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PERFECT PREIMAGES AND SMALL DIAGONAL

ALAN DOW AND OLEG PAVLOV

Abstract. M. Hušek defines a space X to have a small di-

agonal if each uncountable subset of X
2 disjoint from the

diagonal has an uncountable subset whose closure is disjoint
from the diagonal. It is known that the existence of a perfect
preimage of ω1 which has a small diagonal is independent of
the usual axioms of set-theory. In this note we prove that a
perfect preimage of ω1 which is scattered will not have a small
diagonal.

1. Introduction

We refer the reader to Gary Gruenhage’s interesting article [2]
for more background on spaces with small diagonal (see also [6]).
In particular, Gruenhage proves that, consistent with CH, each
countably compact space with a small diagonal is metrizable; hence,
no countably compact preimage of ω1 could have a small diagonal.
On the other hand, the authors prove in [1] that it follows from ♦+

(a strengthening of CH) that there is a space with a small diagonal
which maps perfectly onto ω1. In this paper, we prove (in ZFC)
that there is no scattered space with a small diagonal which maps
perfectly onto ω1.

M. Hušek [3], of course, originally asked about small diagonals
for compact and ω1-compact spaces. The main open question in
this area is whether every compact space with a small diagonal is
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metrizable. This statement has been shown to be consistent; for
example, it follows from each of CH and PFA. A counterexample
will have to have a continuous image which does not have a small
diagonal [1, Proposition 18]; hence, we will consider preimages of
those spaces that do not have a small diagonal. We offer the fol-
lowing problem as another interesting question about spaces with
a small diagonal that may be easier to resolve in ZFC.

Question 1. If a compact space X maps onto the Alexandroff
double of the unit interval or of the compact double arrow space,
will X not have a small diagonal?

Using Hušek’s result [3] that a compact non-metrizable space
which has a small diagonal must have weight larger than ω1 and
I. Juhász and Z. Szentmiklóssy’s result [4] that it must have count-
able tightness, the authors showed the following.

Proposition 2. [1, Corollary 5] If a compact space has a small

diagonal, then it is metrizable if each of its separable subspaces is

metrizable.

In fact, we should have stated the following strengthening be-
cause it uses the same proof.

Proposition 3. If a compact non-metrizable space has a small

diagonal, then it has a countable discrete subset whose closure is

not metrizable.

Proof: Assume that no countable discrete subset of X is dense.
Inductively select points xα not in the closure of Dα = {xβ : β <

α} for α < ω1. Juhasz and Szentmiklóssy [4] have shown that
X will have countable tightness (because it is compact and has a
small diagonal). Therefore, Y =

⋃
α<ω1

Dα will be compact and

have a small diagonal. If each Dα is metrizable, Y will have net-
weight, hence weight, equal to ℵ1. By Hušek’s result, Y should be
metrizable, which, clearly, it is not. �

Therefore, if a compact space with a small diagonal maps onto
the Alexandroff double, then the preimage of the non-isolated points
will not be metrizable. In fact, more generally, Gruenhage [2, Corol-
lary 2.5] has shown that if a non-metrizable compact space with a
small diagonal maps onto a metric space, one of the fibers will be
non-metrizable.
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2. Perfect preimages of ω1

Recall the following reformulation of a space having a small di-
agonal.

Proposition 4. A space X has a small diagonal iff for each un-

countable family of pairs of points of X, {(xα, yα) : α ∈ ω1}, there

is an uncountable A ⊂ ω1 such that each point x of X has a neigh-

borhood Ux satisfying that |Ux ∩ {xα, yα}| ≤ 1 for all α ∈ A.

The following is a simple generalization.

Lemma 5. If a space X has a small diagonal and {Fα : α ∈ ω1} is

a family of finite subsets of X, then there is an uncountable A ⊂ ω1

such that each point x ∈ X has a neighborhood Ux satisfying that

Ux ∩ Fα has at most one element for each α ∈ A.

Proof: Let n ∈ ω be chosen so that A0 = {α : |Fα| = n} is un-
countable. For each α ∈ A0, let {Fα(i) : i < n} be an enumeration
of Fα and let {Pj : j <

(
n
2

)
} enumerate all the two element subsets

of n. Recursively apply Proposition 4 to select uncountable sets
Aj+1 ⊂ Aj so that each x ∈ X has a neighborhood Ux satisfying
|Ux ∩ {Fα(i) : i ∈ Pj}| ≤ 1 for each α ∈ Aj+1. Clearly, if j =

(
n
2

)
,

then Aj is the desired uncountable subset of A0. �

It is nearly immediate now that no space with a small diagonal
admits a finite-to-one perfect map onto ω1. We include this proof
for the interest of the reader. Recall that a map is perfect if it is a
closed map and the preimage of each point is compact.

