Topology Proceedings

Web: http://topology.auburn.edu/tp/

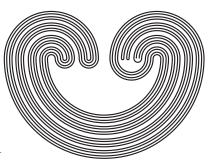
Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT \bigodot by Topology Proceedings. All rights reserved.



ON THE UNIQUENESS OF THE HYPERSPACES 2^X AND $C_n(X)$ OF RIM-METRIZABLE CONTINUA

ANTONIO PELÁEZ*

ABSTRACT. A continuum X has unique hyperspace $\Gamma_X \in \{2^X, \mathcal{C}_n(X)\}$ provided that if Y is a continuum and Γ_X is homeomorphic to Γ_Y , then X is homeomorphic to Y. In [4], I. Lončar proved that, in the realm of rim-metrizable continua, the following classes of spaces have unique hyperspace $\mathcal{C}_1(X)$: hereditarily indecomposable continua, smooth fans and indecomposable continua whose proper and non-degenerate subcontinua are arcs. In this paper, we prove that every rimmetrizable hereditarily indecomposable continuum has unique hyperspace $\Gamma_X \in \{2^X, \mathcal{C}_n(X)\}$.

1. Introduction

In [7], Professor S. Nadler Jr. proved that hereditarily indecomposable metric continua have unique hyperspace $\mathcal{C}(X)$, then Professor S. Macías proved that those continua have unique hyperspaces 2^X and $\mathcal{C}_n(X)$ (see [5, p. 416] and [6, 6.1], respectively). Later, Professor I. Lončar proved that rim-metrizable hereditarily indecomposable continua have unique hyperspace $\mathcal{C}(X)$ (see [4, Theorem 2.4]). In this paper, we prove that rim-metrizable hereditarily indecomposable continua have unique hyperspaces 2^X and $\mathcal{C}_n(X)$. The paper is divided into 2 sections. In section 2, we give the definitions and notation for understanding the paper. In section 3, we present the main result of the paper.

²⁰⁰⁰ Mathematics Subject Classification. 54B20.

Key words and phrases. Continuum, hereditarily indecomposable continuum, hyperspace, rim-metrizable continuum, unique hyperspace.

^{*}This research is part of the author's Dissertation at the Universidad Nacional Autónoma de México. This research has been done with the support of a scholarship given by CONACyT.

2. Definitions and notation

By a space we mean a topological space. The closed interval [0,1] is denoted by I. A Hilbert cube is a space homeomorphic to $\prod\{I_n:n\in\mathbb{N}\}$, where each $I_n=I$. By a map we mean a continuous function. A map $f:X\to Y$ between spaces is monotone provided that all fibers $f^{-1}(y)$ are connected. The weight of a space X is denoted by $\omega(X)$. A continuum is a non-empty Hausdorff compact connected space. A subcontinuum is a continuum contained in a space. A continuum X is decomposable provided that $X=A\cup B$, where A and B are proper subcontinua of X. A continuum is indecomposable if it is not decomposable. A continuum is hereditarily indecomposable provided that each subcontinuum of it is indecomposable. The symbol $\mathbb N$ denotes the set of the positive integers.

Given a Hausdorff compact space X, we denote by 2^X the family of all non-empty closed subsets of X. Given $n \in \mathbb{N}$, we denote by $\mathcal{C}_n(X)$ the family of all non-empty closed subsets of X having at most n components and by $\mathcal{F}_n(X)$ the family of all non-empty closed subsets of X having at most n points. The topology on 2^X is the Vietoris Topology (see [2, 2.7.20. (a)]) and the spaces $\mathcal{C}_n(X)$ and $\mathcal{F}_n(X)$ are considered as subspaces of 2^X . The spaces 2^X , $\mathcal{C}_n(X)$ and $\mathcal{F}_n(X)$ are called hyperspaces of X. Note that the hyperspace $\mathcal{F}_1(X)$ is homeomorphic to X.

Given a map $f: X \to Y$ between Hausdorff compact spaces, we define the function $2^f: 2^X \to 2^Y$ by $2^f(E) = f[E]$ for $E \in 2^X$. By [2, 3.12.27. (e)], the function 2^f is continuous. Note that $2^f[\mathcal{C}_n(X)] \subseteq \mathcal{C}_n(Y)$ and $2^f[\mathcal{F}_n(X)] \subseteq \mathcal{F}_n(Y)$. The restriction $2^f|_{\mathcal{C}_n(X)}$ is denoted by $\mathcal{C}_n(f)$ and the restriction $2^f|_{\mathcal{F}_n(X)}$ is denoted by $\mathcal{F}_n(f)$.

From [2, 3.12.27. (a) and 3.12.27. (b)] we have the following result:

Theorem 2.1. If X is a Hausdorff compact space, then the hyperspace 2^X is a Hausdorff compact space and $\omega(2^X) = \omega(X)$.

By [3, 14.9 and 15.12], we obtain:

Theorem 2.2. If X is a metrizable continuum, then the hyperspace 2^X and each of the hyperspaces $C_n(X)$ and $F_n(X)$ are metrizable continua.

An inverse system is a family $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$, where (Λ, \leq) is a directed set, X_{α} is a space for every $\alpha \in \Lambda$, and for any $\alpha, \beta \in \Lambda$ satisfying $\alpha \leq \beta$, $f_{\alpha}^{\beta}: X_{\beta} \to X_{\alpha}$ is a map such that:

- i) f_{α}^{α} is the identity map on X_{α} for every $\alpha \in \Lambda$ and
- ii) $f_{\alpha}^{\gamma} = f_{\alpha}^{\beta} \circ f_{\beta}^{\gamma}$ for any $\alpha, \beta, \gamma \in \Lambda$ satisfying $\alpha \leq \beta \leq \gamma$.

