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ELEMENTARY SUBMODELS AND SEPARABLE
MONOTONICALLY NORMAL COMPACTA

TODD EISWORTH∗

Abstract. In this note, we use elementary submodels to
prove that a separable monotonically normal compactum can
be mapped onto a separable metric space via a continuous
function whose fibers have cardinality at most 2.

1. Introduction

Mary Ellen Rudin’s 2001 proof of Nikiel’s Conjecture [15] is a
tour de force of combinatorial set theory and general topology. The
work in this note arose from the author’s attempt at understanding
her proof; it became clear upon reading her paper that elementary
submodels ought to be able to shed light on the structure of mono-
tonically normal compacta. In the sequel, we will give one such
application.

We will begin with the definition of monotonically normal spaces.

Definition 1.1. A space1 X is monotonically normal if there is a
binary function H whose domain consists of all pairs (p, U) where
p ∈ U and U is open in X such that

(1) H(p, U) is an open set such that p ∈ H(p, U) ⊆ U ,
(2) if p /∈ V and q /∈ U then H(p, U)∩ H(p, V ) = ∅, and
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(3) if V ⊆ U is another open set, then H(p, U) ⊆ H(p, V ).
The function H is called a monotone normality operator on X .

It is easy to see that a monotonically normal space X is normal
— if H and K are disjoint closed subsets of X , and we define

(1.1) U =
⋃

p∈H

H(p, X \ K)

and

(1.2) V =
⋃

q∈K

H(q, X \ H),

then U and V provide the required separation of H and K.
There is an extensive literature devoted to monotonically normal

spaces (Gruenhage’s two articles [10] and [11] can be consulted for
more information); much of Rudin’s contribution to this literature
centered on Nikiel’s Conjecture, and her work culminated in the
following theorem.

Theorem 1 (Nikiel’s Conjecture – Rudin [15]). A compact Haus-
dorff space X is monotonically normal if and only if it is the con-
tinuous image of a linearly ordered compactum.

Our work in this area begins with her proof, but before we can
prove our theorem, we must deal with some aspects of elementary
submodels in topology.

2. Elementary submodels and X/M

We will assume that the reader has some familiarity with the
use of elementary submodels in topology — Dow’s papers [4] and
[6] provide more than adequate preparation. We are going to be
using a particular construction involving elementary submodels due
independently to Bandlow ([3], [2], and [1]) and Dow [5], and this
section of the paper will be used to develop the theory in a self–
contained manner.

Let us assume now that (X, τ) is a Tychonoff space, χ is a “suf-
ficiently large” regular cardinal, and M is an elementary submodel
of H(χ), the collection of sets hereditarily of cardinality < χ.

Definition 2.1. Two points x and y are M–equivalent, denoted
x =M y, if f(x) = f(y) for every continuous function f : X → R
such that f ∈ M .
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Proposition 2.2. M–equivalence is an equivalence relation, and
the equivalence classes are closed subsets of X.

Proof. The fact that =M is an equivalence relation is trivial. To
see that equivalence classes are closed, suppose that x is not M–
equivalent to y, and let f ∈ M be a function that witnesses this.
Then f−1(R \ {f(y)}) is an open neighborhood of x that is disjoint
to the M–equivalence class of y. �

We denote the equivalence class of x by [x], and let X/M de-
note the set of all M–equivalence classes of points in X . There
are several natural choices for topologizing X/M (all of which co-
incide if X is compact), but the theory works smoothest when then
following definition is used.

Definition 2.3. Let πM be the natural projection of X onto X/M .
We topologize X/M by taking as a base all sets of the form πM [U ]
for U a co-zero set in M .

The proof of the following proposition is left to the reader — all of
the clauses enumerated follow easily from the definitions involved.

Proposition 2.4. Let X and M be as above.
(1) The mapping πM : X → X/M is continuous.
(2) x =M y if and only if for every co–zero U ∈ M ,

(2.1) x ∈ U ⇐⇒ y ∈ U.

