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AN ORDINAL INDEXED HIERARCHY OF
SEPARATION PROPERTIES

R. A. SEXTON AND H. SIMMONS

Abstract. We refine and stratify the standard separation
properties to produce a descending hierarchy between T3 and
T1. The interpolated properties are related to the patch prop-
erties and the Vietoris modifications of the parent space.

Preamble

We take another look at the standard separation properties

T3 =⇒ T2 =⇒ T1 =⇒ T0

and show how the step from T3 to T2 can be continued below T2.
The new separation properties are related to the patch properties
of the parent space, and to the nature of its Vietoris hyperspaces.
We attach to each ordinal α three separation properties, α-neat,
α-regular, and α-trim, such that

α-neat =⇒ α-regular =⇒ α-trim =⇒ (α + 1)-neat

for all α. In general, none of these implications is an equiva-
lence. Here we concentrate on the neat and regular properties,
but the trim properties are worth noting. For a T0 space S we have
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S is 0-neat ⇐⇒ S is empty
S is 0-regular ⇐⇒ S is T3

S is 1-neat ⇐⇒ S is T2

S is 1-regular ⇐⇒ S is ??
S is 2-neat ⇐⇒ S is ??

...

where the later properties seem not to have been described before,
but they certainly become progressively weaker. For instance, the
maximal compact topology, Example 99 in [10], is 1-regular but not
T2. In Section 8 we give a whole family of examples which illustrate
the differences between the properties we develop. As the survey [7]
shows, many separation properties have been invented. However, in
that work none of these seem to be arranged in an ordinal indexed
family. More recently two ordinal hierarchies have been described
in [8]. One of these is related to, but not the same as, our neat
hierarchy. When we were doing the work for this paper we were
unaware of [8]. We say more about the relationship between the
two hierarchies at the end of Section 4.

We attach to each compact saturated subset Q of a space S a
certain operation, a derivative ∂Q, on the family CS of closed sets
of S. (At least that is what we do when S is sober. For a non-
sober space we use a more general approach.) This operation can
be iterated through the ordinals, and eventually stabilizes. The
length of the iteration gives an ordinal rank α, and it is this that
is used in the hierarchies.

We find that neatness, being α-neat for some α, decomposes into
two properties.

neat = packed + stacked

The first, being packed, is well known but unnamed, and is con-
cerned with the behaviour of the patch space of the parent space.
The second, being stacked, is concerned with the behaviour of cer-
tain Vietoris hyperspaces of the parent space. It is the stacking
properties that are stratified by the ordinals.

These results are taken from [9], mainly Chapters 8 and 11. That
account is written from a point-free perspective. However, to make
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this account accessible to a wider readership we develop the ma-
terial in a point-sensitive way. (We do make the occasional re-
mark about the point-free approach, but these can be ignored if
you wish.)
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1. Introduction

We outline the aims of this paper, and describe where the results
come from. As mentioned in the preamble, originally we used point-
free methods (and, in part, obtained more general results). Here
we use only point-sensitive methods. However, in this introduction
it will be necessary to allude to the point-free approach. If you
are not familiar with these methods, it will not detract from your
understanding of the results presented later.

Let S be a topological space. This has families OS of open
subsets and CS of closed subsets. Typically we let

U, V, W . . . range over OS X, Y, Z . . . range over CS

and we write E◦ for the interior and E− for the closure of an arbi-
trary subset E ⊆ S.

We use the standard separation properties T3, T2, T1, T0 where
T3 = T0+regular. As explained in the preamble, our aim is to show
that T3 and T2 are the initial steps in a hierarchy which descends
to somewhere above T1.
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The specialization order on a space S is the comparison of points
given by

p ≤ q ⇐⇒ p ∈ q−

for p, q ∈ S. This is always a pre-order, is a partial order precisely
when the space is T0, and is equality precisely when the space is
T1.

A saturated set is an upper section of this comparison. Every
open set is saturated but there may be many non-open saturated
sets. We write E↑ for the saturation (upwards closure) of a subset
E ⊆ S.

Let QS be the family of compact saturated sets. We use Q as a
typical member of QS. Observe that the saturation K↑ of a each
compact set K is in QS. Much of what we do can be seen as an
analysis of the way QS influences the more general properties of S.

It is a standard exercise that for a T2 space S we have QS ⊆ CS.
For later we state this in the form of a separation property and
sketch the proof.

Lemma 1.1. Let S be a T2 space and consider p ∈ S and Q ∈ QS
with p /∈ Q. Then

p ∈ U Q ⊆ V U ∩ V = ∅
for some U, V ∈ OS.

Proof. Fix p /∈ Q ∈ QS. For each q ∈ Q the T2 separation gives

p ∈ Uq q ∈ Vq Uq ∩ Vq = ∅
for some Uq, Vq ∈ OS. Letting q vary through Q produces an open
cover of Q which, by the compactness, refines to a finite cover, and
so produces the required U, V ∈ OS. �

This suggests that in a T2 space S the sets Q ∈ QS are trying
to behave like points. We remember this when we discuss the V-
modifications (Vietoris hyperspaces) of a space.

The property QS ⊆ CS of a space doesn’t seem to have a name,
so we give it one.

Definition 1.2. A space S is packed if each compact saturated set
is closed.

A space S is tightly packed if each compact saturated set is closed
and finite. �
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Another property of T2 spaces does have a name.

Definition 1.3. For a space S a closed subset Z is irreducible if it
is non-empty and

(Z meets U) and (Z meets V ) =⇒ Z meets U ∩ V

for each U, V ∈ OS. For each p ∈ S the closure Z = p− = {p}− is
irreducible, and we say p is a generic point of Z. A space S is sober
if it is T0 and each of its closed irreducible sets has a generic point
(which, by the T0 property, is unique). �

Almost trivially both the implications

(1) T2 =⇒ T1+sober+packed T0+packed =⇒ T1 (2)

hold. Not so trivially both are strict. An appropriate counter-
example for (1) can be found in [10]. (This book doesn’t deal
explicitly with sobriety and packedness. The dissertation [6] fills in
some of the missing details.) The two conditions T1 and sobriety
are incomparable, a space can have one without the other. Notice
that a space is T1+sober precisely when each closed irreducible set
is a singleton. Such a space need not be T2.

Both sobriety and packedness can be viewed as desirable prop-
erties of a space. Thus each T2 space is acceptable, but there are
defective spaces. As an attempt to correct one or other of the
defects we can attach to a space S an appropriate space

σ : S −→ sS π : pS −→ S

using a continuous map σ or π. The left hand space sS is the sober
reflection of S. For a T0 space its points are the closed irreducible
subsets of S with ‘essentially the same’ topology. The space sS is
always sober and, in particular, S is sober precisely when σ is a
homeomorphism. The right hand space pS is the patch space of
S. This has the same points as S but with more open sets. (We
simply declare that each Q ∈ QS is now closed.) In particular, S
is packed precisely when π is a homeomorphism. Unfortunately, in
general, the space pS need not be packed, and the construction has
to be repeated.

Both these constructions use point-sensitive methods (that is the
standard methods of point set topology). There are also point-free
methods available. We need to say a few words about these without
going into any details.
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Let Top be the category of topological spaces and continuous
maps. This is connected with another category Frm of a more
algebraic nature. A frame is a certain kind of complete lattice.
These are the objects of Frm and the arrows are the appropriate
morphisms. There is a pair of contravariant functors connecting
Top and Frm . For a space S the topology OS is a frame. Each
frame A has a point space pt(A) in Top (obtained by a kind of
spectral construction) together with a surjective morphism

A −→ Opt(A)

which need not be an isomorphism.
Many constructions in Top can be mimicked in Frm. Sometimes

this gives essentially the same results, sometimes it gives better
results, and sometimes it just misses the point. For instance, by
converting a space S into its topology OS and then taking the point
space pt(OS) we obtain the sober reflection of S. Thus σ : S −→ sS
is one of the units of the contravariant adjunction between Top and
Frm.

There is also a point-free version of the patch construction. For
a sober space S there is a bijective correspondence between QS and
the Scott-open filters on OS. This correspondence is discussed in
Section 3. For any frame A there is a process of modifying A by
‘formally adjoining’ its Scott-open filters. This produces a larger
frame

A −→ PA

and an embedding. The point set content of the construction is
explained in Section 2.

We apply this construction to the topology of a space S to obtain
a pair of morphisms

f : OS −→ POS g : POS −→ OpS

in Frm. The composite is essentially the map pS −→ S viewed as
a frame morphism. In particular, when S is packed, that is pS = S,
we obtain a pair of morphisms

f : OS −→ POS g : POS −→ OS

where the composite g ◦ f is the identity on OS. The other com-
posite f ◦ g need not be the identity on POS. An analysis of this
led to the result presented here.
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Roughly speaking we say a space is neat if the embedding f is an
isomorphism. The topological content of this notion is discussed in
Section 4. We find that

(3) T0+neat =⇒ T1+sober+packed

but this is not an equivalence.
What topological properties ensure neatness? From III(1.2)(iii)

of [5] we have
T3 =⇒ T0+neat

(and, in fact, a more general point-free result). We improved this
by weakening the hypothesis to T2, and this with (3) gives (1)
above. An analysis of neatness led to the ordinal indexed hierarchy
of separation properties, as described in Section 4 and 5.

The implication (3) is not an equivalence. What more is needed
on the right hand side? The missing property, that of being stacked,
is discussed in Section 6. It turns out that this is concerned with
the nature of the V-modifications of the parent space.

