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FRACTALNESS OF SUPERCONTOURS

ANDRZEJ STAROSOLSKI

Abstract. Ultrafilters and monotone sequential contours are
fractal. [See Szymon Dolecki, Andrzej Starosolski, and Stephen
Watson, Extension of multisequences and countable uniradial
class of topologies, Comment. Math. Univ. Carolin. 44
(2003), no. 1, 165–181.] It is proved (under CH) that for
each supercontour there exists a greater supercontour which
is an ultrafilter. The existence (under CH) of 2ℵ1 other fractal
supercontours is shown.

1. Introduction

Let F be a filter on X and let f : X → Y . By f(F), we
understand a filter(!) on Y for which a family {f(F ) : F ∈ F} is a
filter base. Let G be a filter on Y . We say that F is Rudin-Keisler
greater than G (in symbols F º G) if there is a map f : X → Y
such that f(F) ⊃ G. If F º G and G º F , then F and G are
equivalent, and we write F ≈ G. If F º G and F 6≈ G, then we
write F Â G. Of course, F ⊂ G ⇒ F ¹ G. Even if X = Y , there are
filters incomparable in the set-theoretical order, comparable in the
RK-order. There are also filters (on each infinite cardinal number)
incomparable in the RK-order (see [11] and [2, 3.1.6]). The Rudin-
Keisler order was originally introduced for ultrafilters only (see [2]
and [15]). We say that families F and G of subsets of X mesh (in
symbols G#F) whenever G ∩ F 6= ∅ for every G ∈ G, F ∈ F .
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390 A. STAROSOLSKI

A topology is prime if at most one element is not isolated. If a
prime topology τ is not discrete and F is the restriction to the set
of isolated elements of the neighborhood filter of the non-isolated
element of a prime topology τ , then we say that F generates τ .
We denote such a topology by Prime(F). A topology (on X) is
F-radial [12] (with respect to the filter F on Y ) if x ∈ clA implies
the existence of a map f : Y → X such that A ∈ f(F) and x ∈
lim f(F).

In [1], B. Boldjiev and V. Malyhin constructed a filter F on
ω such that each sequential topology is F-radial. It was shown
in [5, p. 8] that if H is a supercontour then each subsequential1

topology is H-radial. It was also shown in [5] that if each sequential
topology isH-radial then Prime(H) is not subsequential. Therefore,
if Prime(H) is H-radial and every sequential topology is H-radial,
then there is a non-subsequential H-radial topology.

A filter F is fractal whenever it is Rudin-Keisler equivalent to
its every restriction to sets meshing with F . This definition was
motivated by the following proposition.

Proposition 1.1 ([5]). The prime topology generated by a filter F
is F-radial if and only if F is fractal.

Thus, by the considerations above and Proposition 1.1, if F is a
fractal supercontour then the class of F-radial topologies contains
all sequential topologies, contains all subsequential topologies, and
contains some non-subsequential topology.

It is not known whether fractal supercontours exist in ZFC. It is
the aim of this paper to show that there exist fractal supercontours
and there exist nonfractal supercontours under CH (see Corollary
3.4 and Corollary 3.8).

A sequential cascade (introduced in [4]) is a tree V without
infinite branches, endowed with the least element ∅V , with the
finest topology such that for all but maximal elements of V (v ∈
V \maxV ), the cofinite filter on the set (v)+ of immediate successors
of v converges to v, and for all but maximal elements of V the set
(v)+ is infinitely countable. For a pairwise disjoint sequence (Vn)
of sequential cascades, the confluence ((n) " Vn) of cascades Vn

stands for a sequential cascade V such that (∅V )+ = {∅Vn : n < ω}
1A topology is subsequential if it is a subspace of a sequential topological

space.
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with preserved order on branches of Vn (for each n). The rank
(r(v)) of v ∈ V is defined inductively to be 0 if v ∈ maxV and the
least ordinal greater than the ranks of the successors of v otherwise.
The rank r(V ) of a cascade is by definition the rank of ∅V .

