp ). So, there is a W ∈ Vp such that f#(W ) = f#(V ).
But, f# is one-one; hence, V = W ∈ Vp . ¤

Theorem 3.4. Let (Y, f) ∈ θCOV (X), Z be defined as in 3.1 with
the subspace topology of ρ(X). Then Y (s) and Z are homeomor-
phic.

Proof: The function φ as defined in 3.1 is one-one and onto. Let
W be open in X. Then in Z, OW = O(intclW ). Thus, there is a
regular open set T in Y such that f#(T ) = intclW and φ←[OW ] =
φ←[O(intclW )] = φ←[O(f#(T ))] = φ←[{Ĝp : f#(T ) ∈ Ĝp }] =
{p ∈ Y : T ∈ Vp } = T . Also, φ[T ] = O(f#(T )) ∩ Z. Thus,
φ : Y (s) → Z is a homeomorphism. ¤

Corollary 3.5. Every semiregular, θ-cover of X is a subspace of
ρX.

Now, we consider the special cases of the θ-covers (X, idX) and
(X(s), idX) of X. For p ∈ X, let Wp = {U ∈ τ(X) : p ∈ U}, Vp =
{U ∈ RO(X) : p ∈ U}, and V̂p =

⋂{U : U is an open ultrafilter
and Vp ⊆ U}. Then T = {Wp : p ∈ X} and R = {V̂p : p ∈ X}
are subspaces of OF(X) .

Proposition 3.6. The space T is homeomorphic to X and R is
homeomorphic to X(s).

Proof: Let φ : X → T : p 7−→ Wp and ψ : X(s) → R : p 7−→
V̂p . Clearly, φ and ψ are bijections. If U ∈ τ(X), φ←[OU ] =
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{p ∈ X : U ∈ Wp } = U . Also, φ[U ] = OU ∩ T . So, φ is a
homeomorphism. For p ∈ X and U ∈ τ(X), by Proposition 3.2,
V̂p ∈ OU iff V̂p ∈ O(intXclX). Let V ∈ τ(X). ψ←[OV ∩ R] =
ψ←[O(intXclXV ) ∩ R] = {p ∈ X : intXclXV ∈ Wp } = intXclXV .
Also, ψ[intXclXV ] = OV ∩R. Thus, φ is a homeomorphism. ¤

Next, we wish to link H-closed extensions of θ-covers of X and
ρX.

Notation 3.7. Let X be a space, (Y, f) a θ-cover of X, and Z
an Hausdorff extension of Y . For p ∈ Z, let Vp = {U ∩ Y : p ∈
U ∈ RO(Z) } and for V ∈ τ(X), oZ(V ) = {p ∈ Z : V ⊇ W

for some W ∈ Vp}. Let Gp = f#(Vp ) and Ĝp = ∩{U : U is
an open ultrafilter and U ⊇ Gp }. Let T = {Ĝp : p ∈ Z} and
φ : Z → T : p 7−→ Ĝp . The proof of Proposition 3.3 also shows that
φ is a bijection. Furthermore, we show that φ is always continuous.

Proposition 3.8. Let Z be a Hausdorff extension of a θ-cover
(Y, f) of X. The function φ : Z → T defined in 3.7 is a continuous
bijection.

Proof: φ is one-one and onto. To show that φ is continuous,
let U be open in X. Then OU ∩ T = O(intXclXU) ∩ T and
φ←[O(intXclXU)] = {p ∈ Z : Ĝp ∈ O(intXclXU)} = {p ∈
Z : intXclX(U) ∈ Ĝp }. There is a regular open V in Y such
that f#(V ) = intXclXU . Hence, φ←[O(intXclXU)] = {p ∈ Z :
f#(V ) ∈ Ĝp } = {p ∈ Z : f#(V ) ∈ Gp } = {p ∈ Z : f#(V ) ∈
f#(Vp )} = {p ∈ Z : V ∈ Vp } = oZV . Additionally, φ[oZV ] =
O(intZclZU) ∩T = OU ∩ T . ¤
Proposition 3.9. ([6, 7.5(h)(1)]) If Z is a semiregular extension
of X, then {oZU : U ∈ RO(X) } is a base for Z.

Proposition 3.10. Let Z be an extension of a θ-cover (Y, f) of X
and φ : Z → T , as defined in 3.7. Then φ is a homeomorphism if
Z is semiregular.

Proof: If Z is a semiregular extension of Y , then {oZU : U ∈
RO(Y ) } is an open base for Z. ¤
Corollary 3.11. Every semiregular Hausdorff extension of a θ-
cover of X is contained in ρX.
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An immediate consequence of Corollary 3.11 is the next result.

Corollary 3.12. Every minimal Hausdorff extension of a θ-cover
of X is contained in ρX.

