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AN INSERTION THEOREM CHARACTERIZING
PARACOMPACTNESS

HARUTO OHTA

ABSTRACT. For a space Y, Cy(Y') denotes the Banach space
of all real-valued continuous functions on Y vanishing at
infinity. We prove that a Hausdorff space X is paracom-
pact if and only if for every space Y and every two maps
g, h: X — Co(Y) such that g is upper semi-continuous, h is
lower semi-continuous and g < h, there exists a continuous
map f: X — Co(Y) with g < f < h. This result fails if ‘for
every space Y’ is replaced by ‘for every space Y which is the
initial segment of an infinite cardinal’.

1. INTRODUCTION

By a space we mean a Hausdorff space. For a space Y, let Cy(Y)
be the Banach space of all real-valued continuous functions s on Y
such that for each € > 0 the set {y € Y : |s(y)| > ¢} is compact,
where [[s|| = sup,cy [s(y)| for s € Co(Y). Gutev-Ohta-Yamazaki
[2] defined upper and lower semi-continuity of a Cp(Y')-valued map
(see Section 2 below) and proved the following theorem [2, Corollary
5.8]:

Theorem 1 (Gutev-Ohta-Yamazaki). For a space X, the following
are equivalent:

(1) X is paracompact.
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(2) For every space Y and every upper semi-continuous map
g : X — Cy(Y), there exists a continuous map f : X —
Co(Y) such that g < f.

(3) For every infinite cardinal k and every upper semi-contin-
uous map g : X — Cy(k), there exists a continuous map
f:X — Co(k) such that g < f.

In view of usual insertion theorems such as Katétov-Tong’s the-
orem [3, 6] characterizing normality (see also [1, 1.7.15 (b)]), it is
natural to ask if each of the conditions (2) and (3) above can be
replaced by the following conditions (4) and (5), respectively.

(4) For every space Y and every two maps g,h : X — Cy(Y)
such that g is upper semi- continuous, h is lower semi-
continuous and g < h, there exists a continuous map
f: X — Co(Y) such that g < f < h.

(5) For every infinite cardinal k and every two maps g,
h : X — Cy(k) such that g is upper semi-continuous, h is
lower semi-continuous and g < h, there exists a continuous
map
f:X — Co(k) such that g < f < h.

As we shall see in Section 2, if X is paracompact, then (4) holds
by Michael’s selection theorem, and clearly, (4) implies (5), i.e., we
have (1) = (4) = (5). The purpose of this note is to show that (4)
implies (1) but (5) is strictly weaker than (1). The former answers
[2, Problem 5.9] positively.

Throughout this note, a cardinal is an initial ordinal and an
ordinal is the set of smaller ordinals. We always consider an ordinal
a space with the usual order topology.

2. DEFINITIONS AND RESULTS FROM THE LITERATURE

Let X and Y be spaces. Recall from [2] that a map f: X —
Co(Y) is lower (resp. upper) semi-continuous if for every z € X and
every € > 0, there exists a neighborhood G of x in X such that if
' € G, then f(2')(y) > f(z)(y) — € (resp. f(2')(y) < f(x)(y) +€)
for each y € Y. For s,t € Co(Y), we write s < ¢ if s(y) < t(y)
for each y € Y, and for f,g : X — Cp(Y), we write f < g if
f(x) < g(z) for each x € X. For each s,t € Cy(Y) with s < ¢, the
set [s,t] = {u € Cp(Y) : s <u < t}is a closed covex set in Cy(Y).
Let F.(Cy(Y)) denote the family of all nonempty closed convex sets
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in Cy(Y'). For two maps g, h: X — Cy(Y) with g < h, we define a
map [g, h] : X — Fe(Co(Y)) by [g, hl(x) = [g(x), h(z)] for z € X.
The following lemma is [2, Lemma 2.6]; we include a direct proof
here, since the original proof in [2] is incorrect.

Lemma 1. For every two maps g, h : X — Co(Y) with g < h, if g
18 upper semi-continuous and h is lower semi-continuous, then the
map [g,h] : X — F(Co(Y)) is lower semi-continuous, i.e., the set
[g,h]"HU) = {x € X : [g,h](z)NU # 0} is open in X for every
open set U in Cy(Y).