(3) [x] =
⋂
{Z ∈ M : x ∈ Z, Z a zero–set}.

(4) [x] =
⋂
{U : x ∈ U ∈ M , U a co–zero set}.

(5) X/M is a Hausdorff space.

We will prove shortly that X/M is in fact a Tychonoff space, but
before we do that we point out the connection between X/M and
a more typical construction using elementary submodels.

Definition 2.5. Given X and M as above, XM is defined to be the
topological space whose underlying set is M ∩X with the topology
generated by sets of the form M ∩U , where U is an open subset of
X that is in M .

Proposition 2.6. XM is homeomorphic to a dense subspace of
X/M .
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Proof. The proof is the obvious one — a point x ∈ M ∩X is set to
its equivalence class in X/M . The topologies involved are defined
in such a way that this map is a homeomorphism of XM onto its
image, and the fact that this image is dense in X/M follows easily
as any non–empty open subset of X that is in M must contain an
element of M ∩ X . �

Our next goal is to give a more concrete description of X/M
in terms of βX , the Stone-Cech compactification of X . One of the
standard constructions of βX involves embedding X into a product
[0, 1]κ of unit intervals, so we first investigate the nature of X/M
for X of the form [0, 1]κ.

Proposition 2.7. Suppose X = [0, 1]κ for some cardinal κ (so we
view points of X as functions from κ to [0, 1]), and let M be an
elementary submodel of H(χ) containing X. Then

(1) x =M y if and only if x � M ∩ κ = y � M ∩ κ, and
(2) X/M is homeomorphic to [0, 1]M∩κ.

Proof. It is certainly the case that x � M ∩ κ = y � M ∩ κ if
x =M y, as projection onto the αth component is a real–valued
function on X that is in M if α ∈ M ∩ κ. Suppose now that
x 6=M y; we produce an α ∈ M ∩κ such that x(α) 6= y(α). The key
to this is a well–known fact that a continuous real–valued function
defined on a product of compact spaces depends on countably many
coordinates.2 In our context, this means if we have a function f :
X → R then there is a countable set S ⊆ κ such that f(x) = f(y) if
x � S = y � S. If x 6=M y, then there is a function f ∈ M mapping
X to R such that f(x) 6= f(y). The model M knows that f depends
on countably many coordinates, so there is a countable S ∈ M with
the requisite properties. In particular, there is an α ∈ S such that
x(α) 6= y(α). Since the set S is countable and an element of M ,
we know that S ⊆ M and therefore there is an α ∈ S ⊆ M ∩ κ for
which x(α) 6= y(α), as required.

Thus, there is a natural correspondence between X/M and
[0, 1]M∩κ. The fact that this correspondence is a homeomorphism
is not difficult to show, and is left to the reader. �

2See Exercise 3.2H(a) of Engelking [8], for example.
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Now suppose we have X and M as usual. Since χ is “large
enough”, we know that the space C∗(X) of continuous functions
from X to [0, 1] is going to be an element of M , as it is definable
from X using parameters available in M . Thus, inside M there will
be an enumeration 〈fα : α < κ〉 of C∗(X).3

We know that the function e : X ↪→ [0, 1]κ that maps x to
〈fα(x) : α < κ〉 embeds X as a subspace of [0, 1]κ. The follow-
ing proposition establishes a similar connection between X/M and
[0, 1]M∩κ.

Proposition 2.8. Suppose X, M , and 〈fα : α < κ〉 are as in
the preceding discussion. Then there is an natural embedding e/M
making the following diagram commute:

(2.2)

X
e−−−−→ [0, 1]κ

π/M

y
yπ/M

X/M −−−−→
e/M

[0, 1]M∩κ

The preceding material is taken from Section 5 of Dow’s [5]; the
reader can find a more detailed discussion there. For our purposes,
we need only the following corollary.

Corollary 2.9. X/M is a Tychonoff space.

Proof. The embedding e/M from the preceding proposition shows
us that X/M is homeomorphic to a subspace of the compact space
[0, 1]M∩κ. �

3. Monotone Normality

We are now in a position to state the main theorem of this note.

