
Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



TOPOLOGY
PROCEEDINGS
Volume 30, No.2, 2006

Pages 565-576

ON THE UNIQUENESS OF THE HYPERSPACES 2X

AND Cn(X) OF RIM-METRIZABLE CONTINUA

ANTONIO PELÁEZ∗

Abstract. A continuum X has unique hyperspace ΓX ∈{
2X , Cn(X)

}
provided that if Y is a continuum and ΓX is

homeomorphic to ΓY , then X is homeomorphic to Y . In [4],
I. Lončar proved that, in the realm of rim-metrizable continua,
the following classes of spaces have unique hyperspace C1(X):
hereditarily indecomposable continua, smooth fans and inde-
composable continua whose proper and non-degenerate sub-
continua are arcs. In this paper, we prove that every rim-
metrizable hereditarily indecomposable continuum has unique
hyperspace ΓX ∈

{
2X , Cn(X)

}
.

1. Introduction

In [7], Professor S. Nadler Jr. proved that hereditarily inde-
composable metric continua have unique hyperspace C(X), then
Professor S. Maćıas proved that those continua have unique hyper-
spaces 2X and Cn(X) (see [5, p. 416] and [6, 6.1], respectively).
Later, Professor I. Lončar proved that rim-metrizable hereditar-
ily indecomposable continua have unique hyperspace C(X) (see [4,
Theorem 2.4]). In this paper, we prove that rim-metrizable hered-
itarily indecomposable continua have unique hyperspaces 2X and
Cn(X). The paper is divided into 2 sections. In section 2, we give
the definitions and notation for understanding the paper. In section
3, we present the main result of the paper.
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2. Definitions and notation

By a space we mean a topological space. The closed interval
[0, 1] is denoted by I . A Hilbert cube is a space homeomorphic to∏
{In : n ∈ N}, where each In = I . By a map we mean a continuous

function. A map f : X → Y between spaces is monotone provided
that all fibers f−1(y) are connected. The weight of a space X is
denoted by ω(X). A continuum is a non-empty Hausdorff compact
connected space. A subcontinuum is a continuum contained in a
space. A continuum X is decomposable provided that X = A ∪ B,
where A and B are proper subcontinua of X . A continuum is inde-
composable if it is not decomposable. A continuum is hereditarily
indecomposable provided that each subcontinuum of it is indecom-
posable. The symbol N denotes the set of the positive integers.

Given a Hausdorff compact space X , we denote by 2X the family
of all non-empty closed subsets of X . Given n ∈ N, we denote by
Cn(X) the family of all non-empty closed subsets of X having at
most n components and by Fn(X) the family of all non-empty
closed subsets of X having at most n points. The topology on
2X is the Vietoris Topology (see [2, 2.7.20. (a)]) and the spaces
Cn(X) and Fn(X) are considered as subspaces of 2X . The spaces
2X , Cn(X) and Fn(X) are called hyperspaces of X . Note that the
hyperspace F1(X) is homeomorphic to X .

Given a map f : X → Y between Hausdorff compact spaces, we
define the function 2f : 2X → 2Y by 2f(E) = f [E] for E ∈ 2X .
By [2, 3.12.27. (e)], the function 2f is continuous. Note that
2f [Cn(X)] ⊆ Cn(Y ) and 2f [Fn(X)] ⊆ Fn(Y ). The restriction
2f |Cn(X) is denoted by Cn(f) and the restriction 2f |Fn(X) is de-
noted by Fn(f).

From [2, 3.12.27. (a) and 3.12.27. (b)] we have the following
result:

Theorem 2.1. If X is a Hausdorff compact space, then the hyper-
space 2X is a Hausdorff compact space and ω(2X) = ω(X).

By [3, 14.9 and 15.12], we obtain:

Theorem 2.2. If X is a metrizable continuum, then the hyperspace
2X and each of the hyperspaces Cn(X) and Fn(X) are metrizable
continua.
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An inverse system is a family S = {Xα, f
β
α , Λ}, where (Λ,≤) is

a directed set, Xα is a space for every α ∈ Λ, and for any α, β ∈ Λ
satisfying α ≤ β, fβ

α : Xβ → Xα is a map such that:

i) fα
α is the identity map on Xα for every α ∈ Λ and

ii) f
γ
α = f

β
α ◦ f

γ
β for any α, β, γ ∈ Λ satisfying α ≤ β ≤ γ.