Proof. Let U be an open set in Cy(Y) and x € [g, h]~![U]. Since
[g,h](x) NU # 0, there exists s € U such that g(z) < s < h(x).
Choose € > 0 such that {u € Co(Y) : ||s —ul| < e} C U. Since g is
upper semi-continuous and h is lower semi-continuous, there exists
a neighbourhood G of x such that if 2/ € G, then

(2.1) 9(z')(y) < g(x)(y) + /2 < s5(y) +¢/2
and
(2.2) h')(y) > h(x)(y) —e/2 > s(y) —¢/2

for each y € Y. It suffices to show show that G C [g, h]~'[U]. To
see this, take a point 2’ € G, and define two elements t,u € Cy(Y)
by t(y) = max{g(z')(y),s(y)} and u(y) = min{h(z')(y),t(y)} for
y €Y. Then t > g(2/) and ||s — t|| < €/2 by (2.1), and hence,
g(2') <u < h(2') and ||s—u| < e by (2.2). Thus, u € [g, h](z")NU,
which implies that 2/ € [g, h]~}[U]. Hence, G C [g, h]~![U]. O

Now, we show that every paracompact space X satisfies the con-
dition (4). Assume that X is paracompact, and let g,h : X —
Co(Y) be maps such that g is upper semi-continuous, h is lower
semi-continuous and g < h. Then [g, h] : X — F.(Cy(Y)) is lower
semi-continuous by Lemma 1. Hence, it follows from Michael’s se-
lection theorem [5, Theorem 3.2"] that there exists a continuous
map f : X — Cy(Y) such that f(z) € [g,h](x) for each z € X,
which implies that g < f < h.

3. THE CONDITION (4)

We prove that every space X satisfying (4) is paracompact. As
usual, we use the symbol C(Y') instead of Cy(Y') for a compact
space Y. Let us consider the following condition on a space X:
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(4") For every compact space Y and every two maps g,h: X —
C(Y') such that g is upper semi-continuous, h is lower semi-
continuous and g < h, there exists a continuous map f :
X — C(Y) such that g < f < h.

Clearly (4) implies (4'), and the converse is also true in the realm
of Tychonoff spaces since for a Tychonoff space Y, Cy(Y) is isomet-
rically embedded in C(8Y'), where 8Y is the Cech-Stone compact-
ification of Y. Thus, it is enough to prove the following theorem:

Theorem 2. If a space X satisfies (4'), then X is paracompact.

Proof. Assume that X satisfies (4'). By [4, Theorem 5], it suffices
to show that for every infinite cardinal x, every monotone increas-
ing open cover U = {U, : a < k} of X has a locally finite open
refinement. Let Y be the quotient space obtained from the product
space (k + 1) x 2 by identifying the points (k,0) and (k,1). We
write
V={({a,i)a<k,i=01}U{(x,0)},

where (k,0) = (k,1). Let AMz) = min{a < k : x € U,} for each
x € X. Define two maps g,h: X — C(Y) by

1 ifa< (@) andi=0,
9(z)({a, 7)) = {0 otherwise,
0 ifa<A(z)andi=1,
1 otherwise,

h(z)({e, 7)) = {

for x € X, respectively. To show that g is upper semi-continuous,
let z € X and € > 0 be fixed. For every 2’ € Uy(y), if a < A(2)
and ¢ = 0, then g(z')({, 1)) < 1 < g(z)({a,4)) + &, and if a >
A(z) or i = 1, then g(z')({a,4)) = 0 < g(z)({a,7)) + &, because
A(z") < A(z). Hence, g is upper semi-continuous. Similarly, we
can prove that h is lower semi-continuous. Since g < h, it follows
from (4') that there exists a continuous map f : X — C(Y) such
that g < f < h. Take a locally finite open cover V of X such that
diameter f[V] < 1/3 for each V' € V. To show that V is a refinement
of U, let V € V and fix a point z € V. We distinguish two cases: If
f(x)({k,0)) < 1/2, then by the continuity of f, f(x)({c,0)) < 2/3
for some a < k. If there exists a point y € V' \ Uy, then A(y) > «,
and hence, f(y)({(®,0)) > g(y)({(«,0)) = 1 by the definition of g.
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Thus, ||f(z)—f(y)|| > 1/3, which contradicts the fact that diameter
fIV] < 1/3. Hence, V C U,. If f(z)({k,0)) > 1/2, then by the
continuity of f, f(z)((8,1)) > 1/3 for some 8 < k. If there exists
a point y € V \ Ug, then A(y) > [, and hence, f(y)((8,1)) <
h(y)({B,1)) = 0 by the definition of h. Thus, || f(z)— f(y)| > 1/3,
which also contradicts the fact that diameter f[V] < 1/3. Hence,
V C Ug. Consequently, V is a locally finite open refinement of
Uu. O