Theorem 2. Let X be a separable monotonically normal com-
pactum, and let M be a countable elementary submodel of H(χ)
containing X. Then each =M–equivalence class has cardinality at
most 2.

3There will be many such enumerations and it doesn’t really matter which
one we use, but for definitiveness, we can consider M to be an elementary
submodel of the expanded structure 〈H(χ),∈,<χ〉 where <χ is a fixed well–
ordering of H(χ). We can then use the well–ordering to pick the particular
enumeration we use.
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As a corollary, we get the following result mentioned in the ab-
stract.

Corollary 3.1. If X is a separable monotonically normal com-
pactum, then X can be continuously mapped onto a separable metric
space by a 2-to-1 function4.

Proof. In light of Theorem 2, it suffices to note that X/M is com-
pact (as it is the continuous image of X) and of countable weight
(as the countably many co–zero sets in M define a base). �

Actually, much more can be shown. In particular, X can be
written as the inverse limit of a system of compact metric spaces
in such a way that all of the projections from X onto members of
the system are two-to-one functions.

Before we prove Theorem 2, we deal with the special case where
X is linearly ordered as this is particularly simple, and it hints at
why Theorem 2 is connected to Nikiel’s Conjecture.

Suppose now that X is a separable linearly ordered space, and
let M be a countable elementary submodel of H(χ) containing X .
In the model M , one can find a countable set D ⊆ X that is dense
in X . Since D is countable, it follows that every element of D is
also in M .

Now suppose x < y are M–equivalent; it suffices to prove that
the interval (x, y) is empty. Assume by way of contradiction that
(x, y) 6= ∅. Then there is an element d ∈ D such that x < d < y.
If one of (x, d) and (d, y) is empty, then we easily get a function in
M separating x and y — for example, if (x, d) is empty then x is
in M (it’s definable in M as the predecessor of d), and hence so is
the (continuous) function sending (−∞, x] to 0 and [d,∞) to 1. If
both (x, d) and (d, y) are non–empty, then we can find d1 and d2 in
D such that

(3.1) x < d1 < d2 < y

and the disjoint closed sets (−∞, d1] and [d2,∞) are in M and
separate x and y. Since X is normal, we can find in M a function
separating these two closed sets, and the function also separates x
and y.

4We operate under the convention that this means pre-images of points have
cardinality at most 2.
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Thus, if X is separable and linearly ordered (we don’t need com-
pactness for this case) and M is as above, then each =M equivalence
class is either a singleton, or a pair x < y with y the immediate
successor of x.

Proof of Theorem 2. Let X be a separable monotonically normal
compactum, and let M be a countable elementary submodel of
H(χ) that contains X . Let H ∈ M be a monotone normality
operator.

Lemma 3.2. If K is an =M–equivalence class and U is any open
neighborhood of K, then there is a co–zero set V ∈ M such that
K ⊆ V and V ⊆ U .

Proof. We know that K is the intersection of all co–zero sets in M
that contain it. Since X is compact and K is closed, this implies
that the collection of co–zero sets from M that contain K is a base
for K, i.e., any open set containing K must contain such a co–zero
set. The result follows immediately. �

Lemma 3.3. If K is an =M–equivalence class and U is any open
neighborhood of K, then there is a point p ∈ M ∩ U and a co–zero
set V ∈ M such that

(1) p ∈ M ∩ V ,

(2) V ⊆ U , and
(3) K ⊆ H(p, V ).

Proof. As in the proof of Lemma 3.2, there is a co–zero set V ∈ M
such that K ⊆ V and V ⊆ U . Since V is (in M) a countable
union of zero sets, there is a zero set Z ∈ M such that Z ∩ K 6= ∅
and therefore K ⊆ Z by the definition of M–equivalence. For each
p ∈ Z there is a co–zero set Vp such that

(3.2) p ∈ Vp ⊆ H(p, V ).

