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AN INSERTION THEOREM CHARACTERIZING
PARACOMPACTNESS

HARUTO OHTA

Abstract. For a space Y , C0(Y ) denotes the Banach space
of all real-valued continuous functions on Y vanishing at
infinity. We prove that a Hausdorff space X is paracom-
pact if and only if for every space Y and every two maps
g, h : X → C0(Y ) such that g is upper semi-continuous, h is
lower semi-continuous and g ≤ h, there exists a continuous
map f : X → C0(Y ) with g ≤ f ≤ h. This result fails if ‘for
every space Y ’ is replaced by ‘for every space Y which is the
initial segment of an infinite cardinal’.

1. Introduction

By a space we mean a Hausdorff space. For a space Y , let C0(Y )
be the Banach space of all real-valued continuous functions s on Y
such that for each ε > 0 the set {y ∈ Y : |s(y)| ≥ ε} is compact,
where ‖s‖ ≡ supy∈Y |s(y)| for s ∈ C0(Y ). Gutev-Ohta-Yamazaki
[2] defined upper and lower semi-continuity of a C0(Y )-valued map
(see Section 2 below) and proved the following theorem [2, Corollary
5.8]:

Theorem 1 (Gutev-Ohta-Yamazaki). For a space X, the following
are equivalent :

(1) X is paracompact.
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(2) For every space Y and every upper semi-continuous map
g : X → C0(Y ), there exists a continuous map f : X →
C0(Y ) such that g ≤ f .

(3) For every infinite cardinal κ and every upper semi-contin-
uous map g : X → C0(κ), there exists a continuous map
f : X → C0(κ) such that g ≤ f .

In view of usual insertion theorems such as Katětov-Tong’s the-
orem [3, 6] characterizing normality (see also [1, 1.7.15 (b)]), it is
natural to ask if each of the conditions (2) and (3) above can be
replaced by the following conditions (4) and (5), respectively.

(4) For every space Y and every two maps g, h : X → C0(Y )
such that g is upper semi- continuous, h is lower semi-
continuous and g ≤ h, there exists a continuous map
f : X → C0(Y ) such that g ≤ f ≤ h.

(5) For every infinite cardinal κ and every two maps g,
h : X → C0(κ) such that g is upper semi-continuous, h is
lower semi-continuous and g ≤ h, there exists a continuous
map
f : X → C0(κ) such that g ≤ f ≤ h.

As we shall see in Section 2, if X is paracompact, then (4) holds
by Michael’s selection theorem, and clearly, (4) implies (5), i.e., we
have (1) ⇒ (4) ⇒ (5). The purpose of this note is to show that (4)
implies (1) but (5) is strictly weaker than (1). The former answers
[2, Problem 5.9] positively.

Throughout this note, a cardinal is an initial ordinal and an
ordinal is the set of smaller ordinals. We always consider an ordinal
a space with the usual order topology.

2. Definitions and results from the literature

Let X and Y be spaces. Recall from [2] that a map f : X →
C0(Y ) is lower (resp.upper) semi-continuous if for every x ∈ X and
every ε > 0, there exists a neighborhood G of x in X such that if
x′ ∈ G, then f(x′)(y) > f(x)(y)− ε (resp. f(x′)(y) < f(x)(y) + ε)
for each y ∈ Y . For s, t ∈ C0(Y ), we write s ≤ t if s(y) ≤ t(y)
for each y ∈ Y , and for f, g : X → C0(Y ), we write f ≤ g if
f(x) ≤ g(x) for each x ∈ X . For each s, t ∈ C0(Y ) with s ≤ t, the
set [s, t] = {u ∈ C0(Y ) : s ≤ u ≤ t} is a closed covex set in C0(Y ).
Let Fc(C0(Y )) denote the family of all nonempty closed convex sets
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in C0(Y ). For two maps g, h : X → C0(Y ) with g ≤ h, we define a
map [g, h] : X → Fc(C0(Y )) by [g, h](x) = [g(x), h(x)] for x ∈ X .
The following lemma is [2, Lemma 2.6]; we include a direct proof
here, since the original proof in [2] is incorrect.

Lemma 1. For every two maps g, h : X → C0(Y ) with g ≤ h, if g
is upper semi-continuous and h is lower semi-continuous, then the
map [g, h] : X → Fc(C0(Y )) is lower semi-continuous, i.e., the set
[g, h]−1(U) = {x ∈ X : [g, h](x)∩ U 6= ∅} is open in X for every
open set U in C0(Y ).