For a space S the point-sensitive Vietoris hyperspaces use certain
collections of subsets as points. The most common collection is
QS, but there are other larger collections. There is also a point-
free version of this construction, originally described in [3, 4]. This
produces an even larger set VS of points which, in general, are
not just certain subsets of S. The stacking property is concerned
with the differences between these various V-modifications. The
background to these results is described in more detail in Section
7.

Section 8 contains a collection of examples which illustrate the
notions developed here.

2. Derivatives on a space

At first sight you may think the following gadgets look a little
odd.

Definition 2.1. A derivative on a space S is an operator ∂ on CS
which is deflationary, monotone, and respects joins, that is

(d) ∂(X)⊆X (m) Y ⊆X =⇒ ∂(Y )⊆∂(X) (j) ∂(Y ∪X)⊆∂(Y )∪ ∂(X)

for each X, Y ∈ CS. Because of (m) the comparison of (j) is, in
fact, an equality. �
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There is one very well known example of a derivative that is
worth remembering.

Example 2.2. Let S be a T0 space. Recall that a point p ∈ X ∈ CS
is isolated in the closed set if X ∩ U = {p} for some U ∈ OS. Let
lim(X) be the set of non-isolated points of X , the limit points of
X . This lim is the CB-derivative on CS. �

We compare derivatives in a pointwise fashion, that is

∂1 ≤ ∂2 ⇐⇒ (∀X ∈ CS)[∂1(X) ⊆ ∂2(X)]

for derivatives ∂1, ∂2 (on the same space). Notice also that the
composite ∂1 ◦ ∂2 of two derivatives is itself a derivative, and is
smaller than its two components.

The CB-derivative is used to extract the perfect part of a closed
set. This is done by iteration, and a similar process is available
with any derivative.

Definition 2.3. Let ∂ be any derivative on a space S. The family

(∂α |α ∈ Ord)

of ordinal iterates of ∂ is generated by

∂0(X) = X ∂α+1(X) = ∂(∂α(X)) ∂λ(X) =
⋂

{∂α(X) |α < λ}

for each X ∈ CS, each ordinal α, and each limit ordinal λ. �

Notice that each ∂α is a derivative. Thus we obtain a descending
chain of derivatives

∂0 ≥ ∂1 = ∂ ≥ ∂2 ≥ · · · ≥ ∂α ≥ · · ·

which, on cardinality grounds, must eventually stabilize. In other
words, there is a sufficiently large ordinal θ such that ∂ ◦ ∂θ = ∂θ.
This is the rank or closure ordinal of ∂, and in due course, we will
look at the size of this for some particular derivatives. Until then
it is convenient to write ‘∞’ for this closure ordinal. Of course,
the value of ∞ depends on the parent derivative ∂, but when this
matters we will be more precise.

For instance lim∞ is the perfect part extractor on the parent
space S. The size of this ∞ is an indicator of some of the patholog-
ical properties of S. In a similar way we will use the rank of other
derivatives to determine other properties of S.
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Examples 2.4. Let S be an arbitrary space. For an arbitrary
subset K of S, setting

〈K〉(X) = (K ∩ X)−

for each X ∈ CS produces an idempotent derivative 〈K〉 on CS. In
particular, when K is closed we have 〈K〉(X) = K ∩ X for each
X ∈ CS. �

For a derivative ∂ the set K = ∂∞(S) is closed and we find that
∂∞ ≤ 〈K〉. We look at certain derivatives ∂ such that 〈L〉 ≤ ∂∞

for some associated saturated set L.
The topology OS of a space S is a lattice, and so the notion of a

filter ∇ on OS makes sense. Such a filter ∇ is a family of open sets
of S, is closed under binary intersections, and is upwards closed.
(Do not confuse this notion of filter with the more usual notion of
filter used in point set topology. The two notions are related but
are not the same.)

Definition 2.5. For a space S and a filter ∇ on OS, we set

∂∇(X) =
⋂

{(W ∩ X)− |W ∈ ∇}

for each X ∈ CS to obtain the associated derivative ∂∇ of ∇. �

The fact that ∂∇ is deflationary and monotone is immediate, but
the preservation of joins needs to be checked. By way of contradic-
tion suppose

∂∇(X ∪ Y ) * ∂∇(X)∪ ∂∇(Y )

for some X, Y ∈ CS. Thus

p ∈ ∂∇(X ∪ Y ) p ∈ (U ∩ X)−′
p ∈ (V ∩ Y )−′

for some point p ∈ S and U, V ∈ ∇. Let W = U ∩V so that W ∈ ∇
and

p ∈ (W ∩ (X ∪ Y ))− p ∈ (W ∩ X)−′
p ∈ (W ∩ Y )−′

which leads to a contradiction.
Each such derivative ∂∇ has a closure ordinal ∞ = |∇| which

enables us to attach an ordinal rank to the parent filter. For later
use we refine this process.
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Definition 2.6. Let ∇ be a filter on the open sets OS of the space
S. We set

∇(0) = S ∇(α + 1) = ∂∇(∇(α)) ∇(λ) =
⋂

{∇(α) |α < λ}

for each ordinal α and limit ordinal λ. Thus we set ∇(α) = ∂α
∇(S)

for each ordinal α. This produces a descending chain of closed sets

S = ∇(0) ⊇ ∇(1) ⊇ · · · ⊇ ∇(α) ⊇ · · ·

which stabilizes at (or before) ∇(∞) = ∂∞
∇ (S) using the closure

ordinal of ∂∇. �

For each filter ∇ of OS the set ∇(∞) is closed and ∂∞ ≤ 〈∇(∞)〉.
The intersection

⋂
∇ is saturated since each member of ∇ is open

and hence saturated. A simple calculation shows that
⋂

∇ ⊆ X =⇒
⋂

∇ ⊆ ∂∇(X)

for each closed set X , and hence
⋂

∇ ⊆ ∇(∞) = ∂∞
∇ (S). We can

refine this comparison.

Lemma 2.7. For each space S and filter ∇ on OS we have

〈
⋂

∇〉 ≤ ∂∞
∇ ≤ 〈∇(∞)〉

the sandwich of the associated derivative ∂∞
∇ .

Proof. For convenience let ∂ = ∂∇. By the remarks above we have
∂∞ ≤ 〈∇(∞)〉. To obtain the lower bound of ∂∞ let L =

⋂
∇.

For each W ∈ ∇ and X ∈ CS we have L ∩ X ⊆ W ∩ X and hence
〈L〉(X) ⊆ ∂(X) holds. A simple induction shows 〈L〉(X) ⊆ ∂α(X)
for each ordinal α, and hence 〈L〉 ≤ ∂∞ as required. �

In general ∂∞
∇ will lie strictly between these two extremes.

Example 2.8. Let S be a T1 space and let ∇ be the filter of cofinite
sets (each of which is open). Then ∂∇ = lim and hence ∂∞

∇ is the
perfect part extractor. In particular, ∇(∞) is the perfect part of
S, which could be S. At the other extreme we have

⋂
∇ = ∅. In

other words, these two extremes tell us almost nothing about the
parent space. �

We look at certain filters for which
⋂

∇ = ∇(∞), and so the
sandwich collapses.
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3. Scott-open filters

We describe a slight refinement of the Hofmann-Mislove result
which relates Scott-open filters with compact saturated sets.

Recall that a family U of open sets is (upwards) directed if it
is non-empty and for each U, V ∈ U there is some W ∈ U with
U ∪ V ⊆ W .

Definition 3.1. For a space S, a filter ∇ on the topology OS is
Scott-open if ⋃

U ∈ ∇ =⇒ U ∩ ∇ 6= ∅
for each directed family U ⊆ OS. In other words, ∇ is Scott-open
when its complement OS −∇ is closed under directed unions. �

Being Scott-open is a compactness property, as the standard ex-
ample illustrates.

Examples 3.2. Let S be a T0 space.
(a) Let Q ∈ QS. The open neighbourhood filter ∇(Q) of Q given

by
U ∈ ∇(Q) ⇐⇒ Q ⊆ U

(for U ∈ OS) is Scott-open. Since Q is saturated we find that
Q =

⋂
∇(Q).

(b) Suppose Z is closed irreducible in S. Then

U ∈ ∇ ⇐⇒ Z meets U

(for U ∈ OS) defines a Scott-open filter. In fact, this ∇ satisfies
U ∩ ∇ 6= ∅ for every (not just directed) family U of open sets with⋃
U ∈ ∇. The space is sober precisely when each such Z is a point

closure q−, in which case ∇ = ∇(q↑). �

When the space S is sober the Hofmann-Mislove result shows
that each Scott-open filter ∇ on OS has the form ∇(Q) for a
(unique) Q ∈ QS, namely Q =

⋂
∇. For later use we need to

extract a bit more information out of a proof of this result. To do
that we set up a bit of notation which we carry through to the end
of Theorem 3.5.

Let S be a T0 space (which, as yet, need not be sober), and
let ∇ be a Scott-open filter on OS. Let M be the set of maximal
members of (OS−∇). Since this difference is closed under directed
unions an application of Zorn’s Lemma gives the following.
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Lemma 3.3. For each U ∈ (OS − ∇) there is some P ∈ M with
U ⊆ P .

It often happens that a use of Zorn’s Lemma is combined with
a proof that the extracted maximal elements are ‘prime’ in some
sense. The same thing happens here.

Lemma 3.4. Each member of M is the complement of a closed
irreducible set.

We now assume that S is sober. Thus each P ∈ M has the form
m−′ for some (unique) m ∈ S. Let M be the set of these points.
Thus

M = {m−′ |m ∈ M}
is the set of maximal members of OS − ∇.