By elementarity, we may assume that the mapping p 7→ Vp is an
element of M , and thus {Vp : p ∈ Z} is an open cover of Z that is
an element of M . Since Z is compact, there is finite Z0 ⊆ Z such
that

(3.3) Z ⊆
⋃

z∈Z0

Vp.
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We may assume that Z0 ∈ M , and therefore Z0 ⊆ M . Thus, there
is a p ∈ M ∩ Z such that Vp ∩ K 6= ∅. Since Vp is a co–zero set in
M , it follows that K ⊆ Vp. Thus

(3.4) K ⊆ Vp ⊆ H(p, V ) ⊆ V,

and the result follows. �

We now are in a position to apply the monotone normality of X
in a non–trivial way.

Proposition 3.4. Suppose K is a =M–equivalence class, {x0, x1} ⊆
K, and W0 and W1 are disjoint open sets with xi ∈ Wi.5 If K ′ is
any other equivalence class, then there is at most one i < 2 with
K ∩ H(xi, Wi) 6= ∅.

Proof. Let U and U ′ be disjoint co–zero sets in M separating K
and K ′. By the previous lemma, there is a point p ∈ M ∩ U ′ such
that

(3.5) K ′ ⊆ H(p, U ′).

Note that p is an element of Wi for at most one i, and that K∩U ′ =
∅. If p /∈ Wi, then

(3.6) H(p, U ′) ∩ H(xi, Wi) = ∅
because H is a monotone normality operator. Since K ′ ⊆ H(p, U ′),
it follows that

(3.7) K ′ ∩ H(xi, Wi) = ∅
as well. �

Definition 3.5. Let U ∈ M be a co–zero set. An equivalence class
K ∈ X/M is said to be shattered by U if K ⊆ U and there exist
{xi : i < 3} and {Wi : i < 3} such that

• {xi : i < 3} ⊆ K,
• Wi is an open neighborhood of xi,
• the Wi’s have pairwise disjoint closures, and
• H4(xi, Wi) * U for all i < 3.

(Here the notation Hn(p, U) is defined by induction: H2(p, U) =
H(H(p, U)) and Hn+1(p, U) = H(Hn(p, U)).)

5So W0 and W1 won’t be elements of M .
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We will show that each co–zero U ∈ M can shatter at most
countably many elements of X/M , and that every K ∈ X/M of
cardinality greater than 2 is shattered by some U ∈ M .

Proposition 3.6. Let U ∈ M be a co–zero set. Then there are at
most countably many equivalence classes in X/M that are shattered
by U .

Proof. By way of contradiction, suppose there are uncountably
many equivalence classes shattered by U . Since U is a co–zero
set in M , we know there is a family {Zn : n ∈ ω} of zero–sets
in M whose union is U . Recall that since Zn ∈ M , if Zn meets
an equivalence class in X/M , then Zn actually contains the entire
equivalence class. Thus we can find a zero–set Z ∈ M and a family
{Kn : n ∈ ω} of equivalence classes in X/M such that

• Z ⊆ U ,
• Kn ⊆ Z for all n,
• each Kn is shattered by U .

For n < ω, let {xn
i : i < 3} and {Wn

i : i < 3} be as in the previous
definition for the equivalence class Kn.

For each pair of natural numbers m < n, by Proposition 3.4 we
can find a value i = i(m, n) < 3 such that

(3.8) Kn ∩ H(xm
i , Wm

i ) = ∅ and Km ∩ H(xn
i , Wn

i ) = ∅.

Therefore, by an application of Ramsey’s Theorem, we may assume
that there is an i such that (3.8) holds for all m 6= n.

Since H is a monotone normality operator, this implies that for
m 6= n,

(3.9) H2(xn
i , Wn

i ) ∩ H2(xm
i , Wm

i ) = ∅.

For each n, choose pn ∈ H4(xn
i , WN

i ) \ U . Since X is compact, we
can find a point p that is a limit point of {xn : n ∈ ω}.