4. THE CONDITION (5)

We show that a non-paracompact space can satisfy (5) by prov-
ing that every infinite cardinal with uncountable cofinality (in par-
ticular, the first uncountable cardinal w;) satisfies (5). First, we
consider the following condition on a space X:

(5") For every infinite cardinal x and every two maps g, h: X —
C(k + 1) such that g is upper semi-continuous, h is lower
semi-continuous and g < h, there exists a continuous map
f:X — C(k+1) such that g < f < h.

The condition (5') implies (5) since Cy(x) can be isometrically em-
bedded in C(k+1). Thus, it suffices to prove the following theorem:

Theorem 3. If 7 is an infinite cardinal with uncountable cofinality,
then the ordinal space T satisfies (5').

Before proving this, we give some lemmas. Let 7 be an infinite
cardinal with uncountable cofinality, and fix an infinite cardinal .
For amap f: 7 — C(k + 1), the capital letter F' denotes the real-
valued function on 7 x (k + 1) defined by F({a, \)) = f(«a)(\) for
(o, \) € T x (k+1). The proof of the following lemma is left to the
reader.

Lemma 2. Let f : 7 — C(k+ 1) be a map. If f is upper semi-
continuous, then so is F. If f is lower semi-continuous, then so is
F.

Next, we associate two real-valued functions F* and F, on k+1
with amap f:7 — C(k +1). For each A < k&, let

NA)={(T\a) x (A+1)\p):a<T, p< A}
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The functions F* and F) are defined by

* : .
FE(A) Ué%(x)igg F(p) and Fi(}) sz%);glf] F(p),
for A\ < k, respectively. Note that every member of /() is count-
ably compact and every real-valued, upper (resp. lower) semi-
continuous function on a countably compact space is bounded above
(resp. below). Hence, by Lemma 2, if f is upper (resp. lower) semi-
continuous, then F* (resp. F) is well-defined.

Lemma 3. Let f : 7 — C(k+ 1) be a map. If f is upper semi-
continuous, then F* is continuous. If f is lower semi-continuous,
then F is continuous.

Proof. We prove only the first statement since the second can be
proved similarly. Assume that f is upper semi-continuous. It is easy
to prove that F™ is upper semi-continuous whether or not f is too.
Thus, it remains to show that F™* is lower semi-continuous. Suppose
on the contrary that there exists » € R such that the set G =
{AN < Kk : F*(\) > r} is not open. Fix A € G\ int,11G and
choose s,t € R with F*(\) > t > s > r. Note that A is a limit
ordinal. First, put Up = 7 x (A + 1). Then sup,¢cy, F(p) > ¢
because F*(\) >t and Uy € N ()), and hence, there exists a point
po = (a(0), 1(0)) € Up such that F(py) > t. Since \ is a limit and
f(a(0)) = F({«(0), -)) is continuous, we may assume that p(0) <
A. Since A € G \ int,41G, there exists v(0) € A\ ©(0) such that
v(0) € G, i.e., F*(v(0)) < 7, which implies that sup,cy F(p) < s
for some V' € N(v(0)). Thus, we can find 3(0) € 7\ «(0) such
that F'({,v(0))) < s for each v € 7\ 5(0). Next, if we put U; =
(7\B3(0)) x (A+1)\v(0)), then sup,c;, F(p) > t, because F*(\) >t
and U; € N()). Hence, we can find a point p1 = («(1), u(1)) € Uy
such that F'(p1) >t and (1) < A as above. Repeating this process,
we can define sequences «, 3 :w — 7 and p, v : w — A such that

(4.1) Vn(a(n) < A(n) < a(n+1) and p(n) < v(n) < p(n + 1)),
(4.2) Vn (F({a(n), pu(n))) > t), and

(4.3) Vn, v (if B(n) <y < 7,then F({v,v(n))) < s).