If v ∈ V \maxV and (v)+ is endowed with an order of the type
ω, then we denote by (vn)n∈ω the sequence of elements of (v)+.
The cascade V is monotone if for every v ∈ V \maxV the sequence
(r(vn)) is non-decreasing.

We denote by v↑ (for v ∈ V ) the subcascade of the cascade V
formed of v and all successors of v with preserved order. By (n)
we denote the cofinite filter on a given infinite countable set. If
F = {Fs : s ∈ S} is a family of filters on X and if G is a filter on
S, then the contour of {Fs} along G is defined by

∫

G
F =

∫

G
Fs =

⋃

G∈G

⋂

s∈G

Fs.

When considering
∫
G Fs in the remainder of this paper, we as-

sume that the family {Fs} and G fulfill the above assumptions
unless indicated otherwise.

A similar construction was used in [7], [9], and [10]. For a
sequential cascade V , we define

∫
V by induction as follows: if

r(V ) = 1, then
∫

V is the cofinite filter on maxV ; if r(V ) > 1, then∫
V =

∫
(n)

∫
v↑n for {vn : n ∈ ω} = ∅+

V . A filter F is a sequential
contour if F =

∫
V for some monotone sequential cascade V . It

was shown in [5] that if V and W are monotone sequential cascades
and

∫
V =

∫
W , then r(V ) = r(W ). The rank of a sequential con-

tour F is the rank of a monotone sequential cascade V such that
F =

∫
V . (For more information about sequential contours and se-

quential cascades, see [4].) It was shown in [5, Proposition 4.1] that
all monotone sequential contours of the same rank are equivalent.

Theorem 1.2 ([5, Corollary 3.4]). For ordinals α < β < ω1, each
monotone sequential contour of rank β is strictly RK greater than
each monotone sequential contour of rank α.

Let F be a filter on ω. We denote by β(F) the set of all ul-
trafilters that are finer than F . If A ⊂ ω then β(A) is the set
of all ultrafilters that contain A. The Stone topology on βω has
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{β(A) : A ⊂ ω} for a base. This topology is homeomorphic to the
Čech-Stone compactification of ω with the discrete topology.

A sequence of filters (Fn) on ω is discrete if there is a sequence
(Fn) of pairwise disjoint sets such that Fn ∈ Fn, i.e., if {β(Fn) :
n ∈ ω} is a discrete family of subsets of βω.

The contour operation has the following, easily provable, prop-
erties.

Lemma 1.3 ([14]). (a) Let F be a filter and let (Fn) be a discrete
sequence of filters, such that Fn ≈ F for every n ∈ ω. If H ≈ G,
then

∫
G Fn ≈

∫
HFn.

(b) Let G be a free filter and let (Fn) be a discrete sequence of
filters such that Fn ¹ Fn+1. Then

∫
G Fn º Fm for each m ∈ ω. If

there exists a strictly increasing (in RK-order) subsequence (Fnk
),

then
∫
G Fn Â Fm.

(c) If G is a free filter and if (Fn) is a discrete sequence of filters,
then

∫
G Fn º G.

(d) If G is a non-maximal filter and if (Fn) is a discrete sequence
of filters, then

∫
G Fn is not an ultrafilter.

2. Fractal filters

The restriction F |A of a filter F (on X) to a set A#F is a filter
on X(!) for which {F ∩ A : F ∈ F} constitutes a base.2 Recall
that a filter F (on X) is fractal if F |A≈ F for all A#F . Since
F |Aº F for every A#F , F is fractal if for each A#F there is a
map fA : X → X such that fA(F) ⊃ F |A.

Proposition 2.1 ([5, Proposition 6.5]). Each ultrafilter is fractal.

Proposition 2.2 ([5, propositions 2.2 and 3.5]). Each monotone
sequential contour is fractal.

The following lemma, whose proof we leave to the reader, will be
instrumental in a study of fractal filters.

