Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

PERFECT PREIMAGES AND SMALL DIAGONAL

ALAN DOW AND OLEG PAVLOV

ABSTRACT. M. Hušek defines a space X to have a small diagonal if each uncountable subset of X^2 disjoint from the diagonal has an uncountable subset whose closure is disjoint from the diagonal. It is known that the existence of a perfect preimage of ω_1 which has a small diagonal is independent of the usual axioms of set-theory. In this note we prove that a perfect preimage of ω_1 which is scattered will not have a small diagonal.

1. INTRODUCTION

We refer the reader to Gary Gruenhage's interesting article [2] for more background on spaces with small diagonal (see also [6]). In particular, Gruenhage proves that, consistent with CH, each countably compact space with a small diagonal is metrizable; hence, no countably compact preimage of ω_1 could have a small diagonal. On the other hand, the authors prove in [1] that it follows from \diamond^+ (a strengthening of CH) that there is a space with a small diagonal which maps perfectly onto ω_1 . In this paper, we prove (in ZFC) that there is no scattered space with a small diagonal which maps perfectly onto ω_1 .

M. Hušek [3], of course, originally asked about small diagonals for compact and ω_1 -compact spaces. The main open question in this area is whether every compact space with a small diagonal is

²⁰⁰⁰ Mathematics Subject Classification. Primary 54D20.

Key words and phrases. countably compact, perfect map, small diagonal.

The first author acknowledges support provided by NSF grant DMS-0103985. ©2007 Topology Proceedings.

metrizable. This statement has been shown to be consistent; for example, it follows from each of CH and PFA. A counterexample will have to have a continuous image which does not have a small diagonal [1, Proposition 18]; hence, we will consider preimages of those spaces that do not have a small diagonal. We offer the following problem as another interesting question about spaces with a small diagonal that may be easier to resolve in ZFC.

Question 1. If a compact space X maps onto the Alexandroff double of the unit interval or of the compact double arrow space, will X not have a small diagonal?

Using Hušek's result [3] that a compact non-metrizable space which has a small diagonal must have weight larger than ω_1 and I. Juhász and Z. Szentmiklóssy's result [4] that it must have countable tightness, the authors showed the following.

Proposition 2. [1, Corollary 5] If a compact space has a small diagonal, then it is metrizable if each of its separable subspaces is metrizable.

In fact, we should have stated the following strengthening because it uses the same proof.

Proposition 3. If a compact non-metrizable space has a small diagonal, then it has a countable discrete subset whose closure is not metrizable.

Proof: Assume that no countable discrete subset of X is dense. Inductively select points x_{α} not in the closure of $D_{\alpha} = \{x_{\beta} : \beta < \alpha\}$ for $\alpha < \omega_1$. Juhasz and Szentmiklóssy [4] have shown that X will have countable tightness (because it is compact and has a small diagonal). Therefore, $Y = \bigcup_{\alpha < \omega_1} \overline{D_{\alpha}}$ will be compact and have a small diagonal. If each $\overline{D_{\alpha}}$ is metrizable, Y will have netweight, hence weight, equal to \aleph_1 . By Hušek's result, Y should be metrizable, which, clearly, it is not.

Therefore, if a compact space with a small diagonal maps onto the Alexandroff double, then the preimage of the non-isolated points will not be metrizable. In fact, more generally, Gruenhage [2, Corollary 2.5] has shown that if a non-metrizable compact space with a small diagonal maps onto a metric space, one of the fibers will be non-metrizable.

90

2. Perfect preimages of ω_1

Recall the following reformulation of a space having a small diagonal.

Proposition 4. A space X has a small diagonal iff for each uncountable family of pairs of points of X, $\{(x_{\alpha}, y_{\alpha}) : \alpha \in \omega_1\}$, there is an uncountable $A \subset \omega_1$ such that each point x of X has a neighborhood U_x satisfying that $|U_x \cap \{x_{\alpha}, y_{\alpha}\}| \leq 1$ for all $\alpha \in A$.

The following is a simple generalization.

Lemma 5. If a space X has a small diagonal and $\{F_{\alpha} : \alpha \in \omega_1\}$ is a family of finite subsets of X, then there is an uncountable $A \subset \omega_1$ such that each point $x \in X$ has a neighborhood U_x satisfying that $U_x \cap F_{\alpha}$ has at most one element for each $\alpha \in A$.