The maps f_{α}^{β} are called bonding maps and the spaces X_{α} are called coordinate spaces. A subset Σ of a directed set Λ is cofinal provided that for every $\alpha \in \Lambda$ there exists $\beta \in \Sigma$ such that $\alpha \leq \beta$.

Given a point \hat{x} in a product $\prod \{X_{\alpha} : \alpha \in \Lambda\}$, we write $\hat{x} =$

Let $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ be an inverse system. The subspace of the product $\prod \{X_{\alpha} : \alpha \in \Lambda\}$ consisting of all points \hat{x} such that $x_{\alpha} = f_{\alpha}^{\beta}(x_{\beta})$ for any $\alpha, \beta \in \Lambda$ satisfying $\alpha \leq \beta$ is called the *inverse limit* of the inverse system S, which is denoted by LimS or by X_{Λ} .

We define the projection map $f_{\alpha}^{\Lambda}: X_{\Lambda} \to X_{\alpha}$ by $f_{\alpha}^{\Lambda}(\hat{x}) = x_{\alpha}$. The following result is well known but we include it for the con-

venience of the reader since the proof is short.

Theorem 2.3. Let $f: X \to Y$ be an onto monotone map between continua. If X is an indecomposable continuum (hereditarily indecomposable continuum), then Y is an indecomposable continuum (hereditarily indecomposable continuum).

Proof. Suppose Y is decomposable. Let E and F be two proper subcontinua of Y such that $Y = E \cup F$. By [2, 6.1.29], the sets $f^{-1}[E]$ and $f^{-1}[F]$ are connected, then they are continua. Since $X = f^{-1}[E] \cup f^{-1}[F]$ and $f^{-1}[E]$ and $f^{-1}[F]$ are proper subcontinua of X we conclude that X is decomposable.

If X is hereditarily indecomposable and Z is a subcontinuum of Y, then, by [2, 6.1.29], we deduce that the set $f^{-1}[Z]$ is a continuum. Since the map $f|_{f^{-1}[Z]}: f^{-1}[Z] \to Z$ is monotone, by the first part of this Theorem, we conclude that Z is indecomposable. Therefore, Y is hereditarily indecomposable.

Notation 2.4. Given an inverse system $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ of Hausdorff compact spaces, let $2^S = \{2^{X_{\alpha}}, 2^{f_{\alpha}^{\beta}}, \Lambda\}$, let $\mathcal{C}_n(S) =$ $\{\mathcal{C}_n(X_\alpha), \mathcal{C}_n(f_\alpha^\beta), \Lambda\}$ and let $\mathcal{F}_n(S) = \{\mathcal{F}_n(X_\alpha), \mathcal{F}_n(f_\alpha^\beta), \Lambda\}$.

Theorem 2.5. Let $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ be an inverse system of Hausdorff compact spaces. Then the families 2^{S} , $C_{n}(S)$, and $\mathcal{F}_{n}(S)$ are inverse systems and the map $h: 2^{\underset{\longleftarrow}{\lim}S} \to \underset{\longleftarrow}{\lim}2^{S}$ defined by $h(E) = (f_{\alpha}^{\Lambda}[E])_{\alpha \in \Lambda}$ is a homeomorphism. Moreover, $h\left[C_{n}\left(\underset{\longleftarrow}{\lim}S\right)\right] = \underset{\longleftarrow}{\lim}C_{n}(S)$ and $h\left[\mathcal{F}_{n}\left(\underset{\longleftarrow}{\lim}S\right)\right] = \underset{\longleftarrow}{\lim}\mathcal{F}_{n}(S)$.

Proof. It is not difficult to see that the families 2^S , $C_n(S)$, and $\mathcal{F}_n(S)$ are inverse systems. Given $\alpha \in \Lambda$, let q_{α} be the projection map from \varprojlim^S into $2^{X_{\alpha}}$. Note that, by [2, 3.2.13], \varprojlim^S is a Hausdorff compact space. Then, by 2.1, the hyperspace $2^{X_{\alpha}}$ is a Hausdorff compact space for every $\alpha \in \Lambda \cup \{\Lambda\}$.

Since $2^{f_{\alpha}^{\Lambda}} = 2^{f_{\alpha}^{\beta}} \circ 2^{f_{\beta}^{\Lambda}}$ for all $\alpha, \beta \in \Lambda$ such that $\alpha \leq \beta$, by [2, 2.5.F], the family $\{2^{f_{\alpha}^{\Lambda}} : \alpha \in \Lambda\}$ induces a map $f : 2^{\underset{\longleftarrow}{\lim}S} \to \underset{\longleftarrow}{\lim}2^{S}$ such that $2^{f_{\alpha}^{\Lambda}} = q_{\alpha} \circ f$ for each $\alpha \in \Lambda$. Then h = f.