Theorem 3.5. Suppose the space S is sober and let ∇ be a Scott-
open filter on OS. Then there is some Q ∈ QS with ∇ = ∇(Q).
Furthermore, Q =

⋂
∇.

Proof. Consider the set M ⊆ S extracted above. We first show

U ∈ ∇ ⇐⇒ M ⊆ U

for U ∈ OS. In fact, we show the contrapositive.
Suppose U ∈ (OS − ∇). By Lemma 3.3 and the construction

of M we have U ⊆ m−′ for some m ∈ M . In particular M * U .
Conversely, suppose M * U , so that m ∈ U ′ for some m ∈ M , to
give U ⊆ m−′

/∈ ∇, and hence U /∈ ∇.
Next we check that M is compact. To this end suppose M ⊆

⋃
U

where U is a directed family of open sets. If
⋃

U /∈ ∇ then, again
by Lemma 3.3, we have

M ⊆
⋃

U ⊆ m−′

for some m ∈ M . This is impossible so we have
⋃
U ∈ ∇, and

hence, since ∇ is Scott-open, there is some U ∈ U with U ∈ U . The
equivalence above ensures M ⊆ U .

Each open set is saturated, so Q = M↑ is a compact saturated
set with

U ∈ ∇ ⇐⇒ Q ⊆ U

for U ∈ OS. Trivially we have Q ⊆
⋂
∇, so it remains to verify the

converse inclusion.
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Consider any p ∈
⋂

∇. Then p−
′

/∈ ∇ (otherwise p ∈ p−
′), so

that Q * p−
′, and hence there is some q ∈ Q∩ p−. We have q ≤ p,

so that p ∈ Q, since Q is saturated. �

If we start from a compact saturated set, then we obtain the
following result.

Theorem 3.6. Suppose the space S is sober, and consider any
Q ∈ QS. Let M be the set of minimal members of Q (relative to
the specialization order). Then for each q ∈ Q there is some m ∈ M
with m ≤ q, the set M is compact, and M↑ = Q.

We call the M the minimal generating set of Q. It will be impor-
tant in Section 7.

4. Neat spaces

By Lemma 2.7 we have a sandwich

〈
⋂

∇〉 ≤ ∂∞
∇ ≤ 〈∇(∞)〉

for each filter ∇ on the topology OS of a space S. By Example
2.8 these three components can be distinct. We investigate certain
filters where the components can be the same.

The following result is essentially a point-sensitive version of
Lemma 2.4(ii) of [3] or Lemma 3.4(ii) of [4]. We give a proof since
the technique used here is important.

Lemma 4.1. Let ∇ be a Scott-open filter on the topology OS of
the space S. Then

∇(∞) ⊆ U =⇒ U ∈ ∇

for each U ∈ OS.

Proof. We approach the result in four phases. In each we use the
derivative ∂ = ∂∇.

For the first phase we show

∂(X)′ ∈ ∇ =⇒ X ′ ∈ ∇

for X ∈ CS. Thus suppose ∂(X)′ ∈ ∇. Then
⋃

{(W ∩ X)−′ |W ∈ ∇} = ∂(X)′ ∈ ∇



598 R. A. SEXTON AND H. SIMMONS

and the left hand union is directed. Thus, since ∇ is Scott-open we
have

(W ′ ∪ X ′)◦ = (W ∩ X)−′ ∈ ∇
for some W ∈ ∇. This gives

(W ′ ∪ X ′)◦ ∩ W ∈ ∇
which, since

(W ′ ∪ X ′)◦ ∩ W = ((W ′ ∪ X ′)∩ W )◦ = X ′ ∩ W

gives X ′ ∩ W ∈ ∇, and hence X ′ ∈ ∇.
For the second phase we show

∂α(X)′ ∈ ∇ =⇒ X ′ ∈ ∇
for X ∈ CS and each ordinal α. We proceed by induction on α.
The base case, α = 0, is trivial. For the induction step, α 7→ α + 1,
since ∂α+1 = ∂ ◦ ∂α we have

∂α+1(X)′ ∈ ∇ =⇒ ∂α(X)′ ∈ ∇ =⇒ X ′ ∈ ∇
using the observation of the first phase and the induction hypothe-
sis. The induction leap to a limit ordinal follows by another use of
the Scott-openness.

For the third phase we observe that

∂∞(U ′) = ∅ ⇐⇒ U ∈ ∇
for U ∈ OS. The implication ⇒ is a particular instance of the
second phase, and the implication ⇐ is immediate (since U ∈ ∇
gives ∂(U ′) ⊆ (U ∩ U ′)−).

Finally, we can obtain the required result. Suppose ∇(∞) ⊆ U
for some U ∈ OS. Then we have both

∂∞(U ′) ⊆ ∇(∞) ⊆ U ∂∞(U ′) ⊆ U ′

to give ∂∞(U ′) ⊆ U ∩ U ′ = ∅ and hence U ∈ ∇ by the third
phase. �

With this observation we can characterize when the sandwich
collapses.

Theorem 4.2. Let ∇ be a Scott-open filter on the topology OS of
a space S, and let ∂ = ∂∇. The following four conditions on ∇ are
equivalent.

(i) ∂∞ = 〈K〉 for some K ∈ CS;
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(ii) (∀U ∈ OS)[U ∈ ∇ ⇐⇒ ∇(∞) ⊆ U ];
(iii)

⋂
∇ = ∇(∞);

(iv) 〈
⋂
∇〉 = ∂∞ = 〈∇(∞)〉.

Proof. (i)⇒(ii). Suppose ∂∞ = 〈K〉 for some K ∈ CS. Then

K = 〈K〉(S) = ∂∞(S) = ∇(∞)

to show what K must be. Consider any U ∈ ∇. Then

∂(U ′) ⊆ (U ∩ U ′)− = ∅

so that
∇(∞)∩ U ′ = 〈K〉(U ′) = ∂∞(U ′) = ∅

to give ∇(∞) ⊆ U . The converse implication holds by Lemma 4.1.
(ii)⇒(iii). Assuming (ii) we have ∇(∞) ⊆

⋂
∇, and the converse

always holds.
(iii)⇒(iv). This follows from the sandwich of ∂∞.
(iv)⇒(i). This is trivial. �

For a Scott-open filter ∇ the sandwich collapses precisely when
∇(∞) ⊆

⋂
∇. Here ∞ is some ordinal which depends on ∇. We

take note of this value.

Definition 4.3. Let S be a space and let α be an ordinal.
(a) A Scott-open filter ∇ on OS is α-neat if ∇(α) ⊆

⋂
∇, and

hence ∇(α) =
⋂

∇.
(b) The space is α-neat if each of its Scott-open filters is α-neat.
(c) A Scott-open filter or a space is neat if it is α-neat for some

α. �

For ordinals α ≤ β we have ∇(α) ⊆ ∇(β) so that

α-neat =⇒ β-neat

for both Scott-open filters and spaces.

Theorem 4.4. (0) A space is 0-neat precisely when it is empty.
(1) A T0 space is 1-neat precisely when it is T2.

Proof. (0) Suppose the space S is 0-neat, and consider the improper
filter ∇ = OS. This is Scott-open (trivially) and hence the 0-
neatness gives S = ∇(0) ⊆

⋂
∇ = ∅. The converse is immediate.
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(1) Suppose the space S is T0 and 1-neat, and consider distinct
p, q ∈ S. Since S is T0 we may suppose q /∈ p−, so that p /∈ q↑ ∈ QS.
Using the Scott-open filter ∇ = ∇(q↑) the 1-neatness gives

⋂
{W− | q ∈ W ∈ OS} = ∇(1) ⊆

⋂
∇ = q↑

so there is an open set W with p /∈ W− and q ∈ W . This is the
required T2-separation.

Conversely, suppose the space is T2, and consider any Scott-
open filter ∇. Since S is T2, it is sober, and hence Theorem 3.5
gives us some Q ∈ QS with ∇ = ∇(Q) and

⋂
∇ = Q. We have⋂

∇ = Q ⊆ ∇(1), and we must improve this to an equality.
By way of contradiction, suppose there is a point p ∈ (∇(1)−Q).

By Lemma 1.1 there are U, V ∈ OS with

p ∈ U Q ⊆ V U ∩ V = ∅
so that p ∈ ∇(1) ⊆ V − ⊆ U ′ which is the contradiction. �

As far as we can ascertain 2-neatness (or any (2 + α)-neatness)
does not seem to be a standard separation property.

What kind of spaces are neat? The following gives a necessary
condition.

Theorem 4.5. Each T0+neat space is T1+sober+packed.

Proof. Let S be a space that is T0 and neat.
We show first that S is packed. Consider Q ∈ QS, and let

∇ = ∇(Q). Then

Q ⊆ ∇(∞) ⊆
⋂

∇ = Q

where the first inclusion is a general property of QS, the second is
the assumed neatness, and the equality is another general property.
This gives Q = ∇(∞) ∈ CS as required.

Since S is T0+packed, it is T1. Thus it remains to show that S
is sober.

To this end consider any closed irreducible subset Z of S, and
this time let ∇ be the Scott-open filter given by

U ∈ ∇ ⇐⇒ Z meets U

(for U ∈ OS). We show that Z is a singleton.
By way of contradiction suppose p, q are distinct members of

Z. Since S is T1 we have p ∈ U and q /∈ U for some U ∈ OS.
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The point p ensures that Z meets U , so that U ∈ ∇, and hence
∇(∞) ⊆ U by the assumed neatness of S. Since

q ∈ U ′ ⊆ ∇(∞)′ ∈ OS

we see that Z meets ∇(∞), and hence ∇(∞) ⊆ ∇(∞)′ by a second
use of neatness. Thus ∇(∞) = ∅, so that ∅ ∈ ∇ by Lemma 4.1,
and hence Z meets ∅. �

We will improve this result in Section 6.
Before we continue with our analysis let’s briefly consider a pos-

sible weakening of the notion of α-neatness.
Suppose we attach to each space S a selected family FS of Scott-

open filters. Then we may say a space S is α-F -neat if each ∇ ∈ FS
is α-neat. We use a particular case of this idea.