Since the family {H2(xn
i , Wn

i ) : n < ω} is pairwise disjoint, the
members of {H3(xn

i , Wn
i ) : n < ω} have pairwise disjoint closures.

Thus p is a member of H3(xn
i , Wn

i ) for at most one n.
If p /∈ H3(xm

i , Wm
i ) then H(p, X \ U) and H4(xm

i , Wm
i ) are dis-

joint, and so H(p, X\U) is an open neighborhood of p that contains
at most one member of {pn : n < ω}, a contradiction. �
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Proposition 3.7. If K ∈ X/M is an equivalence class of size ≥ 3,
then there is a co–zero set U ∈ M that shatters K.

Proof. Note that since X is separable, an equivalence class in X/M
has empty interior, except in the case where the equivalence class
consists of a single isolated point from X . If K ∈ X/M has size
≥ 3, choose distinct {xi : i < 3} in K, and choose open sets (not
necessarily from M !) {Wi : i < 3} with disjoint closures such that
xi ∈ Wi.

Since K is the intersection of all co–zero sets from M that contain
it and K has empty interior, for each i < 3 we can find a cozero
set Ui ∈ M such that K ⊆ Ui and H4(xi, Wi) * Ui. Finally, the
set U = U0 ∩ U1 ∩ U2 is a cozero set in M with all the required
properties. �

From the two preceding propositions, it follows that all but
countably many equivalence classes in X/M are of size 2 or smaller,
but we need to improve this to all equivalence classes. The proof of
this breaks into two steps — first we use a variant of an argument
from Rudin’s paper [15] to show that there is at least one M for
which every =M–class has size at most 2, and then we show that
in fact it must hold for every such M .

Proposition 3.8. There is a countable elementary submodel M of
H(χ) containing X such that all =M–classes are of cardinality ≤ 2.

Proof. Assume by way of contradiction that the result fails, and
let 〈Mα : α < ω1〉 be an increasing and continuous ∈–chain of
countable elementary submodels of H(χ) such that X ∈ M0 and
〈Mβ : β ≤ α〉 ∈ Mα+1.

By our assumption, we can choose for each α < ω1 an =α–class6

Kα ∈ Mα+1 containing at least three elements. Since Mα ∈ Mβ

for α < β, it follows that every =β–class is contained in a unique
=α–class. Thus,

(3.10) α < β < ω1 =⇒ either Kα ∩ Kβ = ∅ or Kβ ⊆ Kα.

Since ω1 → (ω1, ω)2 by the Dushnik–Miller Theorem7 we know that
either there is an infinite A ⊆ ω1 such that Kα ∩Kβ = ∅ for α < β
in A, or there is an uncountable set B ⊆ ω1 such that Kβ ⊆ Kα

6We write =α instead of =Mα .
7From [7], or see Theorem 14.6 of [12]
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for α < β in B. We will get a contradiction by proving that both
of these alternatives are untenable.

We will dispose of the second alternative first, so assume that
we have such an uncountable B. Are argument consists of showing
that Kβ is actually a proper subset of Kα for α < β < ω1, and then
quoting an old result due both to Ostaszewski and to Moody.

Suppose now that α < β and Kβ ⊆ Kα. Since Kα ∈ Mα+1 and
Mα+1 is countable, we know that Kα ∈ Mβ as well, and hence

(3.11) Mβ |= |Kα| ≥ 3.

In particular, we can find points x 6= y in the set Mβ ∩ Kα. These
two points are separated by a continuous function in Mβ , and hence
Kβ can contain at most one of them. Thus, Kβ is a proper subset
of Kα.

This implies that the sequence 〈Kα : α ∈ B〉 is an uncount-
able strictly decreasing sequence of closed subsets of X . However,
this is absurd, as by Ostaszewski [14] and Moody [13] a separable
monotonically normal space is hereditarily Lindelöf.8

The other alternative available to us is that there is an infinite A
such that {Kα : α ∈ A} is pairwise disjoint. This case is disposed
of by essentially the same argument used in the proof of Proposi-
tion 3.6, so we leave it to the reader.