Now, we define the inverse function of h. Given $(E_{\alpha})_{\alpha \in \Lambda} \in \lim_{\longleftarrow} 2^{f_{\alpha}^{\beta}}(E_{\beta}) = f_{\alpha}^{\beta}[E_{\beta}]$. Then, by [2, 3.2.13], the space $E_{\Lambda} = \lim_{\longleftarrow} \{E_{\alpha}, f_{\alpha}^{\beta} \mid_{E_{\beta}}, \Lambda\}$ is a non-empty compact space and, by [2, 3.2.15], $E_{\alpha} = f_{\alpha}^{\Lambda}[E_{\Lambda}]$ for each $\alpha \in \Lambda$. Since E_{Λ} is contained in X_{Λ} , we can define $h'(E_{\alpha})_{\alpha \in \Lambda} = E_{\Lambda}$. Moreover, every $E \in 2^{\lim_{\longleftarrow} S}$ can be written as $E = \lim_{\longleftarrow} \{f_{\alpha}^{\Lambda}[E], f_{\beta}^{\beta}|_{f_{\beta}^{\Lambda}[E]}, \Lambda\}$, by [2, 2.5.6]. Then h' is the inverse function of h. Thus, the map h is a homeomorphism since the space $2^{\lim_{\longleftarrow} S}$ is compact.

In order to see that $h\left[\mathcal{C}_n\left(\varinjlim S\right)\right] = \varinjlim \mathcal{C}_n(S)$, let $(E_{\alpha})_{\alpha \in \Lambda} \in \varprojlim \mathcal{C}_n(S)$. By [8, Lemma 1], we have that $h'\left((E_{\alpha})_{\alpha \in \Lambda}\right) = E_{\Lambda} \in \mathcal{C}_n\left(\varinjlim S\right)$. The other inclusion is clear. In a similar way we get $h\left[\mathcal{F}_n\left(\varinjlim S\right)\right] = \varinjlim \mathcal{F}_n(S)$.

3. Uniqueness of hyperspaces 2^X and $\mathcal{C}_n(X)$

Our main result is Theorem 3.20, in which we prove that hereditarily indecomposable rim-metrizable continua X have unique hyperspaces 2^X and $C_n(X)$. We begin with a couple of definitions and continue with all the required results to obtain our main Theorem.

Definition 3.1. A subset Σ of a directed set Λ is a *chain* provided that for any $\alpha, \beta \in \Sigma$ we have that $\alpha \leq \beta$ or $\beta \leq \alpha$. A directed set Λ is called σ -complete provided that for every sequence $\{\alpha_n : n \in \mathbb{N}\}$ in Λ there exists $\sup\{\alpha_n : n \in \mathbb{N}\} \in \Lambda$.

Let $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ be an inverse system and let $\Sigma \subseteq \Lambda$ be a chain with $\gamma = \sup \Sigma \in \Lambda$. By [2, 2.5.F], the family $\{f_{\alpha}^{\gamma} : \alpha \in \Sigma\}$ induces a map $h_{\gamma} : X_{\gamma} \to \varprojlim \{X_{\alpha}, f_{\alpha}^{\beta}, \Sigma\}$ such that $f_{\alpha}^{\gamma} = f_{\alpha}^{\Sigma} \circ h_{\gamma}$ for every $\alpha \in \Sigma$. Note that h_{γ} is defined by $h_{\gamma}(x_{\gamma}) = (f_{\alpha}^{\gamma}(x_{\gamma}))_{\alpha \in \Sigma}$.

Definition 3.2. An inverse system $\{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ is *continuous* provided that for each chain $\Sigma \subseteq \Lambda$, with $\gamma = \sup \Sigma \in \Lambda$, the induced map, $h_{\gamma}: X_{\gamma} \to \varprojlim \{X_{\alpha}, f_{\alpha}^{\beta}, \Sigma\}$, by the family $\{f_{\alpha}^{\gamma}: \alpha \in \Sigma\}$ is a homeomorphism.

Theorem 3.3. Let $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ be a continuous inverse system of Hausdorff compact spaces. If A is a closed subset of X_{Λ} , then the inverse system $\{f_{\alpha}^{\Lambda}[A], f_{\alpha}^{\beta}|_{f_{\beta}^{\Lambda}[A]}, \Lambda\}$ is continuous.

Proof. Let Σ be a chain contained in Λ , with $\gamma = \sup \Sigma \in \Lambda$, and let $h_{\gamma}: X_{\gamma} \to \lim_{\longleftarrow} \{X_{\alpha}, f_{\alpha}^{\beta}, \Sigma\}$ be the induced map by the family $\{f_{\alpha}^{\gamma}: \alpha \in \Sigma\}$ $(f_{\alpha}^{\gamma} = f_{\alpha}^{\Sigma} \circ h_{\gamma})$. Since S is continuous, the map h_{γ} is a homeomorphism.

Note that, by [2, 3.2.13], X_{Λ} is a Hausdorff compact space. Then, by [2, 2.5.6], we have that:

$$h_{\gamma} \left[f_{\gamma}^{\Lambda}[A] \right] = \varprojlim \left\{ f_{\alpha}^{\Sigma} \left[h_{\gamma} \left[f_{\gamma}^{\Lambda}[A] \right] \right], f_{\alpha}^{\beta} \mid_{f_{\beta}^{\Sigma} \left[h_{\gamma} \left[f_{\gamma}^{\Lambda}[A] \right] \right]}, \Sigma \right\}$$

$$= \varprojlim \left\{ f_{\alpha}^{\gamma} \left[f_{\gamma}^{\Lambda}[A] \right], f_{\alpha}^{\beta} \mid_{f_{\beta}^{\gamma} \left[f_{\gamma}^{\Lambda}[A] \right]}, \Sigma \right\}$$

$$= \varprojlim \left\{ f_{\alpha}^{\Lambda}[A], f_{\alpha}^{\beta} \mid_{f_{\beta}^{\Lambda}[A]}, \Sigma \right\}.$$