For each point q ∈ S the filter ∇(q↑) given by

U ∈ ∇(q↑) ⇐⇒ q↑ ⊆ U ⇐⇒ q ∈ U

(for U ∈ OS) is Scott-open with
⋂

∇(q↑) = q↑. This filter gives us
a derivative

∂q = ∂∇(q↑)

on CS, and we may say S is α-point-neat if ∂α
q (S) = q↑ for each

point q ∈ S. This notion has appeared elsewhere.
In [8] Sequeira attached to each point q of a space S an ordinal in-

dexed family ∆α(q) of subsets of S. The space S is α-step-Hausdorff
if ∆α(q) = {q} for each q ∈ S. In fact

∆α(q) = ∂α
q (S)

and it doesn’t take too long to prove the following.

Theorem 4.6. A space is α-step-Hausdorff precisely when it is T0

and α-point-neat. Furthermore, each such space is T1.

A more detailed analysis of the connection between neatness and
the properties discussed in [8] will appear elsewhere.

5. Three interlacing hierarchies

We know that each α-neat space is (α + 1)-neat, but not con-
versely. What does an α-neat space have that an (α + 1)-neat
doesn’t? It has a certain amount of regularity.
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Definition 5.1. Let α be an ordinal.
(r) A space S is α-regular if for each U, V ∈ OS with U * V ,

there is some W ∈ OS such that

(∗) W ⊆ U W * V (W ∩∇(α))− ⊆ U

for each Scott-open filter ∇ with U ∈ ∇.
(t) A space S is α-trim if for each U, V ∈ OS with U * V , and

for each Scott-open filter ∇ with U ∈ ∇, there is some W ∈ OS
such that (∗) holds. �

The idea is the same for both notions. Given U, V ∈ OS with
U * V , there is a W ∈ OS which separates U and V in a certain
way. The difference between α-regularity and α-trimness is the
dependencies amongst the quantifiers. In particular, we have

α-regular =⇒ α-trim

for these trivial reasons. It seems that in general this implication is
not an equivalence. However, the case α = 0 is different. The trick
is that ∇(0) = S for every filter ∇, and this makes the dependency
on ∇ illusory.

The following is the analogue of Theorem 4.4.

Theorem 5.2. For a space S the three properties

(i) S is regular (ii) S is 0-regular (iii) S is 0-trim

are equivalent.

Proof. (i) ⇒ (ii). Suppose S is regular, consider any U, V ∈ OS
with U * V , and consider any witnessing point p ∈ U, p ∈ V ′. By
the regularity of S we have

p ∈ W ⊆ W− ⊆ U

for some W ∈ OS. For each Scott-open filter ∇ we have ∇(0) = S,
so that

(W ∩∇(0))− = W− ⊆ U

as required.
(ii) ⇒ (iii). This is immediate.
(iii) ⇒ (i). Suppose S is 0-trim and consider any p ∈ U ∈ OS.

Let V = p−
′, so that U * V . With the Scott-open filter ∇ = OS,

since ∇(0) = S the 0-trimness gives

W ⊆ U W * p−
′

W− ⊆ U

for some W ∈ OS. In particular p ∈ W , which is enough to show
that S is regular. �



AN ORDINAL INDEXED HIERARCHY OF SEPARATION ... 603

The notion of α-regularity has an inbuilt uniformity in the selec-
tion of the separating set W . Because of this the weaker notion of
α-trimness may seem more natural. However, the stronger notion
of α-regularity is related to a notion of α-well-inside in the same
way that standard regularity is related to the standard well-inside
comparison. We won’t develop that relationship here, but we will
give just a hint of the difference.

Suppose S is α-trim, let U ∈ OS, and let ∇ be a Scott-open
filter with U ∈ ∇. Let

V =
⋃

{W ∈ OS |W ⊆ U, (W ∩∇(α))− ⊆ U}

so that V ⊆ U . The α-trimness ensures that V = U . This decom-
position of U depends on the filter ∇. A similar use of α-regularity
will produce a filter independent decomposition.

Theorem 5.3. The three implications

α-neat =⇒ α-regular =⇒ α-trim =⇒ (α + 1)-neat

hold for each ordinal α.

Proof. For the left hand implication suppose the space S is α-neat,
and consider U, V ∈ OS with U * V . Let W = U , so that

W ⊆ U W * U

(trivially). Consider any Scott-open filter ∇ with U ∈ ∇. The
α-neatness gives ∇(α) ⊆ U , so that

(W ∩ ∇(α))− ⊆ ∇(α)− ⊆ ∇(α) ⊆ U

to give the required result.
The central implication follows by a trivial manipulation of quan-

tifiers.
For the right hand implication suppose the space S is α-trim,

consider a Scott-open filter ∇, and consider any open set U ∈ ∇.
We require ∇(α+1) ⊆ U . By the decomposition observation above
we have

U =
⋃

{W ∈ OS |W ⊆ U, (W ∩ ∇(α))− ⊆ U}

and, by a simple calculation, this union is directed. Since ∇ is
Scott-open and U ∈ ∇, this gives some W ∈ ∇ with

∇(α + 1) ⊆ (W ∩∇(α))− ⊆ U

as required. �
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For α = 0 this result and Theorem 5.2 show that each regular
space is 1-neat. By Theorem 4.4, for T0 spaces this gives T3 ⇒ T2

(which is not exactly unknown). Theorem 5.3 is a kind of general-
ization of this implication.

6. Stacking properties

By Theorem 4.5 each T0+neat space is T1+sober+packed, but
not conversely. Neat spaces have extra properties. Consider any
Q ∈ QS. This generates a Scott-open filter ∇(Q) with Q =⋂
∇(Q), and so gives a derivative ∂Q = ∂∇(Q). To simplify the

notation we set

Q(α) = ∂α
∇(Q)(S) = ∇(Q)(α)

for each ordinal α. Thus, the filter ∇(Q) is neat precisely when
Q = Q(∞). The packedness of the space is concerned with an
equality Q− = Q.

Each Q ∈ QS gives us three sets

Q ⊆ Q− ⊆ Q(∞)

and comparisons between four derivatives

〈Q−〉 · · · 〈Q(∞)〉

Packed
...

... Neat
〈Q〉 · · · ∂∞

Q

where each dotted line indicates a comparison, either left to right or
from bottom to top. Packedness ensures an equality on the left and
neatness is concerned with an equality on the right. What about
equalities at the top or bottom?

Definition 6.1. Let S be a space.
(a) A set Q ∈ QS is stacked if Q− = Q(∞), and is strongly

stacked if 〈Q〉 = ∂∞
Q .

(b) The space S is stacked or strongly stacked if each of its com-
pact saturated sets is stacked or strongly stacked, respectively. �

These names may look odd. They are explained by the second
part of the following.

Theorem 6.2. (a) All three of the implications

neat =⇒ strongly stacked =⇒ stacked T1+stacked =⇒ sober
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hold for spaces.
(b) A T0 space is neat precisely when it is packed and stacked.

Proof. (a) The two left hand implications are immediate.
For the right hand implication consider any space S which is

T0+stacked (not yet T1). Consider any closed irreducible subset Z
of S. We obtain some information about Z.

Consider q ∈ Z, let Q = q↑ (so that Q ∈ QS), and let ∂ = ∂Q.
We show first that Z ⊆ ∂(Z) and hence ∂(Z) = Z. To this end
consider W ∈ OS with q ∈ W . We show Z ⊆ (W ∩ Z)−, and then
take the intersection over all such W . Consider any p ∈ Z and, by
way of contradiction, suppose

p ∈ V = (W ∩ Z)−′ = (W ′ ∪ Z ′)◦

holds. Since Z meets both W and V (at q and p, respectively) we
have Z ∩ W ∩ V 6= ∅ which, by a simple calculation, is nonsense.

Since Z = ∂(Z) we have

q ∈ Z = ∂∞(Z) ⊆ ∂∞(S) = Q(∞) = Q = q↑

where Q(∞) = Q holds since S is stacked. Finally, if we assume
that S is T1 then q ∈ Z ⊆ q↑ = {q} so that Z is a singleton, which
is more than enough to show S is sober.

(b) The implication

T0+neat =⇒ packed+stacked

follows by Theorem 4.5 and part (a).
Conversely, suppose the space S is T0+packed+stacked. The first

two properties ensure that S is T1, and hence S is sober by part
(a). Consider any Scott-open filter ∇ on OS. We have ∇ = ∇(Q)
for some Q ∈ QS. Since S is packed and stacked we have

∇(∞) = Q(∞) = Q− = Q =
⋂

∇

and hence S is neat. �

The Alexandroff topology on a poset gives a T0+strongly stacked
space which is neat precisely when the poset is discrete.
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7. V-points

Let S be a sober space. We wish to construct a hyperspace of
S, a new space where the points are certain subsets of S. The
construction we use here is as follows.