Proof. Let U be an open set in C0(Y ) and x ∈ [g, h]−1[U ]. Since
[g, h](x) ∩ U 6= ∅, there exists s ∈ U such that g(x) ≤ s ≤ h(x).
Choose ε > 0 such that {u ∈ C0(Y ) : ‖s − u‖ < ε} ⊆ U . Since g is
upper semi-continuous and h is lower semi-continuous, there exists
a neighbourhood G of x such that if x′ ∈ G, then

(2.1) g(x′)(y) < g(x)(y) + ε/2 ≤ s(y) + ε/2

and

(2.2) h(x′)(y) > h(x)(y)− ε/2 ≥ s(y) − ε/2

for each y ∈ Y . It suffices to show show that G ⊆ [g, h]−1[U ]. To
see this, take a point x′ ∈ G, and define two elements t, u ∈ C0(Y )
by t(y) = max{g(x′)(y), s(y)} and u(y) = min{h(x′)(y), t(y)} for
y ∈ Y . Then t ≥ g(x′) and ‖s − t‖ < ε/2 by (2.1), and hence,
g(x′) ≤ u ≤ h(x′) and ‖s−u‖ < ε by (2.2). Thus, u ∈ [g, h](x′)∩U ,
which implies that x′ ∈ [g, h]−1[U ]. Hence, G ⊆ [g, h]−1[U ]. �

Now, we show that every paracompact space X satisfies the con-
dition (4). Assume that X is paracompact, and let g, h : X →
C0(Y ) be maps such that g is upper semi-continuous, h is lower
semi-continuous and g ≤ h. Then [g, h] : X → Fc(C0(Y )) is lower
semi-continuous by Lemma 1. Hence, it follows from Michael’s se-
lection theorem [5, Theorem 3.2′′] that there exists a continuous
map f : X → C0(Y ) such that f(x) ∈ [g, h](x) for each x ∈ X ,
which implies that g ≤ f ≤ h.

3. The condition (4)

We prove that every space X satisfying (4) is paracompact. As
usual, we use the symbol C(Y ) instead of C0(Y ) for a compact
space Y . Let us consider the following condition on a space X :
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(4′) For every compact space Y and every two maps g, h : X →
C(Y ) such that g is upper semi-continuous, h is lower semi-
continuous and g ≤ h, there exists a continuous map f :
X → C(Y ) such that g ≤ f ≤ h.

Clearly (4) implies (4′), and the converse is also true in the realm
of Tychonoff spaces since for a Tychonoff space Y , C0(Y ) is isomet-
rically embedded in C(βY ), where βY is the Čech-Stone compact-
ification of Y . Thus, it is enough to prove the following theorem:

Theorem 2. If a space X satisfies (4′), then X is paracompact.

Proof. Assume that X satisfies (4′). By [4, Theorem 5], it suffices
to show that for every infinite cardinal κ, every monotone increas-
ing open cover U = {Uα : α < κ} of X has a locally finite open
refinement. Let Y be the quotient space obtained from the product
space (κ + 1) × 2 by identifying the points 〈κ, 0〉 and 〈κ, 1〉. We
write

Y = {〈α, i〉 : α < κ, i = 0, 1} ∪ {〈κ, 0〉},
where 〈κ, 0〉 = 〈κ, 1〉. Let λ(x) = min{α < κ : x ∈ Uα} for each
x ∈ X . Define two maps g, h : X → C(Y ) by

g(x)(〈α, i〉) =

{
1 if α ≤ λ(x) and i = 0,

0 otherwise,

h(x)(〈α, i〉) =

{
0 if α ≤ λ(x) and i = 1,

1 otherwise,

for x ∈ X , respectively. To show that g is upper semi-continuous,
let x ∈ X and ε > 0 be fixed. For every x′ ∈ Uλ(x), if α ≤ λ(x)
and i = 0, then g(x′)(〈α, i〉) ≤ 1 < g(x)(〈α, i〉) + ε, and if α >
λ(x) or i = 1, then g(x′)(〈α, i〉) = 0 < g(x)(〈α, i〉) + ε, because
λ(x′) ≤ λ(x). Hence, g is upper semi-continuous. Similarly, we
can prove that h is lower semi-continuous. Since g ≤ h, it follows
from (4′) that there exists a continuous map f : X → C(Y ) such
that g ≤ f ≤ h. Take a locally finite open cover V of X such that
diameter f [V ] ≤ 1/3 for each V ∈ V . To show that V is a refinement
of U , let V ∈ V and fix a point x ∈ V . We distinguish two cases: If
f(x)(〈κ, 0〉) ≤ 1/2, then by the continuity of f , f(x)(〈α, 0〉) < 2/3
for some α < κ. If there exists a point y ∈ V \ Uα, then λ(y) > α,
and hence, f(y)(〈α, 0〉) ≥ g(y)(〈α, 0〉) = 1 by the definition of g.
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Thus, ‖f(x)−f(y)‖ > 1/3, which contradicts the fact that diameter
f [V ] ≤ 1/3. Hence, V ⊆ Uα. If f(x)(〈κ, 0〉) ≥ 1/2, then by the
continuity of f , f(x)(〈β, 1〉) > 1/3 for some β < κ. If there exists
a point y ∈ V \ Uβ, then λ(y) > β, and hence, f(y)(〈β, 1〉) ≤
h(y)(〈β, 1〉) = 0 by the definition of h. Thus, ‖f(x)− f(y)‖ > 1/3,
which also contradicts the fact that diameter f [V ] ≤ 1/3. Hence,
V ⊆ Uβ . Consequently, V is a locally finite open refinement of
U . �

4. The condition (5)

We show that a non-paracompact space can satisfy (5) by prov-
ing that every infinite cardinal with uncountable cofinality (in par-
ticular, the first uncountable cardinal ω1) satisfies (5). First, we
consider the following condition on a space X :

(5′) For every infinite cardinal κ and every two maps g, h : X →
C(κ + 1) such that g is upper semi-continuous, h is lower
semi-continuous and g ≤ h, there exists a continuous map
f : X → C(κ + 1) such that g ≤ f ≤ h.

The condition (5′) implies (5) since C0(κ) can be isometrically em-
bedded in C(κ+1). Thus, it suffices to prove the following theorem:

Theorem 3. If τ is an infinite cardinal with uncountable cofinality,
then the ordinal space τ satisfies (5′).

Before proving this, we give some lemmas. Let τ be an infinite
cardinal with uncountable cofinality, and fix an infinite cardinal κ.
For a map f : τ → C(κ + 1), the capital letter F denotes the real-
valued function on τ × (κ + 1) defined by F (〈α, λ〉) = f(α)(λ) for
〈α, λ〉 ∈ τ × (κ+1). The proof of the following lemma is left to the
reader.

Lemma 2. Let f : τ → C(κ + 1) be a map. If f is upper semi-
continuous, then so is F . If f is lower semi-continuous, then so is
F .

Next, we associate two real-valued functions F ∗ and F∗ on κ + 1
with a map f : τ → C(κ + 1). For each λ ≤ κ, let

N (λ) = {(τ \ α) × ((λ + 1) \ µ) : α < τ, µ < λ}.



562 HARUTO OHTA

The functions F ∗ and F∗ are defined by

F ∗(λ) = inf
U∈N (λ)

sup
p∈U

F (p) and F∗(λ) = sup
U∈N (λ)

inf
p∈U

F (p),

for λ ≤ κ, respectively. Note that every member of N (λ) is count-
ably compact and every real-valued, upper (resp. lower) semi-
continuous function on a countably compact space is bounded above
(resp. below). Hence, by Lemma 2, if f is upper (resp. lower) semi-
continuous, then F ∗ (resp. F∗) is well-defined.

Lemma 3. Let f : τ → C(κ + 1) be a map. If f is upper semi-
continuous, then F ∗ is continuous. If f is lower semi-continuous,
then F∗ is continuous.

Proof. We prove only the first statement since the second can be
proved similarly. Assume that f is upper semi-continuous. It is easy
to prove that F ∗ is upper semi-continuous whether or not f is too.
Thus, it remains to show that F ∗ is lower semi-continuous. Suppose
on the contrary that there exists r ∈ R such that the set G =
{λ ≤ κ : F ∗(λ) > r} is not open. Fix λ ∈ G \ intκ+1G and
choose s, t ∈ R with F ∗(λ) > t > s > r. Note that λ is a limit
ordinal. First, put U0 = τ × (λ + 1). Then supp∈U0

F (p) > t
because F ∗(λ) > t and U0 ∈ N (λ), and hence, there exists a point
p0 = 〈α(0), µ(0)〉 ∈ U0 such that F (p0) > t. Since λ is a limit and
f(α(0)) = F (〈α(0), · 〉) is continuous, we may assume that µ(0) <
λ. Since λ ∈ G \ intκ+1G, there exists ν(0) ∈ λ \ µ(0) such that
ν(0) 6∈ G, i.e., F ∗(ν(0)) ≤ r, which implies that supp∈V F (p) < s
for some V ∈ N (ν(0)). Thus, we can find β(0) ∈ τ \ α(0) such
that F (〈γ, ν(0)〉) < s for each γ ∈ τ \ β(0). Next, if we put U1 =
(τ \β(0))×((λ+1)\ν(0)), then supp∈U1

F (p) > t, because F ∗(λ) > t
and U1 ∈ N (λ). Hence, we can find a point p1 = 〈α(1), µ(1)〉 ∈ U1

such that F (p1) > t and µ(1) < λ as above. Repeating this process,
we can define sequences α, β : ω → τ and µ, ν : ω → λ such that

∀n (α(n) ≤ β(n) ≤ α(n + 1) and µ(n) ≤ ν(n) ≤ µ(n + 1)),(4.1)