Note that the homeomorphism

$$h_{\gamma}\mid_{f_{\gamma}^{\Lambda}[A]}:f_{\gamma}^{\Lambda}[A]\to \varprojlim\left\{f_{\alpha}^{\Lambda}[A],f_{\alpha}^{\beta}\mid_{f_{\beta}^{\Lambda}[A]},\Sigma\right\}$$

satisfies $f_{\alpha}^{\gamma} \mid_{f_{\gamma}^{\Lambda}[A]} = f_{\alpha}^{\Sigma} \circ h_{\gamma} \mid_{f_{\gamma}^{\Lambda}[A]}$ for each $\alpha \in \Sigma$. Then, by [2, 2.5.F], the map $h_{\gamma} \mid_{f_{\gamma}^{\Lambda}[A]}$ is the induced map by $\{f_{\alpha}^{\gamma} \mid_{f_{\gamma}^{\Lambda}[A]} : \alpha \in \Sigma\}$. Hence, the inverse system $\{f_{\alpha}^{\Lambda}[A], f_{\alpha}^{\beta} \mid_{f_{\alpha}^{\Lambda}[A]}, \Lambda\}$ is continuous.

The next theorem tells us that the induced hyperspace inverse system of a continuous inverse system is continuous.

Theorem 3.4. Let $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ be a continuous inverse system of Hausdorff compact spaces. Then the inverse systems $2^{S} = \{2^{X_{\alpha}}, 2^{f_{\alpha}^{\beta}}, \Lambda\}$ and $C_{n}(S) = \{C_{n}(X_{\alpha}), C_{n}(f_{\alpha}^{\beta}), \Lambda\}$ are continuous.

Proof. Let Σ be a chain contained in Λ , with $\gamma = \sup \Sigma \in \Lambda$, and let $h_{\gamma} : X_{\gamma} \to \varprojlim \{X_{\alpha}, f_{\alpha}^{\beta}, \Sigma\}$ be the induced map by $\{f_{\alpha}^{\gamma} : \alpha \in \Sigma\}$ $(f_{\alpha}^{\gamma} = f_{\alpha}^{\Sigma} \circ h_{\gamma}).$

Since S is continuous, the map h_{γ} is a homeomorphism. Moreover, $2^{f_{\alpha}^{\gamma}} = 2^{f_{\alpha}^{\Sigma}} \circ 2^{h_{\gamma}}$ since $f_{\alpha}^{\gamma} = f_{\alpha}^{\Sigma} \circ h_{\gamma}$.

Let q_{α}^{Σ} denote the projection map from $\varprojlim \{2^{X_{\alpha}}, 2^{f_{\alpha}^{\beta}}, \Sigma\}$ into $2^{X_{\alpha}}$.

By 2.5, the map $h: 2^{X_{\Sigma}} \to \varprojlim \{2^{X_{\alpha}}, 2^{f_{\alpha}^{\beta}}, \Sigma\}$ defined by $h(E) = (f_{\alpha}^{\Lambda}[E])_{\alpha \in \Sigma}$ is a homeomorphism. Since $2^{f_{\alpha}^{\Sigma}} = q_{\alpha}^{\Sigma} \circ h$ for every $\alpha \in \Sigma$, we have that $2^{f_{\alpha}^{\gamma}} = 2^{f_{\alpha}^{\Sigma}} \circ 2^{h_{\gamma}} = q_{\alpha}^{\Sigma} \circ h \circ 2^{h_{\gamma}}$ for each $\alpha \in \Sigma$. Then, by [2, 2.5.F], the homeomorphism $h \circ 2^{h_{\gamma}} : 2^{X_{\gamma}} \to \varprojlim \{2^{X_{\alpha}}, 2^{f_{\alpha}^{\beta}}, \Sigma\}$ is the induced map by the family $\{2^{f_{\alpha}^{\gamma}} : \alpha \in \Sigma\}$. Hence the inverse system 2^{S} is continuous.

In a similar way, we can prove that the inverse system $C_n(S)$ is continuous.

Definition 3.5. An inverse system $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ is σ -complete if S is continuous and Λ is σ -complete.

From 3.4 and the definition of a σ -complete inverse system, we obtain the following result:

Theorem 3.6. Let $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ be an inverse system of Hausdorff compact spaces. If S is σ -complete, then the inverse systems 2^{S} and $C_{n}(S)$ are σ -complete.

Definition 3.7. An inverse system $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ is an *inverse* σ -system if S is σ -complete and $\omega(X_{\alpha}) \leq \aleph_0$ for each $\alpha \in \Lambda$.

Theorem 3.8. Let $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ be an inverse σ -system of Hausdorff compact spaces. Then the inverse systems $2^{S} = \{2^{X_{\alpha}}, 2^{f_{\alpha}^{\beta}}, \Lambda\}$ and $C_{n}(S) = \{C_{n}(X_{\alpha}), C_{n}(f_{\alpha}^{\beta}), \Lambda\}$ are inverse σ -systems.

Proof. By 2.1, we have that $\omega(2^{X_{\alpha}}) = \omega(X_{\alpha}) \leq \aleph_0$. Then, by 3.6, we deduce that 2^S and $C_n(S)$ are inverse σ -systems.