Definition 7.1. Let S be any topological space and let KS be any
set of compact subsets K. For U ∈ OS let ♦(U) and �(U) be the
subsets of KS given by

K ∈ ♦(U) ⇐⇒ K meets U K ∈ �(U) ⇐⇒ K ⊆ U

(for K ∈ KS). We use these to topologize KS. We take the smallest
topology in which each of these sets is open. This gives us the
V-modification of S on KS. �

We use the given topology OS to doubly index a subbase of the
topology constructed on KS. (We needn’t worry about whether or
not ∅ should be in KS.)

By varying the choice of KS we produce different V-modifications.
For instance, when KS is the set of singletons we merely reproduce
the parent space. In the original example (as described by Vietoris)
the space S is compact T2 and KS = CS. An obvious extension of
this is to take KS = QS. A more recent extension uses the compact
lenses of S.

A lens of S is a subset of the form L = R∩Y where R is saturated
and Y is closed. Thus L is a certain kind of convex subset in the
specialization order. Let LS be the set of the compact lenses, the
lenses of S which are also compact subsets.

For any Q ∈ QS and X ∈ CS the lens L = Q∩X is compact. In
particular, Q is a compact lens (since Q = Q∩Q−). Thus we have
an inclusion QS ⊆ LS which, with the V-topology on each of QS
and LS, is a topological embedding.

This is the point-sensitive version of the V-modification (or as
much of it as we need to know here). There is also a point-free
version. This was introduced in [3, 4], and a simplified account for
compact T2 spaces is given in [5]. We give an outline of the general
constuction, but for what we do here we can take the results of
Theorem 7.2 and Lemma 7.3 as the definition of the associated
space VS of a sober space S.

Starting from the parent space we view the topology OS as a
lattice of a certain kind. We generate a larger lattice (which must
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satisfy certain equalities), and hit this with a hull-kernel (spectral)
construction to produce a space. This is the new V-modification.
We write VS for the points of the new space. As you can probably
guess these points have something to do with QS. The points of
VS are described in [3, 4], but not in the most transparent manner.

Consider any Q ∈ QS. By Section 3 this has a minimal gener-
ating subset M . Thus we have three closed sets (Q, M−), (Q, Q−),
(Q, Q(∞)) and a derivative ∂Q associated with Q.

Theorem 7.2. For a sober space S the points in VS are the pairs
(Q, X) where

Q ∈ QS X ∈ CS M− ⊆ X ⊆ Q(∞) ∂Q(X) = X

hold. Furthermore, for Q ∈ QS, each of (Q, M−), (Q, Q−),
(Q, Q(∞)) is in VS.

This shows that each Q ∈ QS always produces at least one point
in VS (namely (Q, Q−)). There can be many points in VS of the
form (Q, X), and in Section 8 we illustrate that the family of all
such Q-points can be extremely complicated.

The topology on VS is produced automatically (since it is a hull-
kernel construction). We find that it does look very like the more
traditional V-topologies.

Lemma 7.3. For each sober space S the doubly indexed families
given by

(Q, X) ∈ �(U) ⇐⇒ X meets U (Q, X) ∈ �(U) ⇐⇒ Q ⊆ U

(for V-points (Q, X) and U ∈ OS) form a subbase of the topology
on VS.

It is easy to check that the assignment

Q 7−→ (Q, Q−) : QS −→ VS

is a topological embedding. This show that VS has a rather curious
structure.

There is a copy of QS running through VS, and VS is bundled
over QS. However, some points such as (Q, M−) lie on one side of
the sliver, and other points such as (Q, Q(∞)) lie on the other side.
Not much seems to be known about this geometric structure (for it
is surely more than just a space), but we can begin to see how the
stacking properties of the parent space simplify the structure.
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Theorem 7.4. A space S is T1+stacked precisely when it is sober
and its V-modifications QS and VS are canonically homeomorphic.

Proof. Suppose that S is T1+stacked. By Theorem 6.2 the space
is sober, so we may use the material outlined above. Consider any
Q ∈ QS and point (Q, X) ∈ VS. But S is T1 so that M = Q, and
S is stacked so that Q− = Q(∞). Thus, by Theorem 7.2, we have
X = Q−, to give the required result.

Conversely, suppose S is sober and QS = VS, that is

(Q, M−) = (Q, Q−) = (Q, Q(∞))

for each Q ∈ QS. In particular, we have Q− = Q(∞), so that S is
stacked. Consider any m ∈ S and let Q = m↑. We have m− = Q−

which, by a simple argument, shows that m− is a singleton. Thus
S is T1. �

The relationship between LS and VS is more interesting.

Theorem 7.5. Let S be a sober space. For each L ∈ LS we have
(L↑, L−) ∈ VS.

Proof. We have L = R∩Y for some saturated R and closed Y , and
we know that L is compact. We first massage this information into
a more canonical form.

Let Q = L↑ and X = L−, so that Q ∈ QS (since the saturation
of any compact set is compact) and X ∈ CS. We have L ⊆ R and
L ⊆ Y so that

Q = L↑ ⊆ R↑ = R X = L− ⊆ Y − = Y

and hence L ⊆ Q ∩ X ⊆ R ∩ Y = L to give

L = Q ∩ X = L↑ ∩ L−

which is the canonical representation of L.
We have L↑ = Q ∈ QS and L− = X ∈ CS, so it remains to

verify the other two conditions of Theorem 7.2.
Let M be the minimal generating set of Q. We show M ⊆ L,

so that M− ⊆ L− = X . Consider any m ∈ M and, aiming for a
contradiction, suppose L ⊆ m−′. Then, since m−′ is saturated, we
have m ∈ M ⊆ L↑ ⊆ m−′ which is false. This shows that L meets
m−, to give some l ∈ L ∩ m−. But now l ≤ m ∈ M with l ∈ L, so
that l = m by the minimality of m. Thus m = l ∈ L, and hence
M ⊆ L.
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Finally, consider any W ∈ OS and Q ⊆ W . Then L ⊆ Q ∩ X ⊆
W ∩ X so that L− ⊆ (W ∩ X)− to give X = L− ⊆ ∂Q(X) to
complete the proof. �

This result shows how each compact lens gives a V-point. By
looking at the two constructions it is easy to check that the assign-
ment

L 7−→ (L↑, L−) : LS −→ VS

is a topological embedding. Naturally, we call the pair (L↑, L−) a
focal point of S.

Lemma 7.6. Let S be a sober space. A V-point (Q, X) of S is a
focal point if and only if X = (Q∩ X)−.

Proof. Suppose first that (Q, X) is a focal point of S. Thus there
is some L ∈ LS with Q = L↑ and X = L−. But now, since L is
a lens, as in the proof of Theorem 7.5, we have L = (L− ∩ L↑), so
that

X = L− = (L− ∩ L↑)− = (Q∩ X)−

as required.
Conversely, suppose (Q, X) is a V-point with X = (Q ∩ X)−.

We show that L = Q∩X is a lens with L↑ = Q and L− = X . The
equality L− = X holds by hypothesis, and the inclusion L ⊆ Q
gives L↑ ⊆ Q. We require the converse inclusion.

Let M be the minimal generating set of Q. We have M ⊆ X
(since (Q, X) is a V-point) so that M ⊆ L. In particular, we have

L ⊆ U =⇒ M ⊆ U =⇒ Q ⊆ U

for each U ∈ OS. Now consider an arbitrary q ∈ Q. We have
Q * q−′, so that L * q−′, which gives some p ∈ L with p ≤ q, and
hence q ∈ L↑. Thus Q ⊆ L↑ and hence L↑ = Q.

Finally L ⊆ L− ∩ L↑ = X ∩ Q = L to give L = L− ∩ L↑, and
hence L is a lens. �

With this characterization we quickly obtain the focal analogue
of Theorem 7.2.

Theorem 7.7. For a sober space S the focal points of S are the
pairs (Q, X) where

Q ∈ QS X ∈ CS M− ⊆ X ⊆ Q− (Q ∩ X)− = X
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hold. Furthermore, for Q ∈ QS, both (Q, M−) and (Q, Q−) is a
focal point.

This shows when S is T1 its focal points are essentially the mem-
bers of QS. However, lenses are useful only when the specialization
order is important (and not just equality).

The stacking properties of a space has an impact on its focal
properties.

Theorem 7.8. Both the implications

strongly stacked =⇒ (VS = LS) =⇒ stacked

hold for each sober space S.

Proof. For the left hand implications suppose the sober space S is
strongly stacked and consider any V-point (Q, X). Since ∂Q = 〈Q〉
a use of Theorem 7.2 gives

X = ∂Q(X) = (Q ∩ X)−

and hence (Q, X) is a focal point by Theorem 7.7.
For the right hand implications suppose for the sober space S

each V-point is focal. In particular, for Q ∈ QS the V-point
(Q, Q(∞)) is focal, and hence Q(∞) ⊆ Q− by Theorem 7.7, to
show that Q is stacked. �

The precise relationship between these three properties is not
known to us.

8. Boss spaces

We describe a family of examples which illustrate the variety of
stacking properties a space may have. For each space we start with
a tree S furnished with some extra gadgetry. We refer to a member
of S as a node. We attach to S a new point ?, the boss point, to
obtain

S = {?} ∪ S
the set of points of the space. The furnishings of S induce the
topology OS on S. This gives us a boss space with its boss topol-
ogy. The boss point controls many of the topological properties of
S, and yet doesn’t seem to do anything useful. Each such space
is T1+sober+tightly packed but the stacking properties can differ
widely.
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• For each ordinal α there is a boss space which is (α+1)+neat
but not α-neat.

• There is a boss space S with ∂?(S) = S and such that for
many subtrees T of S the pair ({?}, {?} ∪ T) is a V-point
of S.