Proof: Let $n \in \omega$ be chosen so that $A_0 = \{\alpha : |F_{\alpha}| = n\}$ is uncountable. For each $\alpha \in A_0$, let $\{F_{\alpha}(i) : i < n\}$ be an enumeration of F_{α} and let $\{P_j : j < \binom{n}{2}\}$ enumerate all the two element subsets of n. Recursively apply Proposition 4 to select uncountable sets $A_{j+1} \subset A_j$ so that each $x \in X$ has a neighborhood U_x satisfying $|U_x \cap \{F_{\alpha}(i) : i \in P_j\}| \leq 1$ for each $\alpha \in A_{j+1}$. Clearly, if $j = \binom{n}{2}$, then A_j is the desired uncountable subset of A_0 .

It is nearly immediate now that no space with a small diagonal admits a finite-to-one perfect map onto ω_1 . We include this proof for the interest of the reader. Recall that a map is *perfect* if it is a closed map and the preimage of each point is compact.

Corollary 6. If $f : X \to \omega_1$ is a perfect surjective map, and, for some stationary set $S \subset \omega_1$, $|f^{-1}(\alpha)|$ is finite for each $\alpha \in S$, then X does not have a small diagonal.

Proof: Let S be a stationary set as in the statement of the Corollary 6. Since a countable union of non-stationary sets is again non-stationary, we may fix an integer n so that $S_0 = \{\alpha \in S :$ $|f^{-1}(\alpha)| = n\}$ is also stationary. For each $\alpha \in S_0$, choose a point x_{α} such that $f(x_{\alpha}) = \alpha + 1$ and let $F_{\alpha} = \{x_{\alpha}\} \cup f^{-1}(\alpha)$. Apply Lemma 5 to find an uncountable $A_0 \subset S_0$ such that each point $x \in X$ has a neighborhood U_x satisfying $|U_x \cap F_{\alpha}| \leq 1$ for each $\alpha \in A_0$. Since S_0 is stationary, there is a $\lambda \in S_0$ that is a limit of A_0 . By possibly shrinking the finitely many open sets, we can assume that $U_x \cap U_{x'}$ is empty for $x \neq x'$ with $f(x) = f(x') = \lambda$. Note that $F_\alpha \setminus \bigcup_{x \in f^{-1}(\lambda)} U_x$ is not empty for each $\alpha \in A_0$. It follows then that $A_0 \cap \lambda$ is contained in the image of the closed set $X \setminus \bigcup_{x \in f^{-1}(\lambda)} U_x$ while λ is not. This implies that the map f is not perfect. \Box

We will need to iterate the procedure from Lemma 5 in order to prove our main result. We adopt some notational conventions to do so. Suppose we fix a sequence $\{x_{\alpha} : \alpha \in \omega_1\}$ of points in a space X. For any finite set $F \subset \omega_1$, let us use \hat{F} to denote the corresponding finite set $\{x_{\alpha} : \alpha \in F\}$. Similarly, for any uncountable collection \mathcal{F} of finite subsets of ω_1 , let $\hat{\mathcal{F}} = \{\hat{F} : F \in \mathcal{F}\}$ therefore be an uncountable collection of finite subsets of X.

Next, for any uncountable set $A \subset \omega_1$ and integer n > 0, let \mathcal{F}_n^A denote the unique (canonical) partition of A into sets of size n such that max $F < \min F'$ (or conversely) for $F \neq F' \in \mathcal{F}_n^A$. Finally, note that if \mathcal{F}' is an uncountable subset of \mathcal{F}_n^A and $B = \bigcup \mathcal{F}'$, then $B \subset A$ and \mathcal{F}_n^B is a subfamily of \mathcal{F}_n^A because $\mathcal{F}' = \mathcal{F}_n^B$.

As this notation builds up, the following simple fact is helpful.

Lemma 7. Let n, m be integers and let A be an uncountable subset of ω_1 . Let \mathcal{F}' be an uncountable subset of \mathcal{F}_n^A and let $B = \bigcup \mathcal{F}'$. Then each member of $\mathcal{F}_{n \cdot m}^B$ is a union of m many pairwise disjoint members of \mathcal{F}' .

We can now prove the main theorem.

Theorem 8. If X is a scattered space which maps perfectly onto ω_1 , then X does not have a small diagonal.

Proof: Assume that f is a perfect mapping from X onto ω_1 . Note that X is locally compact since, for each $\lambda \in \omega_1$, the set $f^{-1}([0, \lambda])$ is compact. For each $\lambda \in \omega_1$, we will let X_{λ} denote the points of X that map to λ and also note that X_{λ} is compact and scattered. Assume towards a contradiction that X has a small diagonal.