The maps fβ
α are called bonding maps and the spaces Xα are called

coordinate spaces. A subset Σ of a directed set Λ is cofinal provided
that for every α ∈ Λ there exists β ∈ Σ such that α ≤ β.

Given a point x̂ in a product
∏

{Xα : α ∈ Λ}, we write x̂ =
(xα)α∈Λ.

Let S = {Xα, fβ
α , Λ} be an inverse system. The subspace of

the product
∏

{Xα : α ∈ Λ} consisting of all points x̂ such that
xα = fβ

α (xβ) for any α, β ∈ Λ satisfying α ≤ β is called the inverse
limit of the inverse system S, which is denoted by Lim

←−
S or by XΛ.

We define the projection map fΛ
α : XΛ → Xα by fΛ

α (x̂) = xα.
The following result is well known but we include it for the con-

venience of the reader since the proof is short.

Theorem 2.3. Let f : X → Y be an onto monotone map between
continua. If X is an indecomposable continuum (hereditarily in-
decomposable continuum), then Y is an indecomposable continuum
(hereditarily indecomposable continuum).

Proof. Suppose Y is decomposable. Let E and F be two proper
subcontinua of Y such that Y = E ∪ F . By [2, 6.1.29], the sets
f−1[E] and f−1[F ] are connected, then they are continua. Since
X = f−1[E] ∪ f−1[F ] and f−1[E] and f−1[F ] are proper subcon-
tinua of X we conclude that X is decomposable.

If X is hereditarily indecomposable and Z is a subcontinuum of
Y , then, by [2, 6.1.29], we deduce that the set f−1[Z] is a contin-
uum. Since the map f |f−1[Z]: f−1[Z] → Z is monotone, by the
first part of this Theorem, we conclude that Z is indecomposable.
Therefore, Y is hereditarily indecomposable. �

Notation 2.4. Given an inverse system S = {Xα, fβ
α , Λ} of

Hausdorff compact spaces, let 2S = {2Xα , 2fβ
α , Λ}, let Cn(S) =

{Cn(Xα), Cn(fβ
α), Λ} and let Fn(S) = {Fn(Xα),Fn(fβ

α), Λ}.
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Theorem 2.5. Let S = {Xα, f
β
α , Λ} be an inverse system

of Hausdorff compact spaces. Then the families 2S, Cn(S),
and Fn(S) are inverse systems and the map h : 2

lim
←−

S → lim
←−

2S

defined by h(E) =
(
fΛ
α [E]

)
α∈Λ

is a homeomorphism. Moreover,

h
[
Cn

(
lim
←−

S
)]

= lim
←−

Cn(S) and h
[
Fn

(
lim
←−

S
)]

= lim
←−

Fn(S).

Proof. It is not difficult to see that the families 2S , Cn(S), and
Fn(S) are inverse systems. Given α ∈ Λ, let qα be the projection
map from lim

←−
2S into 2Xα . Note that, by [2, 3.2.13], lim

←−
S is a

Hausdorff compact space. Then, by 2.1, the hyperspace 2Xα is a
Hausdorff compact space for every α ∈ Λ ∪ {Λ}.

Since 2fΛ
α = 2f

β
α ◦ 2fΛ

β for all α, β ∈ Λ such that α ≤ β, by [2,
2.5.F], the family {2fΛ

α : α ∈ Λ} induces a map f : 2
lim
←−

S → lim
←−

2S

such that 2fΛ
α = qα ◦ f for each α ∈ Λ. Then h = f .