All the examples we used are based on the most common type of
tree (well-founded with height no more that ω), but the methods
work for a much larger arboretum.

Definition 8.1. Let S be a poset with comparison ≤ and, as usual,
with < as the associated strict comparison. We say S is a tree if for
each node x ∈ S the set

P (x) = {z ∈ S | z ≤ x}
of predecessors of x is linearly ordered (by the comparison).

For each node x ∈ S let
I(x)

be the set of immediate successors of x, the set of all those y ∈ S
such that x < y and there is no z ∈ S with x < z < y. �

You may be more familiar with the smaller class of trees where for
each node x the set P (x) is well-ordered (not just linearly ordered).
We don’t need that restriction here.

Notice that
y ≤ x
z ≤ x

}
=⇒ y ≤ z or z ≤ y I(x)∩ I(y) 6= ∅ =⇒ x = y

for all nodes x, y, z of a tree.

Example 8.2. Let I be an arbitrary set, thought of as an alphabet.
Let S be the set of all words on I , including the empty word ⊥.
Thus each x ∈ S is a list

x = ⊥i1 . . . il

of letters i1, . . . , il ∈ I . Here l is the length of x and l = 0 is allowed.
These words are partially ordered by extension, thus x ≤ y (for
words x, y) precisely when

y = xi1 . . . il

for some sequence i1, . . . , il of letters (and again l = 0 is allowed).
This makes S a well-founded tree of height ω (or 0 if I is empty).
It is the full I-splitting tree.
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For each word x

I(x) = {xi | i ∈ I}
is the set of immediate successors of x. Each set I(x) is essentially
the same as I . �

When I is empty, we have S = {⊥}. When I is a singleton, S is
essentially the natural numbers. When I is a pair, S is the Cantor
tree. When I is countably infinite, S is the Baire tree. Eventually
we will look at the case where I is uncountable.

Definition 8.3. For a set I a notion of smallness on I is an ideal
S of PI . �

Thus S is a collection of subsets of I with ∅ ∈ S and such that

F ⊆ E ∈ S =⇒ F ∈ S E, F ∈ S =⇒ E ∪ F ∈ S

for E, F ⊆ I . We think of the members of S as the small subsets
of I . There are some rather uninteresting notions of smallness on
I . We could take either of the two extremes S = {∅} or S = PI , or
any principal ideal. There are many more sophisticated notions of
‘small’, especially when I carries some extra ‘calibrating’ structure.

Definition 8.4. Let S be a notion of smallness on a set I . We say
S is fresh if E ∈ S for each finite E ∈ PI . We say S is stringent if
E ∈ S for each countable E ∈ PI . �

If I is countable then PI is the only stringent notion of smallness.
However, when I is uncountable there can be many stringent ideals.

Definition 8.5. Let S be a tree. We say S is dressed if for each
node x ∈ S the set I(x) carries a notion of smallness S(x). We
say S is freshly dressed or stringently dressed if each S(x) is fresh or
stringent, respectively. �

For a dressed tree S, as x varies through S the notions of smallness
S(x) may be quite unrelated. However, the full I-splitting tree of
Example 8.2 can be dressed in a uniform way. We select a notion
of smallness S for the alphabet I .

Definition 8.6. Let S be a dressed tree and set

S = {?} ∪ S
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(where ? /∈ S). Let OS be the family of all those subsets U of S
such that both

? ∈ U =⇒ (∀x ∈ S)[I(x)−U ∈ S(x)] (∀x ∈ U)[I(x)−U ∈ S(x)]

hold. �

It is easy to check that OS is a topology. A set X ⊆ S is closed
precisely when both

(∃x∈S)[I(x)∩X /∈ S(x)] =⇒ ?∈X (∀x∈S)[I(x)∩X /∈ S(x) =⇒ x∈X]

hold. We will return to the first implications when we look at the
CB properties of S.

To give some examples of open and closed sets we first sort out
some notation.

As earlier for an arbitrary space we write (·)↑ and (·)↓ for the
upwards and the downwards closures relative to the specialization
order. As we will see, each interesting boss space S is T1, so these
operations are not needed. However, S is based on a tree S which
carries a different comparison. For E ⊆ S we write

↑E ↓E
for the upwards and the downwards closures of E in S relative to
the carried comparison.

Examples 8.7. (a) For each y ∈ S the set

U = ↑y = {z ∈ S | y ≤ z}
is open. By construction ? /∈ U , so it suffices to consider those
x ∈ U . For such an x we have I(x) ⊆ U so that I(x)−U = ∅ ∈ S(x).

(b) Suppose S is freshly dressed. For V ∈ OS with ? /∈ V and
y ∈ S, the set

U = V − ↑y
is open. Since ? /∈ U it suffices to consider those x ∈ U . For such
an x we have

I(x)− U = (I(x)− V ) ∪ (I(x)∩ ↑y)

and the first component is in S(x) (since x ∈ V ∈ OS). Consider
any z in the second component. Thus x < z with nothing between
these. But also y ≤ z and hence x < y ≤ z (since S is a tree and
y � x). Thus z = y, and the second component is no more than a
singleton.
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(c) Suppose S is freshly dressed. Then each finite X ⊂ S is closed
(since I(x)∩X ∈ S(x) for every node x). Since {?} is closed (almost
vacuously), this shows that S is T1.

If S is stringently dressed then each countable X ⊂ S is closed.
This second remark will be crucial in the proof of Theorem 8.8.

(d) Suppose S is stringently dressed, and consider any pair
Y ⊆ ↓Z ⊆ S with Z countable. We show that

(∀x ∈ S)[I(x)∩ Y ∈ S(x)]

and hence Y is closed.
Fix x ∈ S. If I(x) ∩ Y is empty, then it is certainly in S(x).

Thus we may suppose this intersection is non-empty. For each
y ∈ I(x)∩Y we have x < y ≤ z for some z ∈ Z. By choice this sets
up a selection function f : I(x)∩ Y −→ Z with x < y ≤ f(y) ∈ Z
for each y ∈ I(x)∩Y . We show that f is injective, so that I(x)∩Y
is countable, and hence is in S(x).

Consider y1, y2 ∈ I(x) ∩ Y with f(y1) = f(y2) = z ∈ Z. Since S
is a tree we have x < y1 ≤ y2 ≤ z (say). But y1 ∈ I(x) so there is
nothing between x and y2, to give y1 = y2, as required. �

The construction of Definition 8.6 works for any dressed tree.
However, for our purposes we need a stringent dressing. This is
used in the proof of the following crucial result. We will indicate
precisely where.

Theorem 8.8. Let S be a stringently dressed tree. Then the asso-
ciated boss space S is T1+sober+tightly packed.

Proof. We look at the three properties in turn.
Example 8.7(c) shows that S is T1. (This requires only that S is

freshly dressed.)
To show that S is sober consider any closed irreducible subset

Z. We aim to show that Z is a singleton, but first we show that
Z ∩ S is no more than a singleton.

By way of contradiction suppose there are distinct x, y ∈ Z ∩ S.
Since

Z meets U = ↑x at x Z meets V = ↑y at y

and U, V are open, by Example 8.7(a), the irreducibility ensures
that Z meets U ∩ V to give some z ∈ Z with x, y ≤ z.
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Since S is a tree we may suppose x < y ≤ z (by symmetry). The
set W = ↑x − ↑y is open, by Example 8.7(a,b), and

Z meets W = ↑x at x Z meets V = ↑y at y

so that Z meets W ∩V (by a second use of the irreducibility). Since

W ∩ V ⊆ V ′ ∩ V = ∅

this is the contradiction.
This shows that either Z is a singleton or has the form {?, x} for

some x ∈ S. We must exclude this second case.
Suppose Z = {?, x}. Then Z meets ↑x at x and Z meets {x}′ at

?, so that Z meets ↑x ∩ {x}′ (by a third use of the irreducibility).
This give some z ∈ Z ∩ S with x < z, which can not be since Z ∩ S
is no more than a singleton.

It remains to show that S is tightly packed. This is where the
stringent dressing of S is crucial. We invoke Example 8.7(c).

Let Q ∈ QS. To show that Q is finite we first show something
weaker.

Let L be any antichain of S. We show that Q ∩ L is finite.
By way of contradiction suppose Q∩L is infinite. Thus there is a

countably infinite subset X ⊆ Q∩L. Since the dressing is stringent,
this set X is closed by Example 8.7(c). Thus, using Example 8.7(a)
we see that

X ′ ∪ {↑x | x ∈ X}
is an open cover of S (since ? ∈ X ′). The compactness of Q gives

X ⊆ Q ⊆ X ′ ∪ ↑x1 ∪ · · · ∪ ↑xm

for some x1, . . . , xm ∈ X , and hence

X ⊆ L ∩ (↑x1 ∪ · · · ∪ ↑xm)

holds. Consider any y ∈ X . Then y ∈ L and xi ≤ y for some
1 ≤ i ≤ m. But xi ∈ X ⊆ L and L is an antichain, so that y = xi.
This gives X ⊆ {x1, . . . , xm} which is the contradiction (since X is
supposed to be infinite).

We use this observation for sets L ⊆ I(x) for x ∈ S.
Consider any subset H ⊆ S and any x ∈ S and let L = H ∩I(x).