For each $\alpha \in \omega_1$, fix any point $x_\alpha \in X$ such that $f(x_\alpha) = \alpha$; thus, we have chosen a fixed sequence of points $\{x_\alpha : \alpha \in \omega_1\}$ as above. Recall that ${}^{<\omega}\mathbb{N}$ is the collection of all integer-valued functions with domain equal to some finite ordinal. We will inductively choose a collection, $\{A_t : t \in {}^{<\omega}\mathbb{N}\}$, of uncountable subsets of ω_1 . In addition, we will also have selected $\{\mathcal{W}_t : t \in {}^{<\omega}\mathbb{N}\}$ consisting of

92

open covers of X. For each $\emptyset \neq t \in {}^{<\omega}\mathbb{N}$, let $\pi(t)$ denote the usual integer product $t(0) \cdot t(1) \cdots t(|t|-1)$, and let $\pi(\emptyset) = 1$.

To begin the induction, let A_{\emptyset} denote the set ω_1 and let \mathcal{W}_{\emptyset} be any cover of X by open sets. Suppose that $t \in {}^{<\omega}\mathbb{N}$ is such that A_t has not been defined, but that (by induction) $A_{t'}$ and $\mathcal{W}_{t'}$ have been defined for all $t' \subset t$ in ${}^{<\omega}\mathbb{N}$. Let $t' = t \upharpoonright (|t| - 1)$ be the immediate predecessor of t and let n denote the integer $\pi(t)$. We consider the family of finite sets $\mathcal{F} = \mathcal{F}_n^{A_{t'}}$ and the corresponding family $\widehat{\mathcal{F}}$ of finite subsets of X. By Lemma 5, there is an open cover \mathcal{W}_t and an uncountable subcollection \mathcal{F}' of \mathcal{F} such that $W \cap \widehat{F}$ has at most one element for all $W \in \mathcal{W}_t$ and $F \in \mathcal{F}'$. We set $A_t = \bigcup \mathcal{F}'$; hence, $W \cap F$ has at most one element for all $W \in \mathcal{W}_t$ and $F \in \mathcal{F}_{\pi(t)}^{A_t}$. By Lemma 7, it follows by induction that for $t' \subset t$, each member of $\mathcal{F}_{\pi(t)}^{A_t}$ is a union of $\frac{\pi(t)}{\pi(t')}$ members of $\mathcal{F}_{\pi(t')}^{A_{t'}}$.

For each $t \in {}^{<\omega}\mathbb{N}$, the set of accumulation points in ω_1 of the uncountable set A_t will be a cub in ω_1 . Since the intersection of countably many cubs of ω_1 is again a cub, we may choose a limit $\lambda \in \omega_1$ such that $A_t \cap \lambda$ is cofinal in λ for each $t \in {}^{<\omega}\mathbb{N}$. Observe then that for each $F \in \mathcal{F}_{\pi(t)}^{A_t}$, with min $F \in \lambda$, we also have $F \subset \lambda$ since $\lambda \cap (A_t \setminus \min F)$ is infinite and max $F < \min F'$ for all $F' \in \mathcal{F}_{\pi(t)}^{A_t}$ such that $F' \setminus \min F$ is not empty.

Now we begin to inductively choose a finite sequence t of integers (hence, $t \in {}^{<\omega}\mathbb{N}$) and a descending sequence of ordinals (which must therefore stop in finitely many steps). Let γ_0 denote the maximum non-empty scattering level of X_{λ} (which must exist since X_{λ} is compact and non-empty). Set t(0) to be any integer greater than the finite number of points of X_{λ} at scattering level γ_0 . If we have defined the first k elements of t, we will use $t \upharpoonright k$ to denote that function, even though we don't yet know what t is. Let $\mathcal{W}_0 \subset \mathcal{W}_{t \upharpoonright 1}$ (with $|\mathcal{W}_0| < t(0)$) be a cover of those fewer than t(0) many points at scattering level γ_0 of X_{λ} . Set $U_0 = \bigcup \mathcal{W}_0$ and note that $\widehat{F} \setminus U_0$ is not empty for each $F \in \mathcal{F}_{t(0)}^{A_{t \upharpoonright 1}}$.