Now, we define the inverse function of h. Given (Eα)α∈Λ ∈ lim
←−

2S ,

we have that Eα = 2f
β
α (Eβ) = fβ

α [Eβ]. Then, by [2, 3.2.13], the
space EΛ = lim

←−
{Eα, fβ

α |Eβ
, Λ} is a non-empty compact space and,

by [2, 3.2.15], Eα = fΛ
α [EΛ] for each α ∈ Λ. Since EΛ is contained in

XΛ, we can define h′
(
(Eα)α∈Λ

)
= EΛ. Moreover, every E ∈ 2

lim
←−

S

can be written as E = lim
←−

{fΛ
α [E], fβ

α |fΛ
β [E], Λ}, by [2, 2.5.6]. Then

h′ is the inverse function of h. Thus, the map h is a homeomorphism
since the space 2

lim
←−

S
is compact.

In order to see that h
[
Cn

(
lim
←−

S
)]

= lim
←−

Cn(S), let (Eα)α∈Λ ∈
lim
←−

Cn(S). By [8, Lemma 1], we have that h′
(
(Eα)α∈Λ

)
= EΛ ∈

Cn

(
lim
←−

S
)
. The other inclusion is clear. In a similar way we get

h
[
Fn

(
lim
←−

S
)]

= lim
←−

Fn(S). �

3. Uniqueness of hyperspaces 2X and Cn(X)

Our main result is Theorem 3.20, in which we prove that hered-
itarily indecomposable rim-metrizable continua X have unique hy-
perspaces 2X and Cn(X). We begin with a couple of definitions and
continue with all the required results to obtain our main Theorem.
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Definition 3.1. A subset Σ of a directed set Λ is a chain provided
that for any α, β ∈ Σ we have that α ≤ β or β ≤ α. A directed set Λ
is called σ-complete provided that for every sequence {αn : n ∈ N}
in Λ there exists sup{αn : n ∈ N} ∈ Λ.

Let S = {Xα, fβ
α , Λ} be an inverse system and let Σ ⊆ Λ be a

chain with γ = supΣ ∈ Λ. By [2, 2.5.F], the family {fγ
α : α ∈ Σ}

induces a map hγ : Xγ → lim
←−

{Xα, f
β
α , Σ} such that f

γ
α = fΣ

α ◦ hγ

for every α ∈ Σ. Note that hγ is defined by hγ(xγ) = (fγ
α(xγ))α∈Σ.

Definition 3.2. An inverse system {Xα, fβ
α , Λ} is continuous pro-

vided that for each chain Σ ⊆ Λ, with γ = supΣ ∈ Λ, the induced
map, hγ : Xγ → lim

←−
{Xα, fβ

α , Σ}, by the family {fγ
α : α ∈ Σ} is a

homeomorphism.

Theorem 3.3. Let S = {Xα, fβ
α , Λ} be a continuous inverse system

of Hausdorff compact spaces. If A is a closed subset of XΛ, then
the inverse system {fΛ

α [A], fβ
α |fΛ

β [A], Λ} is continuous.

Proof. Let Σ be a chain contained in Λ, with γ = supΣ ∈ Λ, and
let hγ : Xγ → lim

←−
{Xα, fβ

α , Σ} be the induced map by the family

{fγ
α : α ∈ Σ} (fγ

α = fΣ
α ◦ hγ). Since S is continuous, the map hγ is

a homeomorphism.
Note that, by [2, 3.2.13], XΛ is a Hausdorff compact space. Then,

by [2, 2.5.6], we have that:

hγ

[
fΛ
γ [A]

]
= lim
←−

{
fΣ
α

[
hγ

[
fΛ
γ [A]

]]
, fβ

α |fΣ
β [hγ [fΛ

γ [A]]], Σ
}

= lim
←−

{
fγ
α

[
fΛ
γ [A]

]
, fβ

α |fγ
β [fΛ

γ [A]], Σ
}

= lim
←−

{
fΛ
α [A], fβ

α |fΛ
β [A], Σ

}
.

Note that the homeomorphism

hγ |fΛ
γ [A]: fΛ

γ [A] → lim
←−

{
fΛ
α [A], fβ

α |fΛ
β [A], Σ

}

satisfies fγ
α |fΛ

γ [A]= fΣ
α ◦ hγ |fΛ

γ [A] for each α ∈ Σ. Then, by [2,
2.5.F], the map hγ |fΛ

γ [A] is the induced map by {fγ
α |fΛ

γ [A]: α ∈ Σ}.
Hence, the inverse system {fΛ

α [A], fβ
α |fΛ

β [A], Λ} is continuous. �
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The next theorem tells us that the induced hyperspace inverse
system of a continuous inverse system is continuous.