4. Examples

Example 4.1. The Iliadis absolute (EX, kX) is a semiregular θ-
cover of X. By Corollary 3.11, EX is contained in ρX.

Definition 4.2. For an open filter F on X, Fs = 〈F ∩ RO (X)〉.
Construction 4.3. Let H be an H-closed extension of a Hausdorff
space X. For U ∈ τ(X), define λ(U) = U∪{y ∈ H\X : U ∈ (Oy)s}.
Note that λ(Ø) = Ø, λ(X) = H, and for U, V ∈ τ(X), λ(U ∩ V ) =
λ(U)∩λ(V ). So, {λ(U) : U ∈ τ(X)} is a base for a topology on H.
H with this topology is denoted as H0.

Proposition 4.4. Let H be an H-closed extension of X. Then H0

is a strict H-closed extension of X.

Example 4.5. By Corollary 3.11, any minimal Hausdorff extension
of EX is contained in ρX. So, βEX and every Hausdorff compact-
ification of EX is contained in ρX. But βEX ≡EX θX ≡EX µEX
[6, 6.6(e)(1) and 7B(3)]). By [6, 7.5(h)(4)], µEX \ EX is home-
omorphic to σEX \ EX and by 4.3, σEX \ EX and σX \ X are
homeomorphic. But by [6, 7.7(e)], there is an order isomorphism
between Hθ(X) and {P : P is a partition of σX \X into nonempty
compact sets }. Since σEX \EX and σX \X are homeomorphic by
4.3, there is an order isomorphism between Hθ(EX) and Hθ(X).
Also, by [6, 7.7(e)], there is an order isomorphism betweenHθ(EX)
and the set M(EX) of minimal Hausdorff extensions of EX. So,
there is a parallel analogue between the result that every minimal
Hausdorff extension of EX is contained in ρXand the result that
every H-closed extension H0 of X, where H0 is defined in Proposi-
tion 4.4 for an arbitrary H-closed extension H of X, is contained in
ρX. The obvious parallel between M(EX) and M(X) might not
work in this case for if X is not semiregular, M(X) = Ø.

Example 4.6. Since (X(s), idX) is a θ-cover of X, by Corol-
lary 3.11, every minimal Hausdorff extension of X(s) is contained
in ρX. Now, there is an order isomorphism between Hθ(X) (or
H0(X) = {H0 : H ∈ H(X)}) and M(X(s)) by 1.15. Combining
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this result with that of (b), there is an order isomorphism between
M(EX) and M(X(s)). This parallel between ρX containing ele-
ments of M(EX) and M(X) is obtained without requiring that X
be semiregular.

Example 4.7. Let B be an open base for X. For U ∈ B(X), let
U0 = U and U1 = X \clXU . For t ∈ ∏

B 2, let TBX = {U t(U) : U ∈
B}. Let cTBX = {t ∈ ∏

B 2 : TBX has the finite intersection prop-
erty} and TBX = {t ∈ cTBX : adXBt 6= Ø}. Jack Porter [4] has
shown that cTBX is a zero-dimensional Hausdorff compactification
of TBX. The function lB : TBX → X defined by lB(t) = adXBt

is a θ-covering map. So, (TBX, lB) is a θ-cover of X. As cTBX
is a Hausdorff compactification of TBX, cTBX is contained in ρX.
Porter [4] shows that every zero-dimensional Hausdorff compactifi-
cation of every Hausdorff θ-cover of X can be obtained using this
method.

Example 4.8. Recall ([6] and [2]) a relation ρ ⊆ P(X)× P(X) is
a θ-proximity if for A, B, C ∈ P(X),

1 Øρ6 X;
2 AρB implies BρA;
3 Aρ6 B and Aρ6 C iff Aρ6 (B ∪ C);
4 Aρ6 B implies there is a U ∈ RO(X) such that Bρ6 U and

Aρ6 X \ clU ;
5 {x}ρA iff Nx meets NA.

An open filter F on X is a θ-filter if for each U ∈ F , there is
V ∈ F such that V ρ6 X \ clU . Let bθXθ = {U : U is a maximal
θ-filter on X}. For U ∈ τ(X), let OU = {U ∈ bθXθ : U ∈ U}.
{OU : U ∈ τ(X)} is a base for a compact Hausdorff topology
on bθXθ. Define πθ : Xθ → X by πθ(U) = ad(U); πθ is a θ-
covering map. Thus, (Xθ, πθ) is a θ-cover of X. Since bθXθ is
a Hausdorff compactification of Xθ, bθXθ is contained in ρX. V.
Fedorcuk [2] shows that every Hausdorff compactification of every
Tychonoff cover of X can be generated by a θ- proximity on X.
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