From [9, Theorem 15], we have the following result:

Theorem 3.9. Let $\{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ and $\{Y_{\alpha}, g_{\alpha}^{\beta}, \Lambda\}$ be two inverse σ systems of Hausdorff compact spaces with onto bonding maps. If $l: X_{\Lambda} \to Y_{\Lambda}$ is a map, then there exist a cofinal subset Σ of Λ and maps $l_{\alpha}: X_{\alpha} \to Y_{\alpha}$ for every $\alpha \in \Sigma$, such that $l_{\alpha} \circ f_{\alpha}^{\Lambda} = g_{\alpha}^{\Lambda} \circ l$ and $l_{\alpha} \circ f_{\alpha}^{\beta} = g_{\alpha}^{\beta} \circ l_{\beta}$ for any $\alpha, \beta \in \Sigma$ satisfying $\alpha \leq \beta$. Moreover, if $l: X_{\Lambda} \to Y_{\Lambda}$ is a homeomorphism, then each l_{α} is a homeomorphism.

Remark 3.10. Let $\{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ and $\{Y_{\alpha}, g_{\alpha}^{\beta}, \Lambda\}$ be a pair of inverse σ -systems of Hausdorff compact spaces with onto bonding maps and let $l: X_{\Lambda} \to Y_{\Lambda}$ be a map. Let Σ be the cofinal subset of Λ and let $l_{\alpha}: X_{\alpha} \to Y_{\alpha}$ be the maps satisfying 3.9.

Let $X_{\Sigma} = \lim \{ X_{\alpha}, f_{\alpha}^{\beta}, \Sigma \}$ and let $Y_{\Sigma} = \lim \{ Y_{\alpha}, g_{\alpha}^{\beta}, \Sigma \}$. Define the maps $g:X_{\Lambda}\to X_{\Sigma}$ and $g':Y_{\Lambda}\to Y_{\Sigma}$ by $g((x_{\alpha})_{\alpha\in\Lambda})=(x_{\alpha})_{\alpha\in\Sigma}$ and $g'((y_{\alpha})_{\alpha \in \Lambda}) = (y_{\alpha})_{\alpha \in \Sigma}$. By [2, 2.5.11], the maps g and g' are homeomorphisms. Note that $f_{\alpha}^{\Lambda} = f_{\alpha}^{\Sigma} \circ g$ and $g_{\alpha}^{\Lambda} = g_{\alpha}^{\Sigma} \circ g'$ for each

The family $\{l_{\alpha}: \alpha \in \Sigma\}$ induces a map $l_{\Sigma}: X_{\Sigma} \to Y_{\Sigma}$ such that

The laminy ι_{α} , $\alpha \in \omega_{f}$ induces a map $\iota_{\Sigma} : X_{\Sigma} \to Y_{\Sigma}$ such that $l_{\alpha} \circ f_{\alpha}^{\Sigma} = g_{\alpha}^{\Sigma} \circ l_{\Sigma}$. Since $g_{\alpha}^{\Sigma} \circ g' \circ l \circ g^{-1} = g_{\alpha}^{\Lambda} \circ l \circ g^{-1} = l_{\alpha} \circ f_{\alpha}^{\Lambda} \circ g^{-1} = l_{\alpha} \circ f_{\alpha}^{\Sigma}$ we deduce that $l_{\Sigma} = g' \circ l \circ g^{-1}$.

Theorem 3.11. Let $\{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ and $\{Y_{\alpha}, g_{\alpha}^{\beta}, \Lambda\}$ be a pair of inverse σ -systems of metrizable continua with onto bonding maps. If each f_{α}^{β} is monotone and $C_n(X_{\Lambda})$ is homeomorphic to $C_n(Y_{\Lambda})$, then there exists a cofinal subset Σ of Λ such that the maps g_{α}^{β} are monotone for any $\alpha, \beta \in \Sigma$ satisfying $\alpha \leq \beta$.

Proof. By 2.5, the hyperspace $C_n(X_{\Lambda})$ is homeomorphic to the space $X = \lim_{\longleftarrow} \left\{ \mathcal{C}_n(X_\alpha), \mathcal{C}_n(f_\alpha^\beta), \Lambda \right\}$ and the hyperspace $\mathcal{C}_n(Y_\Lambda)$ is homeomorphic to the space $Y = \lim_{\longleftarrow} \left\{ \mathcal{C}_n(Y_\alpha), \mathcal{C}_n(g_\alpha^\beta), \Lambda \right\}$. Let $l: X \to Y$ be a homeomorphism.

By 2.2, the hyperspaces $C_n(X_\alpha)$ and $C_n(Y_\alpha)$ are metrizable continua. Then, by [2, 6.1.20], X and Y are continua. By 3.8, the inverse systems $\{C_n(X_\alpha), C_n(f_\alpha^\beta), \Lambda\}$ and $\{C_n(Y_\alpha), C_n(g_\alpha^\beta), \Lambda\}$ are inverse σ -systems.

Given $\alpha \in \Lambda$, let p_{α}^{Λ} be the projection map from X into $C_n(X_{\alpha})$, let q_{α}^{Λ} be the projection map from Y into $C_n(Y_{\alpha})$ and let $Z_{\alpha} = q_{\alpha}^{\Lambda}[Y]$. Then, by [2, 2.5.6], $Y = \varprojlim \left\{ Z_{\alpha}, C_n(g_{\alpha}^{\beta}) \mid_{Z_{\beta}}, \Lambda \right\}$.