2We can also understand the restriction of a filter F to the set A as a filter
F |A on the set A such that G ∈ F |A if G = F ∩ A for some F ∈ F . This
understanding of the F |A is different, but the filters defined in these two ways
are RK-equivalent.
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Lemma 2.3. Let F = {Fs : s ∈ S} be a discrete family of filters
on a set X, let A ⊂ X, and let G be a free filter on S such that
A#

∫
G F. Then (

∫
G F) |A =

∫
G|B FA where B = {s ∈ S : Fs#A},

FA = {Fs |A: s ∈ B}.
Notice also, that for each filter F on ω there exists a pairwise

disjoint sequence (Fn) of filters on ω, such that Fn ≈ F for each
n < ω. Indeed, let (Fn) be a pairwise disjoint sequence of infinite
subsets of ω. For each n < ω, let fn : ω → Fn be an arbitrary
bijection. Then the sequence fn(F) fulfills the required condition.

Lemma 2.4. For each ultrafilter H on ω, there exists an ultrafilter
U on ω such that U Â H.

Proof: Let H be an ultrafilter on ω. There are 2ℵ0 maps from ω

to ω and there are 22ℵ0 ultrafilters on ω. Therefore, there exists an
ultrafilter L that is not RK-smaller thanH. Consider the ultrafilter
U =

∫
LHn where (Hn)n∈ω is a discrete sequence of ultrafilters such

that Hn ≈ H for every n ∈ ω. By Lemma 1.3, U º H and U º L.
Moreover, L 6¹ H, so that U Â H. ¤
Proposition 2.5. Let G be a free filter on ω. Then

∫
G F is fractal

for each discrete family F = {Fn : n ∈ ω} of fractal filters on ω if
and only if G is an ultrafilter.

Proof: Let {Fn : n ∈ ω} be a discrete family of sets such that
Fn ∈ Fn. Let A#

∫
G F. Since G is an ultrafilter then either G =

{s ∈ ω : A#Fn} belongs to G, or Gc ∈ G. If Gc ∈ G, then Ac ∈ ∫
G F

in contradiction to the assumptions, so G ∈ G. For each n ∈ G
there exists a function fn : Fn → Fn such that fn(Fn) ⊃ Fn |A. We
define f :

⋃
n∈G Fn →

⋃
n∈G Fn by f |Fn= fn. By Lemma 2.3 and

the monotonicity of the contour operation, f(
∫
G F) ⊃

∫
G F |A.

If G is not an ultrafilter then there exists a set G#G such that
Gc#G. Let {Fn, n ∈ ω} be a pairwise disjoint sequence of infinite
subsets of ω. For each n ∈ Gc, let Fn denote the cofinite filter on
Fn. By Lemma 2.4, there exists an ultrafilter J Â ∫

G|Gc
Fn. For

each n ∈ G, let Fn be a filter on Fn such that Fn ≈ J . Then(∫

G
Fn

)
|⋃

n∈Gc Fn
=

∫

G|Gc

Fn ≺ J ¹
∫

G|G
Fn =

(∫

G
Fn

)
|⋃

n∈G Fn
.

In other words, for F = {Fn : n ∈ ω}, the filter
∫
G F is not fractal.

¤
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Let G and F be filters. We define the relation “¿” as G ¿ F
if G |A¹ F for each A#G. The relation ¿ is not a partial order
because if G is not fractal then G |A 6¹ G for some A#G and so
G 6¿ G. Moreover, G ¿ G if and only if G is fractal. The relation
“¿” is transitive, F ¿ G ⇒ F ¹ G, and if G is fractal, then
G ¿ F ⇔ G ¹ F .

Proposition 2.6. Let {Fn : n ∈ ω} be a discrete family of filters
on ω and let G be a filter on ω. If for each B#G there is a function
g : ω → ω such that g(G) ⊃ G |B and Fn À Fg(n), then

∫
G Fn is

fractal.