By the observation

Q ∩ L = Q ∩ H ∩ I(x)
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is finite and hence in S(x). This shows that Q ∩ H is closed. In
particular, for each q ∈ Q the set Xq = Q∩{q}′ is closed, and hence
Uq = X ′

q = Q′ ∪ {q} is open. But

{Uq | q ∈ Q}
is an open cover of S, so that the compactness of Q gives

Q ⊆ Q′ ∪ {q1, . . . , qm}
for some q1, . . . , qm ∈ Q. Thus Q ⊆ {q1, . . . , qm} to give the re-
quired result. �

Let us fix some boss space S with a stringent dressing. Even-
tually we want to take some Q ∈ QS and see what ∂Q does. In
particular, we want to determine Q(∞) and to estimate the closure
ordinal. It turns out that the boss has his finger in everything.

Definition 8.9. For each closed set X ∈ CS let `(X) be the subset
of S given by

? ∈ `(X) ⇐⇒ ? ∈ X x ∈ `(X) ⇐⇒ I(x)∩ X /∈ S(x)

for each x ∈ S. �

The characterization of closed sets given just before Examples
8.7 shows that

`(X) 6= ∅ =⇒ ? ∈ X `(X) ⊆ X

for each X ∈ CS. It is easy to check that ` is a derivative on S but
we don’t need to do that here. However, we do observe that ` is
related to a derivative on S.

Lemma 8.10. For each X ∈ CS we have

`(X)∩ S = lim(X)∩ S
where lim is the CB-derivative on S.

Proof. Fix X ∈ CS.
Firstly, consider any x ∈ `(X)∩ S and, by way of contradiction,

suppose x is isolated in X . Thus X ∩ U = {x} for some U ∈ OS.
In particular, X ⊆ U ′ ∪ {x} so that

I(x)∩ X ⊆ (I(x)− U) ∪ (I(x)∩ {x}) = I(x)− U

(since x /∈ I(x)). But x ∈ U , so that I(x)−U ∈ S(x), which is the
contradiction (since x ∈ `(X)).
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Secondly, consider any x ∈ S with x ∈ X−`(X). We have x ∈ X
and I(x) ∩ X ∈ S(x), and we must show that x is isolated in X .
To this end consider

U = (S ∩ X ′)∪ {x}

so that X ∩ U = {x} and hence it suffices to show that U is open.
We have ? /∈ U . Consider any y ∈ U . We require I(y)−U ∈ S(y).

But I(y)−U ⊆ I(y)∩X so that I(y)∩X ∈ S(y) will suffice. Since
y ∈ U we have either y ∈ X ′ or y = x. Since X ′ is open this first
alternative gives I(y) ∩ X ∈ S(y). For the second alternative we
have y = x /∈ `(X), and hence I(y)∩ X ∈ S(y), as required. �

This result can not be strengthened. If ? ∈ X then ? ∈ `(X),
but ? may be isolated in X (for instance if X = {?}).

Consider any Q ∈ QS, and let ∂ = ∂Q. We have Q ∩ X ⊆ ∂(X)
for each X ∈ CS. The operator ` gives us an upper bound for ∂.

Lemma 8.11. Let Q ∈ QS and let ∂ = ∂Q. Then for each X ∈ CS
we have

∂(X) ⊆ `(X)∪ (Q ∩ X)

with equality if ? ∈ Q.

Proof. We first show the inclusion and then deal with the equality.
If ? ∈ ∂(X) then ? ∈ X , and hence ? ∈ `(X). Also ∂(X) ⊆ X ,

so it suffices to show

x ∈ ∂(X) =⇒ x ∈ `(X) or x ∈ Q

(for x ∈ S). In fact, we show the contrapositive.
Suppose

(i) x /∈ `(X) (ii) x /∈ Q

for x ∈ S. Let U = {x}′ ∈ OS, so that Q ⊆ U (by (ii)), and
hence ∂(X) ⊆ (U ∩ X)−. We show that U ∩ X is closed, so that
∂(X) ⊆ U ∩ X ⊆ U and hence x /∈ ∂(U).

Suppose
I(y)∩ U ∩ X /∈ S(y)

for some y ∈ S. We require {?, y} ⊆ U∩X . By enlargement we have
I(y) ∩ X /∈ S(y) so that {?, y} ⊆ X . Also ? ∈ U by construction.
From (i) we have I(x)∩X ∈ S(x) so that y 6= x, and hence y ∈ U ,
as required.
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For the second part of the proof we suppose ? ∈ Q. For X ∈ CS
we have Q ∩ X ⊆ ∂(X), so it suffices to show `(X) ⊆ ∂X . If
`(X) = ∅, then we are done. Thus we may suppose `(X) 6= ∅, and
hence ? ∈ X (since X is closed).

Consider any open set U with Q ⊆ U . We must show `(X) ⊆
(U ∩ X)−. Let Y = (U ∩ X)−, so that X ∩ U ∩ Y ′ = ∅ and hence
X ⊆ U ′ ∪ Y to give

I(x)∩ X ⊆ (I(x)− U) ∪ (I(x)∩ Y )

for each x ∈ S. Since ? ∈ Q ⊆ U we have I(x)− U ∈ S(x) for each
such x. Thus, since Y ∈ CS, we have

x ∈ `(X) =⇒ I(x)∩ X /∈ S(x) =⇒ I(x)∩ Y /∈ S(x) =⇒ x ∈ Y

to give `(X) ⊆ Y , as required. �

If ? /∈ X then `(X) = ∅, and we have the following.

Corollary 8.12. Let Q ∈ QS and ∂ = ∂Q. Then

∂(X) = Q ∩ X

for each X ∈ CS with ? /∈ X.

We said earlier that the operator ` is a derivative but didn’t
prove it. Here is why. The singleton {?} is in QS and so gives a
derivative ∂? = ∂{?}. By Lemma 8.11 we have

∂?(X) = `(X)∪ ({?} ∩ X)

for each X ∈ CS. But either ? ∈ X in which case ? ∈ `(X), or
? 6∈ X , and hence

∂?(X) = `(X) ∪ {?} = `(X) ∂?(X) = `(X) = ∅
in these two cases. Thus we have the following.

Corollary 8.13. We have ∂? = `.

This with Lemma 8.11 begins to show how the boss point controls
the stacking properties of S. To obtain more precise information
we extend the lemma.

Lemma 8.14. Let Q ∈ QS and ∂ = ∂Q. For each X ∈ CS and
ordinal α we have

Q ∩ X ⊆ ∂α(X) ⊆ `α(X)∪ (Q ∩ X)

where the right hand inclusion is an equality if ? ∈ Q.
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Proof. The left hand inclusion is immediate. For the right hand
inclusion we proceed by induction on α. The base case and the
induction leap to a limit ordinal are straight forward. For the in-
duction step, α 7→ α + 1, by an immediate use of the induction
hypothesis we have

∂α+1(X) ⊆ ∂
(
`α(X)∪ (Q ∩ X)

)

= ∂
(
`α(X)

)
∪ ∂(Q∩ X)

⊆
(
`α+1(X)∪ (Q∩ `α(X)

)
∪

(
`(Q ∩ X)∪ (Q∩ X)

)

= `α+1(X)∪ (Q ∩ X)

to give the required result. Here the third step (the second inclu-
sion) follows by Lemma 8.11, and the final equality holds since ` is
deflationary. �

As a particular case of this result we may take X = S to get

Q ⊆ Q(α) ⊆ `α(S)∪ Q

for each ordinal α. Since ` = ∂?, for S to be neat we must at least
have `θ(S) = {?} for some ordinal θ. But then

Q ⊆ Q(θ) ⊆ {?} ∪ Q

for each Q ∈ QS, which almost shows neatness. Certainly if ? ∈ Q
then Q(θ) = Q. When Q does not contain ? the two extremes differ
by just one point. In particular, if ? /∈ Q(θ) then Q = Q(θ) and
the space is neat. We show that this must be the case.

Lemma 8.15. Let Q ∈ QS with ? /∈ Q. Then Q = Q(2).

Proof. We show first that Q(1) ⊆ {?} ∪ ↓Q. To this end consider
x ∈ S−↓Q. By Examples 8.7(a,b) both U = ↑x and V = S−↑x are
open, and these sets are disjoint. For each q ∈ Q we have x � q,
so that q ∈ V . Thus Q ⊆ V , to give Q(1) ⊆ V − ⊆ U ′ and hence
x /∈ Q(1).

We have Q(1) ⊆ {?}∪X where X = ↓Q and, by Example 8.7(d),
the set X is closed. In particular ∂(X) = Q∩ X = Q by Corollary
8.12. Also Q ⊆ S∈OS (since ? /∈Q) so that ∂({?})⊆(S∩ {?})−=∅
and hence

Q ⊆ Q(2) = ∂(Q(1)) ⊆ ∂({?})∪ ∂(X) = Q

to give the required result. �
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With this result we can complete the calculation we started ear-
lier.

Theorem 8.16. Let S be a stringently dressed tree with boss space
S, and suppose `θ(S) = {?} for some ordinal θ. Then Q(θ) = Q
for each Q ∈ QS, and S is neat.

Proof. Consider Q ∈ QS.
If ? ∈ Q then Q(θ) = Q by the calculation above.
If ? /∈ Q then Q(2) = Q by Lemma 8.15. Thus only if θ ≤ 1 can

a discrepancy arise. However, in this case we have

Q ⊆ Q(1) = ∂(S) ⊆ `(S)∪ Q = {?} ∪ Q

so that either Q = Q(1) or Q(1) = {?} ∪ Q. Since ? /∈ Q we must
have Q = Q(1). (The case θ ≤ 1 can arise only if S is discrete.) �

This result does not show that every stringent boss space is neat,
for we also need `∞(S) = {?} to achieve that. Later we will see an
example where `∞(S) = S with S very large. However, the result
does suggest a way of ensuring neatness.

Theorem 8.17. Let S be a stringently dressed tree in which each
strictly ascending chain is finite. Then the associated boss space is
neat.