By 3.3, the inverse system $\left\{Z_{\alpha}, \mathcal{C}_{n}(g_{\alpha}^{\beta}) \mid_{Z_{\beta}}, \Lambda\right\}$ is continuous, then it is an inverse σ -system with onto bonding maps. Moreover, each $\mathcal{C}_{n}(f_{\alpha}^{\beta})$ is onto since every f_{α}^{β} is monotone (see [1, Proposition 1]).

By 3.9, there exist a cofinal subset Σ of Λ and homeomorphisms $l_{\alpha}: \mathcal{C}_{n}(X_{\alpha}) \to Z_{\alpha}$ for every $\alpha \in \Sigma$, such that $l_{\alpha} \circ p_{\alpha}^{\Lambda} = q_{\alpha}^{\Lambda} \circ l$ and $l_{\alpha} \circ \mathcal{C}_{n}(f_{\alpha}^{\beta}) = \mathcal{C}_{n}(g_{\alpha}^{\beta}) \mid_{Z_{\beta}} \circ l_{\beta}$ for any $\alpha, \beta \in \Sigma$ satisfying $\alpha \leq \beta$.

By [1, Theorem 4], the maps $C_n(f_\alpha^\beta)$ are monotone, then each map $C_n(g_\alpha^\beta)|_{Z_\beta} = l_\alpha \circ C_n(f_\alpha^\beta) \circ l_\beta^{-1}$ is monotone.

By [2, 3.2.15], the projections g_{α}^{Λ} are onto, then $\mathcal{F}_1(Y_{\alpha}) \subseteq Z_{\alpha}$. Let $\alpha, \beta \in \Sigma$ with $\alpha \leq \beta$ and let $y_{\alpha} \in Y_{\alpha}$. By [3, 15.9 (2)], the set $\bigcup (\mathcal{C}_n(g_{\alpha}^{\beta})|_{Z_{\beta}})^{-1}(\{y_{\alpha}\})$ is connected. It is not difficult to see that $(g_{\alpha}^{\beta})^{-1}(y_{\alpha}) = \bigcup (\mathcal{C}_n(g_{\alpha}^{\beta})|_{Z_{\beta}})^{-1}(\{y_{\alpha}\})$. Then g_{α}^{β} is monotone.

Let us recall the following result due to I. Lončar

Theorem 3.12. [4, THEOREM 3.4] Let X be a Hausdorff compact space with $\omega(X) \geq \aleph_1$. Then there exists an inverse σ -system $\{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ such that X is homeomorphic to X_{Λ} .

Remark 3.13. In the previous Theorem, the directed set Λ only depends on $\omega(X)$ and each space X_{α} is contained in a Hilbert cube (see [4, Theorem 3.3]). So, we can assume that the spaces X_{α} are compact and metrizable. Moreover, if two Hausdorff compact spaces have the same weight, then the inverse σ -systems satisfying 3.12, for those two spaces, can be chosen with the same directed set

Definition 3.14. A space X is rim-metrizable if it has a basis \mathcal{B} such that every $U \in \mathcal{B}$ has metrizable boundary.

The following result is used in the proof of Theorem 3.20.

Theorem 3.15. [4, Theorem 3.7] Let $S = \{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ be an inverse system of Hausdorff compact spaces with onto bonding maps. Then:

- (1) There exists an inverse system $M(S) = \{M_{\alpha}, m_{\alpha}^{\beta}, \Lambda\}$ of Hausdorff compact spaces such that the bonding maps m_{α}^{β} are monotone surjections and the space $\varprojlim S$ is homeomorphic to the space $\varinjlim M(S)$,
- (2) If S is σ -directed, then the inverse system M(S) is σ -directed,
- (3) If S is σ -complete, then the inverse system M(S) is σ -complete,
- (4) If every X_{α} is a metric space and $\varprojlim S$ is locally connected (a rim-metrizable continuum) then every M_{α} is metrizable.

Definition 3.16. Let X be a continuum and let $\Gamma_X \in \{2^X, \mathcal{C}_n(X)\}$, where $n \in \mathbb{N}$. The continuum X has unique hyperspace Γ_X provided that:

• if Y is a continuum and Γ_Y is homeomorphic to Γ_X , then Y is homeomorphic to X.

In the previous definition, the hyperspace $\Gamma_Y = 2^Y$ when $\Gamma_X = 2^X$ and $\Gamma_Y = \mathcal{C}_n(Y)$ when $\Gamma_X = \mathcal{C}_n(X)$.

Given a map $f: X \to Y$ between Hausdorff compact spaces, let Γ_f denote the induced map between the hyperspaces Γ_X and Γ_Y . From [7, (0.60) and (1.61)] we have:

Theorem 3.17. Hereditarily indecomposable metrizable continua have unique hyperspace $C_1(X)$. In fact, if $f: C_1(X) \to C_1(Y)$ is a homeomorphism, where X is a hereditarily indecomposable metrizable continuum and Y is a metrizable continuum, then $f[\mathcal{F}_1(X)] = \mathcal{F}_1(Y)$.

From [5, p. 416] and [6, 6.1] we obtain:

Theorem 3.18. Hereditarily indecomposable metrizable continua have unique hyperspace Γ_X , where $\Gamma_X \in \{2^X, \mathcal{C}_n(X)\}$ and $n \in \mathbb{N}$. In fact, if $f: \Gamma_X \to \Gamma_Y$ is a homeomorphism, where X is a hereditarily indecomposable metrizable continuum and Y is a metrizable continuum, then $f[\mathcal{F}_1(X)] = \mathcal{F}_1(Y)$.