Since either alternative leads to a contradiction, it must be the
case that there is an α < ω1 for which all =α–classes are of cardi-
nality at most 2 and this establishes the proposition �

Finally, to show that in fact the conclusion of Proposition 3.8
holds for every such model M , we note that the definition of our
equivalence relations =M doesn’t depend on the fact that M is an
elementary submodel of H(χ). In fact, we can carry out the same
construction given any set of continuous real–valued functions de-
fined on X . Thus, we can view Proposition 3.8 as stating that there
is a countable set X of continuous real–valued functions defined on
X for which the associated equivalence classes all have cardinality
at most 2 — simply take X to be the set of all such functions in
M .

8In fact, they show that c(X) = hc(X) = hL(X) for X monotonically nor-
mal. Gartside’s paper [9] contains an extensive treatment of cardinal invariants
of monotonically normal spaces.
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Now let M be an arbitrary countable elementary submodel of
H(χ) containing X . By elementarity,

(3.12) M |= “there is a countable set X as above”..

Since X is countable, every member of X is also in M . Thus, any
=M–equivalence class is contained in a =X –equivalence class, and
therefore each such =M–class is of cardinality at most 2. Thus, the
proof of Theorem 2 is complete. �

In closing, we remark that the rest of Rudin’s proof of Nikiel’s
Conjecture seems to be amenable to a similar treatment, and we
plan to examine this in a future paper.
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in general topology, Z. Math. Logik Grundlag. Math., 35(3):283–288, 1989.

[2] Ingo Bandlow, A characterization of Corson-compact spaces, Comment.
Math. Univ. Carolin., 32(3):545–550, 1991.

[3] Ingo Bandlow, A construction in set-theoretic topology by means of ele-
mentary substructures, Z. Math. Logik Grundlag. Math., 37(5):467–480,
1991.

[4] Alan Dow, An introduction to applications of elementary submodels to
topology, Topology Proc., 13(1):17–72, 1988.

[5] Alan Dow, Set theory in topology, In Recent progress in general topology
(Prague, 1991), pages 167–197. North-Holland, Amsterdam, 1992.

[6] Alan Dow, More set-theory for topologists, Topology Appl., 64(3):243–300,
1995.

[7] Ben Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math.,
63:600–610, 1941.

[8] Ryszard Engelking, General topology, volume 6 of Sigma Series in Pure
Mathematics. Heldermann Verlag, Berlin, second edition, 1989.

[9] P. M. Gartside, Cardinal invariants of monotonically normal spaces, Topol-
ogy Appl., 77(3):303–314, 1997.

[10] Gary Gruenhage, Generalized metric spaces, In Handbook of set-theoretic
topology, pages 423–501. North-Holland, Amsterdam, 1984.

[11] Gary Gruenhage, Generalized metric spaces and metrization, In Recent
progress in general topology (Prague, 1991), pages 239–274. North-Holland,
Amsterdam, 1992.

[12] András Hajnal and Peter Hamburger, Set theory, volume 48 of London
Mathematical Society Student Texts. Cambridge University Press, Cam-
bridge, 1999. Translated from the 1983 Hungarian original by Attila Máté.

[13] P. J. Moody, A construction that yields a nonacyclic monotonically normal
space, In Proceedings of the Symposium on General Topology and Applica-
tions (Oxford, 1989), volume 44, pages 263–269, 1992.



SEPARABLE MONOTONICALLY NORMAL COMPACTA 443

[14] A. J. Ostaszewski, Monotone normality and Gδ-diagonals in the class of
inductively generated spaces, In Topology, Vol. II (Proc. Fourth Colloq.,
Budapest, 1978), volume 23 of Colloq. Math. Soc. János Bolyai, pages
905–930. North-Holland, Amsterdam, 1980.

[15] Mary Ellen Rudin, Nikiel’s conjecture, Topology Appl., 116(3):305–331,
2001.

Department of Mathematics, Ohio University, Athens, OH 45701
E-mail address: eisworth@math.ohiou.edu