Theorem 3.4. Let S = {Xα, fβ
α , Λ} be a continuous inverse sys-

tem of Hausdorff compact spaces. Then the inverse systems 2S =
{2Xα , 2fβ

α , Λ} and Cn(S) = {Cn(Xα), Cn(fβ
α ), Λ} are continuous.

Proof. Let Σ be a chain contained in Λ, with γ = supΣ ∈ Λ, and
let hγ : Xγ → lim

←−
{Xα, fβ

α , Σ} be the induced map by {fγ
α : α ∈ Σ}

(fγ
α = fΣ

α ◦ hγ).
Since S is continuous, the map hγ is a homeomorphism. More-

over, 2fγ
α = 2fΣ

α ◦ 2hγ since fγ
α = fΣ

α ◦ hγ .
Let qΣ

α denote the projection map from lim
←−

{2Xα, 2fβ
α , Σ} into

2Xα .
By 2.5, the map h : 2XΣ → lim

←−
{2Xα, 2fβ

α , Σ} defined by h(E) =
(
fΛ
α [E]

)
α∈Σ

is a homeomorphism. Since 2fΣ
α = qΣ

α ◦ h for every α ∈
Σ, we have that 2fγ

α = 2fΣ
α ◦2hγ = qΣ

α ◦h◦2hγ for each α ∈ Σ. Then,
by [2, 2.5.F], the homeomorphism h ◦ 2hγ : 2Xγ → lim

←−
{2Xα , 2fβ

α , Σ}

is the induced map by the family {2fγ
α : α ∈ Σ}. Hence the inverse

system 2S is continuous.
In a similar way, we can prove that the inverse system Cn(S) is

continuous. �

Definition 3.5. An inverse system S = {Xα, fβ
α , Λ} is σ-complete

if S is continuous and Λ is σ-complete.

From 3.4 and the definition of a σ-complete inverse system, we
obtain the following result:

Theorem 3.6. Let S = {Xα, f
β
α , Λ} be an inverse system of

Hausdorff compact spaces. If S is σ-complete, then the inverse
systems 2S and Cn(S) are σ-complete.

Definition 3.7. An inverse system S = {Xα, fβ
α , Λ} is an inverse

σ-system if S is σ-complete and ω(Xα) ≤ ℵ0 for each α ∈ Λ.

Theorem 3.8. Let S = {Xα, fβ
α , Λ} be an inverse σ-system

of Hausdorff compact spaces. Then the inverse systems 2S =
{2Xα , 2fβ

α , Λ} and Cn(S) ={Cn(Xα), Cn(fβ
α), Λ} are inverse σ-sytems.
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Proof. By 2.1, we have that ω(2Xα) = ω(Xα) ≤ ℵ0. Then, by 3.6,
we deduce that 2S and Cn(S) are inverse σ-systems. �

From [9, Theorem 15], we have the following result:

Theorem 3.9. Let {Xα, f
β
α , Λ} and {Yα, g

β
α, Λ} be two inverse σ-

systems of Hausdorff compact spaces with onto bonding maps. If
l : XΛ → YΛ is a map, then there exist a cofinal subset Σ of Λ and
maps lα : Xα → Yα for every α ∈ Σ, such that lα ◦ fΛ

α = gΛ
α ◦ l and

lα ◦ fβ
α = gβ

α ◦ lβ for any α, β ∈ Σ satisfying α ≤ β. Moreover, if l :
XΛ → YΛ is a homeomorphism, then each lα is a homeomorphism.

Remark 3.10. Let {Xα, f
β
α , Λ} and {Yα, g

β
α, Λ} be a pair of inverse

σ-systems of Hausdorff compact spaces with onto bonding maps
and let l : XΛ → YΛ be a map. Let Σ be the cofinal subset of Λ
and let lα : Xα → Yα be the maps satisfying 3.9.