Theorem 3.19. [4, Theorem 2.4] Hereditarily indecomposable rim-metrizable continua have unique hyperspace $C_1(X)$, i.e., if X is a hereditarily indecomposable non-metric rim-metrizable continuum and Y is a continuum such that $C_1(X)$ is homeomorphic to $C_1(Y)$, then X is homeomorphic to Y. In fact, if $f: C_1(X) \to C_1(Y)$ is a homeomorphism, then $f[\mathcal{F}_1(X)] = \mathcal{F}_1(Y)$.

The following Theorem is the main result of this paper.

Theorem 3.20. Hereditarily indecomposable rim-metrizable continua have unique hyperspace Γ_X , where $\Gamma_X \in \{2^X, \mathcal{C}_n(X)\}$ and $n \in \mathbb{N}$. In fact, if $f: \Gamma_X \to \Gamma_Y$ is a homeomorphism, where X is a hereditarily indecomposable rim-metrizable continuum and Y is a continuum then $f[\mathcal{F}_1(X)] = \mathcal{F}_1(Y)$.

Proof. Suppose Γ_X is homeomorphic to Γ_Y and let $f: \Gamma_X \to \Gamma_Y$ be a homeomorphism. Since $\mathcal{F}_1(X) \subseteq \Gamma_X \subseteq 2^X$, by 2.1, we have that $\omega(\Gamma_X) = \omega(X)$. In a similar way, we obtain that $\omega(\Gamma_Y) = \omega(Y)$. Then $\omega(Y) = \omega(X)$. If $\omega(X) \leq \aleph_0$, then X and Y are metrizable. Hence, it follows by 3.18.

Suppose $\omega(X) \geq \aleph_1$. By 3.12 and 3.13, there exist two inverse σ -systems $\{X_{\alpha}, f_{\alpha}^{\beta}, \Lambda\}$ and $\{Y_{\alpha}, g_{\alpha}^{\beta}, \Lambda\}$ of metrizable continua such that X is homeomorphic to X_{Λ} and Y is homeomorphic to Y_{Λ} .

Note that, if $g: X \to X_{\Lambda}$ is a homeomorphism, then the homeomorphism $\Gamma_g: \Gamma_X \to \Gamma_{X_{\Lambda}}$ satisfies $\Gamma_g[\mathcal{F}_1(X)] = \mathcal{F}_1(X_{\Lambda})$. Hence, we can assume that $X = X_{\Lambda}$ and $Y = Y_{\Lambda}$.

By [2, 2.5.6], we also assume that each of the bonding maps f_{α}^{β} and g_{α}^{β} are onto. Since every X_{α} is metrizable and X_{Λ} is rimmetrizable, by 3.15, we assume that the bonding maps f_{α}^{β} are monotone. By [2, 3.2.15], every projection map f_{α}^{Λ} is onto and, by [2, 6.3.16.(a)], they are monotone. Then, by 2.3, every metrizable continuum X_{α} is hereditarily indecomposable.

If $\Gamma_{X_{\Lambda}} = 2^{\widetilde{X}_{\Lambda}}$, each of the maps $\Gamma_{f_{\alpha}^{\beta}}$ and $\Gamma_{g_{\alpha}^{\beta}}$ are onto.

If $\Gamma_{X_{\Lambda}} = \mathcal{C}_n(X_{\Lambda})$, by 3.11, we may assume that the maps g_{α}^{β} are monotone. Then, by [2, 6.1.29], we deduce that each of the maps $\Gamma_{f_{\alpha}^{\beta}}$ are $\Gamma_{g_{\alpha}^{\beta}}$ are onto.

In both cases, the inverse systems $\{\Gamma_{X_{\alpha}}, \Gamma_{f_{\alpha}^{\beta}}, \Lambda\}$ and $\{\Gamma_{Y_{\alpha}}, \Gamma_{g_{\alpha}^{\beta}}, \Lambda\}$ have onto bonding maps.

By 2.2 and 3.8, the inverse systems $\{\Gamma_{X_{\alpha}}, \Gamma_{f_{\alpha}^{\beta}}, \Lambda\}$ and $\{\Gamma_{Y_{\alpha}}, \Gamma_{g_{\alpha}^{\beta}}, \Lambda\}$ are inverse σ -systems of metrizable continua.

By 2.5, the map $h: \Gamma_{X_{\Lambda}} \to \varprojlim \{\Gamma_{X_{\alpha}}, \Gamma_{f_{\alpha}^{\beta}}, \Lambda\}$ defined by $h(C) = (f_{\alpha}^{\Lambda}[C])_{\alpha \in \Lambda}$ and the map $h': \Gamma_{Y_{\Lambda}} \to \varprojlim \{\Gamma_{Y_{\alpha}}, \Gamma_{g_{\alpha}^{\beta}}, \Lambda\}$ defined by $h'(C) = (g_{\alpha}^{\Lambda}[C])_{\alpha \in \Lambda}$ are homeomorphisms. Moreover, $h[\mathcal{F}_{1}(X_{\Lambda})] = \varprojlim \{\mathcal{F}_{1}(X_{\alpha}), \mathcal{F}_{1}(f_{\alpha}^{\beta}), \Lambda\}$ and $h'[\mathcal{F}_{1}(Y_{\Lambda})] = \varprojlim \{\mathcal{F}_{1}(Y_{\alpha}), \mathcal{F}_{1}(g_{\alpha}^{\beta}), \Lambda\}$.