Proof: Let (Fn) be a discrete sequence of sets such that Fn ∈ Fn.
Let A#

∫
G Fn and let B = {n ∈ ω : A#Fn}. By Lemma 2.3,

(
∫
G Fn) |A =

∫
G|B Fn |A. By assumption, there exists a function

g : ω → ω such that g(G) ⊃ G |B and such that Fn À Fg(n). Since
Fn À Fg(n), for each n ∈ ω there exists a function fn : Fn →
Fg(n) such that fn(Fn) ⊃ Fg(n). Since (Fn) is discrete, we can
define a function f by f |Fn= fn. Then f(

∫
G Fn) ⊃ ∫

G|B Fn |A
= (

∫
G Fn) |A. ¤

Theorem 2.7. Let (Fn) be a discrete sequence of filters. If there
is a cofinite subset D of ω such that Fn ¿ Fm for n < m, where
n,m ∈ D, then

∫
(n)Fn is fractal.

Proof: We can assume that D = ω, because a finite number of
elements does not have any influence on the contour with respect
to a free filter. Let us take

∫
(n)Fn as in the assumptions. Let

A#
∫
(n)Fn. It is natural that (

∫
(n)Fn) |Aº

∫
(n)Fn.

If A#
∫
(n)Fn, then by Lemma 2.3, (

∫
(n)Fn) |A=

∫
(n)|B (Fn |A),

where B = {n ∈ ω : Fn#A}.
Without loss of generality, we can assume that 1 ∈ B, because

there are only finitely many elements of ω less than minB. We can
also assume that F1 is fractal because f(

∫
(n)|B Fn) =

f(
∫
(n)|B\{1} Fn) for each function f : ω → ω.

We define a function g : ω → ω as follows: g(i) = maxn∈ω{n ∈
B : n < i} for i > 1, and g(1) = 1.

The function g fulfills the assumptions of Proposition 2.6. Indeed
the function g is decreasing for n > 1, so in view of Fn À Fg(n),
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for each H ∈ (n) |B, a set {n ∈ ω : n ≥ minH} belongs to (n) and
g({n ∈ ω : n ≥ minH}) = H. ¤

Theorem 2.7 shows that, for a discrete sequence (Fn) of filters,
the fractalness of

∫
G Fn depends on the interrelationship between an

order introduced on the set (Fn) by¿ and the filter G. Moreover, if
a set (Fn) is ordered by the relation ¿ in a type of some monotone
sequential cascade V , then

∫∫
W Fn is fractal for each monotone

sequential cascade W such that
∫

V ⊂ ∫
W . For details, see [14].

Let F ∈ βω. Recall that F is a weak P-point if F 6∈ clA for each
countable A ⊂ βω \ ω, F 6∈ A.

Proposition 2.8. There are fractal filters not of the form
∫
G Fn,

where (Fn) is a discrete sequence of filters and G is free.

Proof: There are weak P-points in βω [15, Theorem 4.3.3]; they
are fractal by Proposition 2.1, and they are not of the form

∫
G Fn.

Indeed, if x is a weak P-point and if x =
∫
G Fn for some discrete

sequence (Fn) of filters and for a free filter G, then let us take an
ultrafilter G̃ and a sequence of ultrafilters (F̃n) such that G̃ ⊃ G
and F̃n ⊃ Fn. We have

∫
G̃ F̃n ⊃

∫
G Fn, but

∫
G Fn is an ultrafilter

so
∫
G̃ F̃n =

∫
G Fn, so

∫
G Fn ∈ cl({F̃n}n∈ω). It is a contradiction

because x 6∈ clX for any countable X 63 x. ¤
Proposition 2.6 and Theorem 2.7 require a fractal filter G for

a discrete sequence (Fn) of filters to get a fractal contour
∫
G Fn.

However, there exist a non-fractal filter G and a discrete sequence
(Fn) of fractal filters, such that

∫
G Fn is fractal. For details, see

[14].

Let us recall that a filter F is substantial if the cardinality of the
set of all ultrafilters containing F is infinite. Let F and G be filters
on the same set. The supremum G∨F of filters F , G is the coarsest
filter finer than both F and G; the infimum F ∧G is the finest filter
coarser than both F and G. This notation is also used for sets via
identification with its principal filter.