∀n (F (〈α(n), µ(n)〉) > t), and(4.2)

∀n, γ (if β(n) ≤ γ < τ, then F (〈γ, ν(n)〉) < s).(4.3)

Put α0 = supn<ω α(n) and µ0 = supn<ω µ(n). Then, α0 < τ
since the cofinality of τ is uncountable, and µ0 ≤ λ. Since f
is upper semi-continuous, so is F by Lemma 2. Thus, the set
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{p ∈ τ × (κ + 1) : F (p) ≥ t} is closed in τ × (κ + 1), which implies
that F (〈α0, µ0〉) ≥ t by (4.2). On the other hand, F (〈α0, ν(n)〉) < s
for all n < ω by (4.1) and (4.3). Since the sequence ν converges to
µ0 by (4.1), this contradicts the continuity of f(α0) = F (〈α0, · 〉).
Hence, F ∗ is continuous. �

We now prove Theorem 3.

Proof of Theorem 3. Let τ be an infinite cardinal with uncountable
cofinality, and fix an infinite cardinal κ. Let g, h : τ → C(κ + 1)
be maps such that g is upper semi-continuous, h is lower semi-
continuous and g ≤ h. Then, we can define the functions G, H :
τ × (κ + 1) → R and G∗, H∗ : κ + 1 → R as above. By Lemma
3, both G∗ and H∗ are continuous. Hence, we can extend g to
g∗ : τ + 1 → C(κ + 1) by letting g∗(τ) = G∗ and g∗|τ = g, and h to
h∗ : τ + 1 → C(κ + 1) by letting h∗(τ) = H∗ and h∗|τ = h.

Fact 1. g∗ ≤ h∗.

Proof. Since g ≤ h, it is enough to show that G∗(λ) ≤ H∗(λ)
for each λ ≤ κ. Since G∗ and H∗ are continuous, it is enough
to show that this holds for every isolated ordinal λ ≤ κ. Fix an
isolated ordinal λ ≤ κ, and define functions Gλ and Hλ on τ by
Gλ(α) = G(〈α, λ〉) and Hλ(α) = H(〈α, λ〉) for α < τ , respectively.
Then, by Lemma 2, Gλ is upper semi-continuous and Hλ is lower
semi-continuous. Since Gλ ≤ Hλ and τ is normal, it follows from
Katětov-Tong’s insertion theorem (see [1, 1.7.15 (b)]) that there
exists a continuous function k : τ → R such that Gλ ≤ k ≤ Hλ.
Then, since the cofinality of τ is uncountable, we can find β < τ
such that k takes a constant value r on τ \ β. Hence, G(〈γ, λ〉) ≤
r ≤ H(〈γ, λ〉) for each γ ∈ τ \β. Since λ is an isolated ordinal, this
implies that G∗(λ) ≤ H∗(λ). �
Fact 2. The map g∗ is upper semi-continuous and h∗ is lower semi-
continuous.

Proof. We only prove the upper semi-continuity of g∗ since the
proof for h∗ is similar. It suffices to show that for every ε > 0,
there exists β < τ such that

(4.4) g(γ)(λ) ≤ g∗(τ)(λ) + ε

for each γ ∈ τ \ β and each λ ≤ κ. Let ε > 0 be fixed. Since
g : τ → C(κ + 1) is upper semi-continuous, for every α < τ ,
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there is τ(α) < α such that g(γ)(λ) < g(α)(λ) + ε/2 for each
γ ∈ (α + 1) \ τ(α) and each λ ≤ κ. By the pressing down lemma,
we can find β < τ such that the set A = {α < τ : τ(α) = β} is
cofinal in τ . To show that this β is a required one, let γ ∈ τ \β and
λ ≤ κ. Then, by the definition of g∗(τ)(λ) (= G∗(λ)), there exists
α1 < τ such that g(α)(λ) ≤ g∗(τ)(λ)+ε/2 for each α ∈ τ \α1. Pick
α2 ∈ A ∩ (τ \ max{γ, α1}). Then, since

g(γ)(λ) < g(α2)(λ) + ε/2 and g(α2)(λ) < g∗(τ)(λ) + ε/2,

we have (4.4). Hence, g∗ is upper semi-continuous. �

By Facts 1, 2 and Lemma 1, the map [g∗, h∗] : τ +1 → Fc(C(κ+1))
is lower semi-continuous. Hence, it follows from Michael’s selection
theorem [5, Theorem 3.2′′] that there exists a continuous map f :
τ + 1 → C(κ + 1) such that f(x) ∈ [g∗, h∗](x) for each x ∈ X ,
which implies that g∗ ≤ f ≤ h∗. Then, the restriction f |τ is also
continuous and g ≤ f |τ ≤ h. �
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