Corollary 6. If f : X → ω1 is a perfect surjective map, and, for

some stationary set S ⊂ ω1, |f
−1(α)| is finite for each α ∈ S, then

X does not have a small diagonal.

Proof: Let S be a stationary set as in the statement of the Corol-
lary 6. Since a countable union of non-stationary sets is again
non-stationary, we may fix an integer n so that S0 = {α ∈ S :
|f−1(α)| = n} is also stationary. For each α ∈ S0, choose a point
xα such that f(xα) = α + 1 and let Fα = {xα} ∪ f−1(α). Apply
Lemma 5 to find an uncountable A0 ⊂ S0 such that each point
x ∈ X has a neighborhood Ux satisfying |Ux ∩ Fα| ≤ 1 for each
α ∈ A0. Since S0 is stationary, there is a λ ∈ S0 that is a limit
of A0. By possibly shrinking the finitely many open sets, we can
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assume that Ux ∩ Ux′ is empty for x 6= x′ with f(x) = f(x′) = λ.
Note that Fα \

⋃
x∈f−1(λ) Ux is not empty for each α ∈ A0. It fol-

lows then that A0 ∩ λ is contained in the image of the closed set
X \

⋃
x∈f−1(λ) Ux while λ is not. This implies that the map f is not

perfect. �

We will need to iterate the procedure from Lemma 5 in order to
prove our main result. We adopt some notational conventions to do
so. Suppose we fix a sequence {xα : α ∈ ω1} of points in a space X.

For any finite set F ⊂ ω1, let us use F̂ to denote the corresponding
finite set {xα : α ∈ F}. Similarly, for any uncountable collection

F of finite subsets of ω1, let F̂ = {F̂ : F ∈ F} therefore be an
uncountable collection of finite subsets of X.

Next, for any uncountable set A ⊂ ω1 and integer n > 0, let FA
n

denote the unique (canonical) partition of A into sets of size n such
that maxF < min F ′ (or conversely) for F 6= F ′ ∈ FA

n . Finally,
note that if F ′ is an uncountable subset of FA

n and B =
⋃

F ′, then
B ⊂ A and FB

n is a subfamily of FA
n because F ′ = FB

n .

As this notation builds up, the following simple fact is helpful.

Lemma 7. Let n,m be integers and let A be an uncountable subset

of ω1. Let F ′ be an uncountable subset of FA
n and let B =

⋃
F ′.

Then each member of FB
n·m is a union of m many pairwise disjoint

members of F ′.

We can now prove the main theorem.

Theorem 8. If X is a scattered space which maps perfectly onto

ω1, then X does not have a small diagonal.

Proof: Assume that f is a perfect mapping from X onto ω1. Note
that X is locally compact since, for each λ ∈ ω1, the set f−1([0, λ])
is compact. For each λ ∈ ω1, we will let Xλ denote the points of
X that map to λ and also note that Xλ is compact and scattered.
Assume towards a contradiction that X has a small diagonal.

For each α ∈ ω1, fix any point xα ∈ X such that f(xα) = α; thus,
we have chosen a fixed sequence of points {xα : α ∈ ω1} as above.
Recall that <ω

N is the collection of all integer-valued functions with
domain equal to some finite ordinal. We will inductively choose
a collection, {At : t ∈ <ω

N}, of uncountable subsets of ω1. In
addition, we will also have selected {Wt : t ∈ <ω

N} consisting of
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open covers of X. For each ∅ 6= t ∈ <ω
N, let π(t) denote the usual

integer product t(0) · t(1) · · · t(|t|−1), and let π(∅) = 1.
To begin the induction, let A∅ denote the set ω1 and let W∅ be

any cover of X by open sets. Suppose that t ∈ <ω
N is such that At

has not been defined, but that (by induction) At′ and Wt′ have been
defined for all t′ ⊂ t in <ω

N. Let t′ = t ↾ (|t| − 1) be the immediate
predecessor of t and let n denote the integer π(t). We consider the

family of finite sets F = F
A

t′

n and the corresponding family F̂ of
finite subsets of X. By Lemma 5, there is an open cover Wt and

an uncountable subcollection F ′ of F such that W ∩ F̂ has at most
one element for all W ∈ Wt and F ∈ F ′. We set At =

⋃
F ′; hence,

W ∩ F has at most one element for all W ∈ Wt and F ∈ FAt

π(t). By

Lemma 7, it follows by induction that for t′ ⊂ t, each member of

FAt

π(t) is a union of π(t)
π(t′) members of F

A
t′

π(t′).