Lemma 2.9. Let (Fn) be a sequence of substantial filters. There
exists a discrete sequence (Fk) of sets and an increasing sequence
(nk) such that Fk#Fnk

and Fnk
|Fk

is a substantial filter for each
k ∈ ω.
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Proof: First notice that if F is a substantial filter (on ω) and
F ∈ F , then there exists a set H ⊂ F such that H#F , Hc#F , and
filters F |H and F |Hc are substantial. Indeed, if such a set does not
exist, then for each subset H1 of F such that H1#F and Hc

1#F ,
one of the filters F |H1 or F |Hc

1
is not substantial (let us say F |H1)

and thus the second (F |Hc
1
) is substantial. We take a filter F |Hc

1

and a set Hc
1 and continue our procedure. Since we assume that a

set H does not exist, then we can continue this procedure for each
n < ω. But notice that

⋃
n<ω

H2n and
⋃

n<ω
H2n+1 fulfill the claim.

Now we will need the following statement (*): If A is a set and
if (Fn) is a sequence of substantial filters such that for each n < ω,
(A)c ∈ Fn, then there exists a set B ⊂ Ac and there exists a
subsequence (Fnk

) of a sequence (Fn) such that B#Fn1 , and F1 |B
is substantial, and for each k ∈ ω, Fnk

#(B ∪ A)c and Fnk
|(B∪A)c

is substantial.
Let G ⊂ Ac be a set such that F1 |G and F1 |Gc are substantial.

At least one of the following possibilities holds.
1) There exists a subsequence (Fnk

) such that G#Fnk
and Fnk

|G
is substantial.

2) There exists a subsequence (Fnk
) such that Gc#Fnk

and
Fnk

|Gc is substantial.
Indeed, if 1) is not true, then let T = {n < ω: 1∗ G do not mesh

Fn or 2∗ (G#Fn and Fn |G is not substantial)}. By assumption,
T is cofinite so infinite. Let Ti (i = 1, 2) be the set of all n < ω
such that i∗ holds. So T1 ∩ T2 = ∅ and T1 ∪ T2 = T , and thus, at
least one of those sets is infinite. If T1 is infinite, then Gc ∈ Fn

for each n ∈ T1 and so a sequence (Fn)n∈T1 satisfies 2). If a set
T2 is infinite, then for each n ∈ T2 there is Gc#Fn, and Fn |Gc is
substantial. Then a sequence (Fn)n∈T2 satisfies 2).

If 1) holds, then let B1 = G; if 2) holds, then let B1 = Gc, and
define B = B1 ∩Ac.

To prove the lemma, we will prove by induction the following
statement (**): Let (Fi)i=1,..,n be a pairwise disjoint n-sequence
of sets and let (Fi)i=1,...,n be an n-sequence of substantial filters
such that Fi ∈ Fi for each i ≤ n. If (Fk)n<k<ω is a sequence of
substantial filters such that (

⋃n
i=1 Fi)c ∈ Fk for each n < k < ω,

then there exist a set Fn+1 ⊂ (
⋃n

i=1 Fi)c and a subsequence (kj)j∈ω

such that kj = j for 1 ≤ j ≤ n + 1, Fn+1#Fn+1, and Fn+1 |Fn+1
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is substantial and for each n + 1 < j < ω, (
⋃n+1

i=1 Fi)c#Fnk
, and

Fnk
|(⋃n+1

i=1 Fi)c is substantial.
For n = 1, the claim is true by (*). If the claim is true for each

n < m, then let us define A =
⋃m−1

i=1 Fi. Thus by (*), the claim is
true. Let F0 = ∅; then by (*) and (**), the sequence (Fn) fulfills
the claim of the lemma. ¤
Proposition 2.10 ([3]). Let F be a monotone sequential contour
and let f : ω → ω. Then there exists a monotone sequential contour
G such that G ⊃ f(F) and r(G) ≤ r(F).