Let XΣ = lim
←−

{Xα, fβ
α , Σ} and let YΣ = lim

←−
{Yα, gβ

α, Σ}. Define

the maps g : XΛ → XΣ and g′ : YΛ → YΣ by g((xα)α∈Λ) = (xα)α∈Σ

and g′((yα)α∈Λ) = (yα)α∈Σ. By [2, 2.5.11], the maps g and g′ are
homeomorphisms. Note that fΛ

α = fΣ
α ◦ g and gΛ

α = gΣ
α ◦ g′ for each

α ∈ Σ.
The family {lα : α ∈ Σ} induces a map lΣ : XΣ → YΣ such that

lα ◦ fΣ
α = gΣ

α ◦ lΣ.
Since gΣ

α ◦ g′ ◦ l ◦ g−1 = gΛ
α ◦ l ◦ g−1 = lα ◦ fΛ

α ◦ g−1 = lα ◦ fΣ
α we

deduce that lΣ = g′ ◦ l ◦ g−1.

Theorem 3.11. Let {Xα, fβ
α , Λ} and {Yα, gβ

α, Λ} be a pair of in-
verse σ-systems of metrizable continua with onto bonding maps.
If each fβ

α is monotone and Cn(XΛ) is homeomorphic to Cn(YΛ),
then there exists a cofinal subset Σ of Λ such that the maps gβ

α are
monotone for any α, β ∈ Σ satisfying α ≤ β.

Proof. By 2.5, the hyperspace Cn (XΛ) is homeomorphic to the
space X = lim

←−

{
Cn(Xα), Cn(fβ

α), Λ
}

and the hyperspace Cn (YΛ)

is homeomorphic to the space Y = lim
←−

{
Cn(Yα), Cn(gβ

α), Λ
}
. Let

l : X → Y be a homeomorphism.
By 2.2, the hyperspaces Cn(Xα) and Cn(Yα) are metrizable con-

tinua. Then, by [2, 6.1.20], X and Y are continua. By 3.8, the
inverse systems {Cn(Xα), Cn(fβ

α), Λ} and {Cn(Yα), Cn(gβ
α), Λ} are in-

verse σ-systems.
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Given α ∈ Λ, let pΛ
α be the projection map from X into Cn(Xα),

let qΛ
α be the projection map from Y into Cn(Yα) and let Zα = qΛ

α [Y ].
Then, by [2, 2.5.6], Y = lim

←−

{
Zα, Cn(gβ

α) |Zβ
, Λ

}
.

By 3.3, the inverse system
{

Zα, Cn(gβ
α) |Zβ

, Λ
}

is continuous,
then it is an inverse σ-system with onto bonding maps. Moreover,
each Cn(fβ

α ) is onto since every fβ
α is monotone (see [1, Proposition

1]).
By 3.9, there exist a cofinal subset Σ of Λ and homeomorphisms

lα : Cn(Xα) → Zα for every α ∈ Σ, such that lα ◦ pΛ
α = qΛ

α ◦ l and
lα ◦ Cn(fβ

α) = Cn(gβ
α) |Zβ

◦lβ for any α, β ∈ Σ satisfying α ≤ β.
By [1, Theorem 4], the maps Cn(fβ

α) are monotone, then each
map Cn(gβ

α) |Zβ
= lα ◦ Cn(fβ

α ) ◦ l−1
β is monotone.

By [2, 3.2.15], the projections gΛ
α are onto, then F1(Yα) ⊆ Zα.

Let α, β ∈ Σ with α ≤ β and let yα ∈ Yα. By [3, 15.9 (2)], the set⋃
(Cn(gβ

α) |Zβ
)−1({yα}) is connected. It is not difficult to see that

(gβ
α)−1(yα) =

⋃
(Cn(gβ

α) |Zβ
)−1({yα}). Then g

β
α is monotone. �

Let us recall the following result due to I. Lončar

Theorem 3.12. [4, Theorem 3.4] Let X be a Hausdorff com-
pact space with ω(X) ≥ ℵ1. Then there exists an inverse σ-system
{Xα, fβ

α , Λ} such that X is homeomorphic to XΛ.