For each t ∈ <ω
N, the set of accumulation points in ω1 of the

uncountable set At will be a cub in ω1. Since the intersection of
countably many cubs of ω1 is again a cub, we may choose a limit
λ ∈ ω1 such that At∩λ is cofinal in λ for each t ∈ <ω

N. Observe then
that for each F ∈ FAt

π(t), with minF ∈ λ, we also have F ⊂ λ since

λ ∩ (At \ min F ) is infinite and max F < min F ′ for all F ′ ∈ FAt

π(t)

such that F ′ \ min F is not empty.
Now we begin to inductively choose a finite sequence t of integers

(hence, t ∈ <ω
N) and a descending sequence of ordinals (which must

therefore stop in finitely many steps). Let γ0 denote the maximum
non-empty scattering level of Xλ (which must exist since Xλ is
compact and non-empty). Set t(0) to be any integer greater than
the finite number of points of Xλ at scattering level γ0. If we have
defined the first k elements of t, we will use t ↾ k to denote that
function, even though we don’t yet know what t is. Let W0 ⊂ Wt↾1

(with |W0| < t(0)) be a cover of those fewer than t(0) many points

at scattering level γ0 of Xλ. Set U0 =
⋃

W0 and note that F̂ \ U0

is not empty for each F ∈ F
At↾1

t(0) .

Assume now that we have defined t(i), γi and Wi for i < k such
that |Wi| < t(i), Wi ⊂ Wt↾i+1, and Xλ \

⋃
{
⋃

Wi : i < k} has
scattering height less than γk−1. We continue as follows. Set U =⋃
{
⋃

Wi : i < k}; if Xλ \ U is empty we stop. Otherwise, let γk

be the maximum non-empty scattering level of Xλ \U and let t(k)
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be any integer larger than the cardinality of that level. Choose
Wk ⊂ Wt↾k+1 to be any fewer than t(k) many sets which covers
that finite set of points of Xλ \ U at scattering level γk.

Recall from above that we noted that for each F ∈ F
At↾1

t(0) , F̂ \
⋃

W0 is not empty. By Lemma 7, each F ∈ F
At↾2

π(t↾2) is a union

of t(1) many pairwise disjoint members of F
At↾1

t(0) . Therefore, since

|W1| < t(1), it follows that F̂ \(
⋃

W0 ∪
⋃

W1) is not empty for each

F ∈ F
At↾2

π(t↾2). By a straightforward induction, for each F ∈ FAt

π(t), we

have that F̂ \
⋃
{
⋃

Wi : i < |t|} is not empty. We are now ready for

our contradiction. Choose any sequence {Fn : n ∈ ω} ⊂ FAt

π(t) such

that {min Fn : n ∈ ω} is cofinal in λ. Recall also that max Fn ∈ λ

for each n ∈ ω as well. For each n, choose yn ∈ F̂ \
⋃
{
⋃

Wi : i <

|t|}. It follows now that {f(yn) : n ∈ ω} is cofinal in λ, while on the
other hand, {yn : n ∈ ω} is a closed subset of X \

⋃
{
⋃

Wi : i < |t|}
since Xλ is contained in

⋃
{
⋃

Wi : i < |t|}. �

Question 9. If a space X has a small diagonal and maps perfectly
onto a space Y with point preimages being scattered, will Y also
have a small diagonal?

The formulation and proof of Theorem 8 can easily be strength-
ened to require only that the map be a closed map onto a stationary
subset of ω1 and that point preimages are compact scattered rather
than the whole space is scattered.

In addition, a compact scattered space with a small diagonal is
easily shown to be countable and metrizable.

Combining these ideas yields the following result.

Proposition 10. Suppose that a space X maps onto a subset S of

ω1 by a closed mapping such that fibers are compact and scattered.

Then X has a small diagonal iff S is not stationary and the point

preimages are also countable.
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