Proof: We will prove by induction that under our assumptions
there exists a monotone sequential contour G such that G ⊃ f(F),
and r(G) = 0 or r(G) = r(F). Let F be a monotone sequential
contour; let f : ω → ω; and if r(F) ≥ 1, then let V = (n) " Vn be
the monotone sequential cascade such that

∫
V = F .

If r(F) = 0, then the claim is obvious. If the claim is true for
all α < α0, then consider a sequence (Fn) of monotone sequential
contours, such that Fn ⊃ f(

∫
Vn) and either r(Fn) = 0 or r(Fn) =

r(
∫

Vn). Such filters exist by inductive assumptions.
If there exists a subsequence (nk)k∈ω such that r(Fnk

) = 0, then
either there exists a stable subsubsequence (nkm) or f(

∫
(k)Fnk

) is
a free filter. If there exists a stable subsubsequence (nkm), then
f(

∫
(m)Fnkm

) ⊂ C0 where C0 is a principal filter of f(
∫ Fnk1

). If
f(

∫
(k)Fnk

) is a free filter, then f(
∫
(m)Fnkm

) ⊂ C1 where C1 is a
cofinite filter on the set {Fnk

}, so it is enough to take any monotone
sequential contour Cr(F) of rank r(F).

If there exists a subsequence (nk)k∈ω such that r(Fnk
) > 0, then

by Lemma 2.9, there exist a pairwise disjoint sequence (Gnkm
) of

sets and an increasing subsequence nkm of a sequence nk such that
Gnkm

#Fnkm
. Then (Fnkm

|Gnkm
) is a discrete sequence of contours

and
∫
(m)Fnkm

|Gnkm
⊃ f(

∫
V ). ¤

Proposition 2.11. Let G be a free filter and let (Fn) be a discrete
sequence of non-maximal filters. Then

∫
G Fn is not an ultrafilter.

If G is an ultrafilter and (Fn) is a discrete sequence of sequential
filters, then

∫
G Fn is not a sequential contour.

Proof: Let (Fn) be a discrete sequence of infinite countable sets,
such that Fn ∈ Fn. For each n ∈ ω there exist sets F 1

n , F 2
n
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such that F i
n#Fn, Fn ⊃ F i

n for i = 1, 2, and F 1
n ∩ F 2

n = ∅. We
have

⋃
n∈ω F 1

n#
∫
G Fn and

⋃
n∈ω F 2

n#
∫
G Fn. The sets

⋃
n∈ω F 1

n and⋃
n∈ω F 2

n are disjoint, so
∫
G Fn is not an ultrafilter.

By Lemma 1.3 c), there is a map f such that f(
∫
G Fn) ⊃ G. On

the other hand, by Proposition 2.10, for every sequential contour
F and each map f , there exists a (monotone) sequential contour
H ⊃ f(F). Hence, if

∫
G Fn were a sequential contour, then there

would be a sequential contour H finer than the ultrafilter G, which
is impossible. ¤

In a similar way for a discrete sequence Fn of RK-equivalent
ultrafilters,

∫
(n)Fn is fractal and is neither an ultrafilter nor a se-

quential contour.
It is worth mentioning that the behavior of fractal filters un-

der maps is difficult to anticipate. Images and preimages of frac-
tal filters need not be fractal. Each class of RK-equivalent filters
contains some nonfractal filter; moreover, there exist classes of RK-
equivalent filters which do not contain any fractal filter. For details,
see [14].

3. Supercontours

Recall that a supercontour (defined in [5]) is a filter of the form⋃
α<ω1

Fα, where Fα is a monotone sequential contour of rank α,
and Fα ⊂ Fβ for α < β < ω1. Hence, each supercontour is a
supremum of an increasing ω1 sequence of fractal filters.

When considering supercontour
⋃

α<ω1
Fα in the remainder of

this paper, we assume that the family {Fα} fulfills the assump-
tions above unless indicated otherwise. Recall also, that we still
do not know if there exist fractal supercontours and if there exist
non-fractal supercontours in ZFC. Results under CH are presented
below.