Put a9 = sup,., a(n) and py = sup, ., pu(n). Then, a9 < 7

since the cofinality of 7 is uncountable, and py < A. Since f
is upper semi-continuous, so is F' by Lemma 2. Thus, the set
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{peTx(k+1): F(p) >t} isclosed in 7 x (k + 1), which implies
that F'((ap, o)) > t by (4.2). On the other hand, F({a,v(n))) < s
for all n < w by (4.1) and (4.3). Since the sequence v converges to
o by (4.1), this contradicts the continuity of f(ag) = F({a, - )).
Hence, F* is continuous. U

We now prove Theorem 3.

Proof of Theorem 8. Let T be an infinite cardinal with uncountable
cofinality, and fix an infinite cardinal x. Let g,h: 7 — C(k + 1)
be maps such that ¢ is upper semi-continuous, h is lower semi-
continuous and g < h. Then, we can define the functions G, H :
7X(k+1) - Rand G*,H, : k+ 1 — R as above. By Lemma
3, both G* and H, are continuous. Hence, we can extend g to
g*:7+1— C(k+1) by letting ¢g*(7) = G* and ¢g*|, = g, and h to
hi:7+1— C(k+ 1) by letting hy(7) = H, and hy|, = h.

Fact 1. g* < h,.

Proof. Since g < h, it is enough to show that G*(\) < H.()\)
for each A < k. Since G* and H, are continuous, it is enough
to show that this holds for every isolated ordinal A < k. Fix an
isolated ordinal A < k, and define functions G, and H) on 7 by
Gi(a) = G({a, \)) and Hy(a) = H({a, \)) for o < 7, respectively.
Then, by Lemma 2, G is upper semi-continuous and H) is lower
semi-continuous. Since G < H) and 7 is normal, it follows from
Katétov-Tong’s insertion theorem (see [1, 1.7.15 (b)]) that there
exists a continuous function k : 7 — R such that G), < k < H,.
Then, since the cofinality of 7 is uncountable, we can find § < 7
such that k takes a constant value r on 7\ 3. Hence, G((y,\)) <
r < H({vy,\)) for each v € 7\ 3. Since A is an isolated ordinal, this
implies that G*(\) < Hy(\). O
Fact 2. The map g* is upper semi-continuous and h, is lower semi-

continuous.

Proof. We only prove the upper semi-continuity of ¢g* since the
proof for h, is similar. It suffices to show that for every ¢ > 0,
there exists § < 7 such that

(4.4) g < g"(1)(A) +e
for each v € 7\ § and each A < k. Let ¢ > 0 be fixed. Since
g : 7 — C(k + 1) is upper semi-continuous, for every a < 7,
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there is 7(a) < « such that g(7)(A) < g(a)(A) + /2 for each
v € (a+ 1)\ 7(«) and each X\ < k. By the pressing down lemma,
we can find § < 7 such that the set A = {a < 7: 7(a) = B} is
cofinal in 7. To show that this 3 is a required one, let v € 7\ 3 and
A < k. Then, by the definition of ¢*(7)(\) (= G*(\)), there exists
aq < 7 such that g(a)(A) < ¢*(7)(\) +¢/2 for each a € 7\ . Pick
az € AN (7 \ max{y,ai}). Then, since

9g(V)(A) < g(az)(A) +¢/2 and g(a2)(A) < g*(7)(N) +¢/2,
we have (4.4). Hence, ¢g* is upper semi-continuous. O

By Facts 1, 2 and Lemma 1, the map [¢*, hy] : 74+1 — F(C(k+1))
is lower semi-continuous. Hence, it follows from Michael’s selection
theorem [5, Theorem 3.2"] that there exists a continuous map f :
T+ 1 — C(k + 1) such that f(z) € [¢% h.(z) for each z € X,
which implies that ¢g* < f < h,. Then, the restriction f|, is also
continuous and g < f|, < h. O
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