Proof. Let X = `∞(S), so that X is closed with `(X) = X . By
Theorem 8.16 it suffices to show X = {?}. By way of contradiction
suppose there is some x ∈ X ∩ S. Then x ∈ `(X) so that I(x) ∩
X /∈ S(x) and, in particular, I(x) ∩ X 6= ∅. This gives us some
x < y ∈ X∩S. By iterating this construction we generate a strictly
ascending chain of elements of X∩S. This is the contradiction. �

This result gives us a simple way of producing neat spaces. For
convenience, let us say a tree is standard if it is well-founded and
each of its branches is finite. Then each stringently dressed stan-
dard tree has a neat boss space. Of course, what the result doesn’t
do is to estimate the degree of neatness (the stacking length). This
can be small even when the tree is large. For instance, if the dress-
ing is such that S(x) = PI(x) for each node x then the boss space
is discrete (and hence T2). In the remainder of this section we show
that even with a standard tree the stacking length can be arbitrarily
large. To achieve this the tree must have a lot of splitting.
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To begin this last part we produce an ascending chain

S0 ⊆ S1 ⊆ · · · ⊆ Sr ⊆ · · · ⊆ Sω (r < ω)

of boss spaces where, for r < ω, the space Sr+1 is (r + 1)-neat but
not r-neat. The properties of

Sω =
⋃

{Sr | r < ω}

are in contrast to this. Later we will indicate how to obtain (α+1)-
neatness for α ≥ ω.

Let I be some uncountable alphabet and let Sω be the full I-
splitting tree of Example 8.2. Let S be the ideal of countable sub-
sets of I . We use this as a uniform notion of smallness on Sω . Of
course, this is a stringent dressing.

The tree Sω splits naturally into layers. Thus let

L0 = {⊥} Lr+1 = {xi | x ∈ Lr , i ∈ I}

for each r < ω. With these let

S0 = ∅ Sr+1 = Sr ∪ Lr

(for r < ω) to produce the ascending chain

S0 ⊆ S1 ⊆ · · · ⊆ Sr ⊆ · · · ⊆ Sω (r < ω)

of layered lower sections of Sω . For each r < ω we have

Sr+1 = L0 ∪ · · · ∪ Lr

and Lr is the top layer of Sr+1.
As well as Sω, each Sr is a tree, so we may set

Sr = {?} ∪ Sr Sω = {?} ∪ Sω

to produce the ascending chain of boss spaces.
Each tree Sr is standard (but Sω is not), so each space Sr is neat.

We have
S0 = {?} S1 = {?,⊥}

and both are discrete. In particular, S1 is 1-neat (that is T2) but
not 0-neat (non-empty). More generally, we will show that

`r(Sr+1) = {?,⊥} `r+1(Sr+1) = {?}

so that Sr+1 is (r + 1)-neat but not r-neat.
We use the layering of Sω .
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Lemma 8.18. For each r < ω the three conditions

(i) x ∈ Sr (ii) I(x) ⊆ Sr+1 (iii) I(x)∩ Sr+1 6= ∅
are equivalent for each x ∈ Sω.

Proof. (i) ⇒ (ii) Suppose x ∈ Sr, so that x ∈ Ls for some s < r,
and hence

I(x) ⊆ Ls+1 ⊆ Sr+1

as required.
(ii) ⇒ (iii) This is trivial (since I(x) 6= ∅).
(iii) ⇒ (i) Suppose y ∈ I(x)∩ Sr+1, so that x < y ∈ Sr+1. Then

y ∈ Ls for some s ≤ r, and hence x ∈ Lt for some t < r, to give
x ∈ Sr. �

The calculations of this last proof are done in the top space Sω.
However, in order to determine its properties some calculations
have to be done in a lower space such as Sr+1. We must do this
with a little care. For instance, for a node x ∈ Sr+1 ∩ Sω = Sr+1,
what is the set of immediate successors in Sr+1? It is either I(x) if
x ∈ Sr or is empty if x ∈ Lr, the top layer of Sr+1. In other words
the set is I(x)∩ Sr+1. We could develop a notation to reflect this,
such as Ir+1(x), but this won’t be necessary provided we do take
some care. Here is an example of this.

Corollary 8.19. For each r < ω the set Sr is closed in all the
higher spaces Sr, . . . , Sω.

Proof. This is trivial for the case r = 0. Thus it suffices to show
that each set Sr+1 is closed in all its higher spaces.

We have ? ∈ Sr+1. Consider any node x such that

I(x)∩ Sr+1 = I(x)∩ Sr+1 /∈ S(x)

holds in some higher space. Then I(x) ∩ Sr+1 6= ∅ (otherwise this
intersection is in S(x)), so that Lemma 8.18 gives x ∈ Sr+1 ⊆ Sr+1,
as required. �

Each of the spaces S0, S1, . . . , Sω carries its own special derivative
as given by Definition 8.9. For the time being let us write `s+1 for
that carried by Ss+1, and reserve ` for that carried by Sω. Thus,
for each X ∈ CSs+1 we have

? ∈ `s+1(X) ⇐⇒ ? ∈ X x ∈ `s+1(X) ⇐⇒ I(x)∩Ss+1∩X /∈ S(x)
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for each x ∈ Ss+1. Remember that I(x)∩Ss+1 is the set of immedi-
ate successors of x in Ss+1. In particular, with X = Sr+1 for some
r ≤ s we have

x ∈ `s+1(Sr+1) ⇐⇒ I(x)∩ Sr+1 /∈ S(x)

for each x ∈ Ss+1. For such x we have x ∈ Lt for some t ≤ s. But
then I(x) ⊆ Lt+1 to give

I(x) ∩ Sr+1 =
{

I(x) if t < r

∅ if r ≤ t

which shows that this intersection is either uncountable and not in
S(x) (if t < r) or is empty and in S(x) (if r ≤ t). Thus we have

x ∈ `s+1(Sr+1) ⇐⇒ (∃t < r)[x ∈ Lt] ⇐⇒ x ∈ Sr

for each x ∈ Ss+1.
In other words

`s+1(Sr+1) ∩ Ss+1 = Sr

which, since ? ∈ Sr ⊆ Sr+1, proves the following. In the state-
ment of the result we have dropped the subscript of `s+1, but have
included a warning.

Lemma 8.20. For each r < ω we have `(Sr+1) = Sr where this
calculation may take place in any higher space Sr+1, . . . , Sω.

The explanation before this result shows that when calculating
`(Sr+1) we don’t need to worry about what the parent space is, the
result is the same for each of Sr+1, . . . , Sω. In the same way we
have the following.

Lemma 8.21. For each r < ω we have `r(Sr+1) = S1 = {?,⊥}.

Proof. We proceed by induction on r. The base case, r = 0, is
trivial. For the induction step, r 7→ r + 1, we have

`r+1(Sr+2) = `r(`(Sr+2)) = `r(Sr+1) = S1

using first Lemma 8.20 and then the induction hypothesis. �

This, with Theorem 8.17, more or less proves the following.

Theorem 8.22. For each r < ω the boss space Sr+1 is (r+1)-neat
but not r-neat.
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Proof. By Theorem 8.17 the space Sr+1 is certainly neat, so it
suffices to determine its stacking rank. By Lemma 8.21 we have
`r(Sr+1) = S1 6= {?} so that space is not r-neat. But this also gives
`r+1(Sr+1) = `(S1) = {?} so that space is (r + 1)-neat. �

This result shows that the neatness hierarchy does not collapse
before ω. Later we will indicate why the hierarchy never collapses.
Before that let’s look at the space Sω.

It is not too hard to show that `(Sω) = Sω, and hence this space
is far from neat. We generalize this observation. A subtree T of
Sω is just a lower section. Many of these can be used to produce
closed sets.

Definition 8.23. A T of Sω is rampant if I(x)∩T /∈ S(x) for each
x ∈ T. �

In other words a rampant subtree is ‘almost all’ of Sω . Such
subtrees are easy to generate. For each uncountable J ⊆ I we may
view the full J-splitting tree as a subtree of Sω. Such a subtree is
rampant. There are many other rampant subtrees. For instance,
start from the root ⊥, and select an uncountable subset of I(⊥).
For each x in this subset select an uncountable subset of I(x). Then
for each y in each of these sets select an uncountable subset of I(y).
Repeat this process through all levels.

The following result is a trivial consequence of being rampant.

Theorem 8.24. Let T be a rampant subtree of Sω. Then the set
X = {?}∪T is closed with `(X) = X, and the pair ({?}, {?}∪T) is
a V-point of Sω.

To conclude we indicate how the higher levels of neatness can be
achieved.

Suppose for some ordinal α we have an example of a tree S which
produces a (α + 1)-neat space which is not α-neat. We form a new
tree S+ by sticking uncountable many copies of S above a new
root. (This is the process which takes us from Sr+1 to Sr+2.) A
few calculations shows that S+ produces (α + 2)-neat space which
is not (α + 1)-neat.

Suppose λ is a limit ordinal and suppose for α < λ we have a tree
Sα which produces a a (α+1)-neat space which is not α-neat. (We
certainly have such examples for λ = ω.) Form a new tree Sλ by
taking uncountably many copies of each Sα and stick them above a
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new root. Again it can be checked that Sλ produces a space which
is λ + 1-neat but not λ-neat. The details of these calculations can
be found in [9].

You may have spotted that we haven’t exhibited a space that
is ω-neat but not r-neat for each r < ω. Such an example can be
found in [9]. It is interesting to note that this is the boss space of
a non-well-founded tree.
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