Theorem 3.1 ([5, Theorem 4.6]). There are 2ℵ1 disjoint supercon-
tours.3

Theorem 3.2. (CH) For each supercontour there exists a finer
supercontour which is an ultrafilter.

3The proof of [5, Theorem 4.6] that there are 2ℵ1 supercontours shows also

that there are 2ℵ1 disjoint supercontours.



FRACTALNESS OF SUPERCONTOURS 399

Proof: Let S =
⋃

α<ω1
Fα be a supercontour, where Fα is a

monotone sequential contour of rank α and Fα ⊂ Fβ for α < β.
Under CH there exists an ω1-sequence {Aα, Ac

α} of pairs of sets,
such that each subset of ω belongs to exactly one pair of this se-
quence. Indeed, under CH, there are exactly ℵ1 subsets of each
countable infinite set, so there are exactly ℵ1 pairs described above,
and so we can order them in type of ω1.

Let F0
α = Fα.

If S is not an ultrafilter, then let α1 be the least ordinal α, such
that Aα#S and Ac

α#S. Without loss of generality we can assume
that α1 > 1. We define sequences {Fβ

α}α<ω1 for β ≤ α1 as follows:
Fβ

α = Fα for β < α1;
Fα1

α = Fα for α < α1;
Fα1

α = Fα |Aα1
for α ≥ α1.

We define Sβ =
⋃

α<ω1
Fβ

α .
If Sαγ is defined for each γ < γ0 and γ0 is not a limit ordinal,

then either Sαγ0−1 is an ultrafilter or Sαγ0−1 is not an ultrafilter.
In the first case, the proof is complete. In the second case, let αγ0

be the least ordinal α such that Aα#Sαγ0−1 and Ac
α#Sαγ0−1 .

We define Fβ
α = Fαγ0−1

α for αγ0−1 < β < αγ0 ;
Fαγ0

α = Fαγ0−1
α for α < αγ0 ;

Fαγ0
α = Fαγ0−1

α |Aαγ0
for α ≥ αγ0 .

If Sαγ is defined for each γ < γ0 and γ0 is a limit ordinal,
then let us choose any increasing sequence δn of ordinals such that
limn∈ω δn = γ0.

By Lemma 2.9, there exists a subsequence (δnk
)k∈ω of the se-

quence (δn)n∈ω and there exists a discrete sequence (Bk)k∈ω of sets,
such that Bk#Sδnk .

We define Gαγ0
α = Fαγ

α if α < αγ0 and αγ < α < αγ+1;

Gαγ0
α =

∫
(k)(F

δnk
α−1 |Bk

) if α has a predecessor and α ≥ αγ0 ;

Gαγ0
α =

∫
(k)(F

δnk
ηk |Bk

) if α ≥ αγ0 and α is a limit number,
where (ηn)n∈ω is an increasing sequence of ordinals such
that limn∈ω ηn = α.

If
⋃

θ<ω1
Gαγ0

θ is an ultrafilter, then we define Fαγ0
α = Gαγ0

α for
α < ω1; otherwise, (if

⋃
θ<ω1

Gαγ0
θ is not an ultrafilter), we define

Fαγ0
α = Gαγ0

α for α < αγ0 ;
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Fαγ0
α = Gαγ0

α |Aαγ0
, for αγ0 ≤ α < ω1, where αγ0 is the

least ordinal α such that Aα#
⋃

θ<ω1
Gαγ0

θ and
Ac

α#
⋃

θ<ω1
Gαγ0

θ .

One can see that Fβ
α is a monotone sequential contour of rank

α, and Fβ
α ⊂ Fγ

α for β < γ, and Fβ
α ⊂ Fβ

γ for α < γ. Also, for each
α < ω1, either Aα ∈ Sα or Ac

α ∈ Sα by construction of Sα.
If Sα0 is an ultrafilter for some α0 < ω1, then S̃ = Sα0 ; if

Sα0 is not an ultrafilter for each α0 < ω1, then we define S̃ =⋃
α<ω1

Fα
α . ¤

By Theorem 3.1 and Theorem 3.2, there is

Corollary 3.3. (CH) There are 2ℵ1 maximal supercontours on ω.