Remark 3.13. In the previous Theorem, the directed set Λ only
depends on ω(X) and each space Xα is contained in a Hilbert cube
(see [4, Theorem 3.3]). So, we can assume that the spaces Xα

are compact and metrizable. Moreover, if two Hausdorff compact
spaces have the same weight, then the inverse σ-systems satisfying
3.12, for those two spaces, can be chosen with the same directed
set.

Definition 3.14. A space X is rim-metrizable if it has a basis B
such that every U ∈ B has metrizable boundary.

The following result is used in the proof of Theorem 3.20.
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Theorem 3.15. [4, Theorem 3.7] Let S = {Xα, f
β
α , Λ} be an in-

verse system of Hausdorff compact spaces with onto bonding maps.
Then:

(1) There exists an inverse system M(S) = {Mα, mβ
α, Λ} of

Hausdorff compact spaces such that the bonding maps m
β
α

are monotone surjections and the space lim
←−

S is homeomor-

phic to the space lim
←−

M(S),

(2) If S is σ-directed, then the inverse system M(S) is σ-directed,
(3) If S is σ-complete, then the inverse system M(S) is σ-

complete,
(4) If every Xα is a metric space and lim

←−
S is locally connected

(a rim-metrizable continuum) then every Mα is metrizable.

Definition 3.16. Let X be a continuum and let ΓX ∈ {2X , Cn(X)},
where n ∈ N. The continuum X has unique hyperspace ΓX provided
that:

• if Y is a continuum and ΓY is homeomorphic to ΓX , then
Y is homeomorphic to X .

In the previous definition, the hyperspace ΓY = 2Y when ΓX =
2X and ΓY = Cn(Y ) when ΓX = Cn(X).

Given a map f : X → Y between Hausdorff compact spaces, let
Γf denote the induced map between the hyperspaces ΓX and ΓY .

From [7, (0.60) and (1.61)] we have:

Theorem 3.17. Hereditarily indecomposable metrizable continua
have unique hyperspace C1(X). In fact, if f : C1(X) → C1(Y ) is a
homeomorphism, where X is a hereditarily indecomposable metriz-
able continuum and Y is a metrizable continuum, then f [F1(X)] =
F1(Y ).

From [5, p. 416] and [6, 6.1] we obtain:

Theorem 3.18. Hereditarily indecomposable metrizable continua
have unique hyperspace ΓX , where ΓX ∈ {2X , Cn(X)} and n ∈ N.
In fact, if f : ΓX → ΓY is a homeomorphism, where X is a hered-
itarily indecomposable metrizable continuum and Y is a metrizable
continuum, then f [F1(X)] = F1(Y ).
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Theorem 3.19. [4, Theorem 2.4] Hereditarily indecomposable
rim-metrizable continua have unique hyperspace C1(X), i.e., if X is
a hereditarily indecomposable non-metric rim-metrizable continuum
and Y is a continuum such that C1(X) is homeomorphic to C1(Y ),
then X is homeomorphic to Y . In fact, if f : C1(X) → C1(Y ) is a
homeomorphism, then f [F1(X)] = F1(Y ).

The following Theorem is the main result of this paper.

Theorem 3.20. Hereditarily indecomposable rim-metrizable con-
tinua have unique hyperspace ΓX , where ΓX ∈ {2X , Cn(X)} and
n ∈ N. In fact, if f : ΓX → ΓY is a homeomorphism, where X is
a hereditarily indecomposable rim-metrizable continuum and Y is a
continuum then f [F1(X)] = F1(Y ).

Proof. Suppose ΓX is homeomorphic to ΓY and let f : ΓX → ΓY be
a homeomorphism. Since F1(X) ⊆ ΓX ⊆ 2X , by 2.1, we have that
ω(ΓX) = ω(X). In a similar way, we obtain that ω(ΓY ) = ω(Y ).
Then ω(Y ) = ω(X). If ω(X) ≤ ℵ0, then X and Y are metrizable.
Hence, it follows by 3.18.