Let $l = h' \circ f \circ h^{-1} : \varprojlim \{\Gamma_{X_{\alpha}}, \Gamma_{f_{\alpha}^{\beta}}, \Lambda\} \to \varprojlim \{\Gamma_{Y_{\alpha}}, \Gamma_{g_{\alpha}^{\beta}}, \Lambda\}$. Then, by 3.9, there exist a cofinal subset Σ of Λ and homeomorphisms $l_{\alpha} : \Gamma_{X_{\alpha}} \to \Gamma_{Y_{\alpha}}$ for every $\alpha \in \Sigma$, such that $l_{\alpha} \circ p_{\alpha}^{\Lambda} = q_{\alpha}^{\Lambda} \circ l$ and $l_{\alpha} \circ \Gamma_{f_{\alpha}^{\beta}} = \Gamma_{g_{\alpha}^{\beta}} \circ l_{\beta}$ for any $\alpha, \beta \in \Sigma$ satisfying $\alpha \leq \beta$, where $p_{\alpha}^{\Lambda} : \varprojlim \{\Gamma_{X_{\alpha}}, \Gamma_{f_{\alpha}^{\beta}}, \Lambda\} \to \Gamma_{X_{\alpha}}$ and $q_{\alpha}^{\Lambda} : \varprojlim \{\Gamma_{Y_{\alpha}}, \Gamma_{g_{\alpha}^{\beta}}, \Lambda\} \to \Gamma_{Y_{\alpha}}$ are the projection maps. By 3.10, we may assume that $\Sigma = \Lambda$.

By 3.18, the spaces X_{α} and Y_{α} are homeomorphic and $l_{\alpha}[\mathcal{F}_1(X_{\alpha})] = \mathcal{F}_1(Y_{\alpha})$. Thus, the homeomorphism

$$l_{\alpha}\mid_{\mathcal{F}_1(X_{\alpha})}:\mathcal{F}_1(X_{\alpha})\to\mathcal{F}_1(Y_{\alpha})$$

induces a homeomorphism:

$$l': \lim \{\mathcal{F}_1(X_\alpha), \mathcal{F}_1(f_\alpha^\beta), \Lambda\} \to \lim \{\mathcal{F}_1(Y_\alpha), \mathcal{F}_1(g_\alpha^\beta), \Lambda\}$$

such that $l\mid_{\lim\{\mathcal{F}_1(X_\alpha),\mathcal{F}_1(f_\alpha^\beta),\Lambda\}}=l'.$ Hence:

$$f[\mathcal{F}_{1}(X_{\Lambda})] = (h')^{-1} \circ h' \circ f \circ h^{-1}[\varprojlim \{\mathcal{F}_{1}(X_{\alpha}), \mathcal{F}_{1}(f_{\alpha}^{\beta}), \Lambda\}]$$

$$= (h')^{-1} \circ l[\varprojlim \{\mathcal{F}_{1}(X_{\alpha}), \mathcal{F}_{1}(f_{\alpha}^{\beta}), \Lambda\}]$$

$$= (h')^{-1}[\varprojlim \{\mathcal{F}_{1}(Y_{\alpha}), \mathcal{F}_{1}(g_{\alpha}^{\beta}), \Lambda\}]$$

$$= \mathcal{F}_{1}(Y_{\Lambda}).$$

Since $\mathcal{F}_1(X_{\Lambda})$ and X_{Λ} are homeomorphic, and $\mathcal{F}_1(Y_{\Lambda})$ is homeomorphic to Y_{Λ} , we conclude that X_{Λ} and Y_{Λ} are homeomorphic. \square

References

- 1. J. J. Charatonik, A. Illanes and S. Macías, Induced mappings on the hyperspace $C_n(X)$ of a continuum X, Houston J. Math. **28**(2002), 781-805.
- 2. R. Engelking, General topology, Heldermann Verlag, Berlín, 1989.
- A. Illanes and S. Nadler, Jr., Hyperspaces: Fundamental and Recents Advances, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 216, Marcel Dekker, Inc., New York and Basel, 1999.
- I. Lončar, Nonmetric rim-metrizable continua and unique hyperspace, Publications de l'Institut Mathématique, 73(87)(2003), 97-113.
- S. Macías, Hereditarily indecomposable continua have unique hyperspace 2^X, Bol. Soc. Mat. Mexicana, (3)5(1999), 415-418.

- 6. S. Macías, On the hyperspaces $C_n(X)$ of a continuum X, II, Topology Proc., **25**(2000), Spring, 255-276.
- 7. S. B. Nadler, Jr., *Hyperspaces of sets*, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York and Basel, 1978.
- 8. S. B. Nadler, Jr., Multicoherence Techniques Applied to Inverse Limits, Trans. Amer. Math. Soc., 157(1971), 227-234.
- 9. E. V. Shchepin, Functors and uncountable powers of compacta, Russian Math. Surveys, 36:3(1981), 1-71.

INSTITUTO DE MATEMÁTICAS, UNAM, CIRCUITO EXTERIOR, CIUDAD UNIVERSITARIA, MÉXICO D.F., C.P. 04510, MEXICO.

 $E\text{-}mail\ address: \verb"pelaez@matem.unam.mx"$