By Corollary 3.3 and Proposition 2.1, we have

Corollary 3.4. (CH) There are 2ℵ1 fractal supercontours on ω.

Proposition 3.5 ([5, p. 12]). If (Fn) is a discrete sequence of
supercontours, then

∫
(n)Fn is a supercontour.

As we can see, under CH, using Theorem 3.1 and Lemma 1.3(d),
there are supercontours not of the form

∫
(n)Fn, for a discrete se-

quence (Fn) of filters.

Lemma 3.6. Let (Fn) be a sequence of filters, let (Gα)α<ω1 be an
increasing ω1-sequence of monotone sequential contours, and let G
be the supercontour, G =

⋃
α<ω1

Gα. Then
∫
G Fn =

⋃
α<ω1

∫
Gα
Fn.

Proof: If U ∈ ∫
G Fn, then there exists G ∈ G such that U ∈ Fn

for all n ∈ G. But G ∈ Gα for some α < ω1 so that U ∈ ∫
Gα
Fn and

therefore, G ∈ ⋃
α<ω1

∫
Gα
Fn.

If U ∈ ⋃
α<ω1

∫
Gα
Fn, then there exists α < ω1 such that U ∈∫

Gα
Fn, so there exists a set G ∈ Gα such that U ∈ Fn for all n ∈ G.

But G ∈ G and thus, U ∈ ∫
G Fn. ¤

Theorem 3.7. (CH) There exist 2ℵ1 fractal non-maximal super-
contours.

Proof: Let (Fn) be a sequence of countable infinite disjoint sets;
let (Fn) be a sequence of sequential filters such that Fn ∈ Fn; and
let G =

⋃
α<ω1

Gα be an ultrafilter-supercontour (such exists by
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Theorem 3.2) where (Gα) is an increasing ω1-sequence of monotone
sequential contours such that r(Gα) = α. Consider

∫
G Fn. By

Proposition 2.11,
∫
G Fn is neither an ultrafilter nor a sequential

contour, but in view of Proposition 2.4,
∫
G Fn is fractal. We have

r(
∫
Gα
Fn) = 1 + α, because r(Fn) = 1. The sequence (

∫
Gα
Fn)α is

increasing, because Gα1 ⊂ Gα2 for α1 < α2, and a contour operation
is monotone. By Lemma 3.6 and the fact that a sequential contour
of rank 1 on

⋃
n∈ω Fn is a subset of each sequential contour,

∫
G Fn

is a supercontour.
Now let us take an ultrafilter-supercontour H, such that H 6= G.

There is a set H, such that H ∈ H and Hc ∈ G. Then
∫
HFn is

neither an ultrafilter nor a sequential contour, but it is a fractal
supercontour.

We have
⋃

n∈H Fn ∈
∫
HFn,

⋃
n∈Hc Fn ∈

∫
G Fn, but

⋃
n∈H Fn ∩⋃

n∈Hc Fn = ∅, so
∫
HFn 6=

∫
G Fn. Therefore, for distinct ultrafilters-

supercontours, the contours of a family {Fn} with respect to these
ultrafilters are distinct. In view of Corollary 3.3, there exists 2ℵ1

fractal supercontours which are not ultrafilters. ¤
The infimum of two monotone sequential contours of the same

rank is a monotone sequential contour of the same rank, and so the
infimum of two supercontours is a supercontour.

Corollary 3.8. (2ℵ0 < 2ℵ1) There are 2ℵ1 non-fractal supercon-
tours.

Proof: By Theorem 3.1, there exist 2ℵ1 supercontours on ω.
There are 2ℵ0 maps ω → ω, so there are 2ℵ1 classes of RK-equivalent
supercontours. Now let us take two non-equivalent supercontours,
F and K, and a set F ∈ F , such that F c ∈ K. The supercontour
G = F ∧ K is not fractal because G |F≈ F and G |F c≈ K. ¤
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