Suppose ω(X) ≥ ℵ1. By 3.12 and 3.13, there exist two inverse
σ-systems {Xα, fβ

α , Λ} and {Yα, gβ
α, Λ} of metrizable continua such

that X is homeomorphic to XΛ and Y is homeomorphic to YΛ.
Note that, if g : X → XΛ is a homeomorphism, then the home-

omorphism Γg : ΓX → ΓXΛ
satisfies Γg [F1(X)] = F1(XΛ). Hence,

we can assume that X = XΛ and Y = YΛ.
By [2, 2.5.6], we also assume that each of the bonding maps fβ

α

and gβ
α are onto. Since every Xα is metrizable and XΛ is rim-

metrizable, by 3.15, we assume that the bonding maps fβ
α are

monotone. By [2, 3.2.15], every projection map fΛ
α is onto and, by

[2, 6.3.16.(a)], they are monotone. Then, by 2.3, every metrizable
continuum Xα is hereditarily indecomposable.

If ΓXΛ
= 2XΛ , each of the maps Γ

fβ
α

and Γ
gβ

α
are onto.

If ΓXΛ
= Cn(XΛ), by 3.11, we may assume that the maps gβ

α are
monotone. Then, by [2, 6.1.29], we deduce that each of the maps
Γ

fβ
α

are Γ
gβ

α
are onto.

In both cases, the inverse systems {ΓXα , Γ
fβ

α
, Λ} and {ΓYα , Γ

gβ
α
, Λ}

have onto bonding maps.
By 2.2 and 3.8, the inverse systems {ΓXα , Γ

fβ
α
, Λ} and {ΓYα , Γ

gβ
α
, Λ}

are inverse σ-systems of metrizable continua.
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By 2.5, the map h : ΓXΛ
→ lim
←−

{ΓXα , Γ
f

β
α
, Λ} defined by h(C) =

(fΛ
α [C])α∈Λ and the map h′ : ΓYΛ

→ lim
←−

{ΓYα , Γ
gβ

α
, Λ} defined by

h′(C) = (gΛ
α [C])α∈Λ are homeomorphisms. Moreover, h [F1 (XΛ)] =

lim
←−

{F1(Xα),F1(f
β
α), Λ} and h′ [F1 (YΛ)] = lim

←−
{F1(Yα),F1(g

β
α), Λ}.

Let l = h′◦f ◦h−1 : lim
←−

{ΓXα , Γ
f

β
α
, Λ} → lim

←−
{ΓYα , Γ

g
β
α
, Λ}. Then,

by 3.9, there exist a cofinal subset Σ of Λ and homeomorphisms
lα : ΓXα → ΓYα for every α ∈ Σ, such that lα ◦ pΛ

α = qΛ
α ◦ l and

lα ◦ Γ
fβ

α
= Γ

gβ
α
◦ lβ for any α, β ∈ Σ satisfying α ≤ β, where

pΛ
α : lim
←−

{ΓXα , Γ
fβ

α
, Λ} → ΓXα and qΛ

α : lim
←−

{ΓYα , Γ
gβ

α
, Λ} → ΓYα are

the projection maps. By 3.10, we may assume that Σ = Λ.
By 3.18, the spaces Xα and Yα are homeomorphic and

lα[F1(Xα)] = F1(Yα). Thus, the homeomorphism

lα |F1(Xα): F1(Xα) → F1(Yα)

induces a homeomorphism:

l′ : lim
←−

{F1(Xα),F1(fβ
α), Λ} → lim

←−
{F1(Yα),F1(gβ

α), Λ}

such that l |
lim
←−
{F1(Xα),F1(f

β
α),Λ}= l′. Hence:

f [F1(XΛ)] = (h′)−1 ◦ h′ ◦ f ◦ h−1[lim
←−

{F1(Xα),F1(f
β
α ), Λ}]

= (h′)−1 ◦ l[lim
←−

{F1(Xα),F1(f
β
α ), Λ}]

= (h′)−1[lim
←−

{F1(Yα),F1(g
β
α), Λ}]

= F1(YΛ).

Since F1(XΛ) and XΛ are homeomorphic, and F1(YΛ) is homeo-
morphic to YΛ, we conclude that XΛ and YΛ are homeomorphic. �
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5. S. Maćıas, Hereditarily indecomposable continua have unique hyperspace 2X ,
Bol. Soc. Mat. Mexicana, (3)5(1999), 415-418.



576 ANTONIO PELÁEZ
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Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Uni-
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