Assume now that we have defined $t(i), \gamma_i$ and \mathcal{W}_i for i < k such that $|\mathcal{W}_i| < t(i), \mathcal{W}_i \subset \mathcal{W}_{t|i+1}$, and $X_\lambda \setminus \bigcup \{\bigcup \mathcal{W}_i : i < k\}$ has scattering height less than γ_{k-1} . We continue as follows. Set $U = \bigcup \{\bigcup \mathcal{W}_i : i < k\}$; if $X_\lambda \setminus U$ is empty we stop. Otherwise, let γ_k be the maximum non-empty scattering level of $X_\lambda \setminus U$ and let t(k)

A. DOW AND O. PAVLOV

be any integer larger than the cardinality of that level. Choose $\mathcal{W}_k \subset \mathcal{W}_{t|k+1}$ to be any fewer than t(k) many sets which covers that finite set of points of $X_{\lambda} \setminus U$ at scattering level γ_k .

Recall from above that we noted that for each $F \in \mathcal{F}_{t(0)}^{A_{t|1}}, \widehat{F} \setminus \bigcup \mathcal{W}_{0}$ is not empty. By Lemma 7, each $F \in \mathcal{F}_{\pi(t|2)}^{A_{t|2}}$ is a union of t(1) many pairwise disjoint members of $\mathcal{F}_{t(0)}^{A_{t|1}}$. Therefore, since $|\mathcal{W}_{1}| < t(1)$, it follows that $\widehat{F} \setminus (\bigcup \mathcal{W}_{0} \cup \bigcup \mathcal{W}_{1})$ is not empty for each $F \in \mathcal{F}_{\pi(t|2)}^{A_{t|2}}$. By a straightforward induction, for each $F \in \mathcal{F}_{\pi(t)}^{A_{t|2}}$, we have that $\widehat{F} \setminus \bigcup \{\bigcup \mathcal{W}_{i} : i < |t|\}$ is not empty. We are now ready for our contradiction. Choose any sequence $\{F_{n} : n \in \omega\} \subset \mathcal{F}_{\pi(t)}^{A_{t}}$ such that $\{\min F_{n} : n \in \omega\}$ is cofinal in λ . Recall also that $\max F_{n} \in \lambda$ for each $n \in \omega$ as well. For each n, choose $y_{n} \in \widehat{F} \setminus \bigcup \{\bigcup \mathcal{W}_{i} : i < |t|\}$. It follows now that $\{f(y_{n}) : n \in \omega\}$ is cofinal in λ , while on the other hand, $\{y_{n} : n \in \omega\}$ is a closed subset of $X \setminus \bigcup \{\bigcup \mathcal{W}_{i} : i < |t|\}$ since X_{λ} is contained in $\bigcup \{\bigcup \mathcal{W}_{i} : i < |t|\}$.

Question 9. If a space X has a small diagonal and maps perfectly onto a space Y with point preimages being scattered, will Y also have a small diagonal?

The formulation and proof of Theorem 8 can easily be strengthened to require only that the map be a closed map onto a stationary subset of ω_1 and that point preimages are compact scattered rather than the whole space is scattered.

In addition, a compact scattered space with a small diagonal is easily shown to be countable and metrizable.

Combining these ideas yields the following result.

Proposition 10. Suppose that a space X maps onto a subset S of ω_1 by a closed mapping such that fibers are compact and scattered. Then X has a small diagonal iff S is not stationary and the point preimages are also countable.

References

 Alan Dow and Oleg Pavlov, More about spaces with a small diagonal, Fund. Math. 191 (2006), no. 1, 67–80.

94

- [2] Gary Gruenhage, Spaces having a small diagonal, in Proceedings of the International Conference on Topology and its Applications (Yokohama, 1999). Topology Appl. **122** (2002), no. 1-2, 183–200.
- [3] M. Hušek, Topological spaces without κ -accessible diagonal, Comment. Math. Univ. Carolinae **18** (1977), no. 4, 777–788.
- [4] I. Juhász and Z. Szentmiklóssy, Convergent free sequences in compact spaces, Proc. Amer. Math. Soc. 116 (1992), no. 4, 1153–1160.
- [5] Kenneth Kunen, Set Theory: An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, 102. Amsterdam-New York: North-Holland Publishing Co., 1980.
- [6] Hao Xuan Zhou, On the small diagonals, Topology Appl. 13 (1982), no. 3, 283–293.

(Dow) DEPARTMENT OF MATHEMATICS; UNC-CHARLOTTE; 9201 UNIVERSITY CITY BLVD.; CHARLOTTE, NC 28223-0001

E-mail address: adow@uncc.edu *URL*: http://www.math.uncc.edu/~adow

(Pavlov) Department of Mathematics; UNC-Charlotte; 9201 University City Blvd.; Charlotte, NC 28223-0001

E-mail address: opavlov@email.uncc.edu